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Abstract

We consider an automated agent that needs to coor-
dinate with a human partner when communication
between them is not possible or is undesirable (tac-
tic coordination games). Specifically, we exam-
ine situations where an agent and human attempt to
coordinate their choices among several alternatives
with equivalent utilities. We use machine learning
algorithms to help the agent predict human choices
in these tactic coordination domains.

Learning to classify general human choices, how-
ever, is very difficult. Nevertheless, humans
are often able to coordinate with one another in
communication-free games, by using focal points,
“prominent” solutions to coordination problems.

We integrate focal points into the machine learn-
ing process, by transforming raw domain data into
a new hypothesis space. This results in classifiers
with an improved classification rate and shorter
training time. Integration of focal points into learn-
ing algorithms also results in agents that are more
robust to changes in the environment.

1 Introduction

Agents often need to coordinate their actions in a coherent
manner. Sometimes, achieving coherent behavior is the result
of explicit communication and negotiation. However, com-
munication is not always possible, for reasons as varied as
high communication costs, the need to avoid detection, dam-
aged communication devices, or language incompatibility.

Schelling [1963] called coordination-without-communi-
cation scenarios tactic coordination games, and named these
games’ “prominent solutions” focal points. A classic exam-
ple is the solution most people choose when asked to divide
$100 into two piles, of any sizes; they should attempt only
to match the expected choice of some other, unseen player.
Usually, people create two piles of $50 each, and that is what
Schelling dubbed a focal point.

The use of focal points to solve coordination games
has previously been studied, both theoretically and exper-
imentally, from two different perspectives. In the first,
there were assumed to be two human coordinators, and re-
search explored a formal theoretical framework for focal

points [Janssen, 1998]. In the second approach, there were
assumed to be two automated agents, and both agents ran the
same focal point finder algorithm [Kraus et al., 2000]. How-
ever, the use of focal points when an automated agent needs
to coordinate with an arbitrary human partner has yet to be
explored, and it raises new challenges.

The main motivation for such research comes from the in-
creasing interest in task teams that contain both humans and
automated agents. Human-Agent collaboration can take the
form of robots working with human partners. Another sce-
nario is the development of user interfaces that diverge from
a master-slave relationship with the user, adopting a collab-
orative, task-sharing approach in which the computer explic-
itly considers its user’s plans and goals, and is thus able to
coordinate various tasks [Grosz, 2004].

One important type of natural human-machine interaction
is the anticipation of movement, without the need for prior
explicit coordination. This movement can be physical, such
as the movement of a robotic arm that is assisting a human
in a construction task (e.g., a machine helping a human weld
pipes). As humans naturally anticipate their partners’ choices
in certain situations, we would like automated agents to also
act naturally in their interactions with humans. Coordinated
anticipation can also take place in virtual environments, in-
cluding online games, where humans and automated agents
can inhabit shared worlds and carry out shared activities.

There are several constraints implicit in the above scenar-
ios. First, the human partner with whom our automated agent
is trying to coordinate may not always be known ahead of
time, and we want coordination strategies suitable for novel
partners. Second, the environment itself is not fully specified
ahead of time, and may be configured somewhat randomly
(although the overall domain is known, i.e., the domain ele-
ments are a given, but not their specific arrangement). Third,
there is no option to “hard-wire” arbitrary coordination rules
into all participants, since we are not dealing with coordina-
tion between two centrally-designed agents.

We specifically consider environments in which a human
and automated agent aspire to communication-free coordina-
tion, and the utilities associated with coordinated choices are
equal. Clearly, if utilities for various choices differed, the
agent and human could employ game theoretic forms of anal-
ysis, which might specify certain strategies.

Our integration of machine learning algorithms and focal
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point techniques (which we call Focal Point Learning [FPL])
is done via a semi-automatic data preprocessing technique.
This preprocessing transforms the raw domain data into a
new data set that creates a new hypothesis space, consisting
solely of general focal point attributes. We demonstrate that
using FPL results in classifiers (a mapping from a coordina-
tion problem to the choice selected by an arbitrary human co-
ordination partner) with a 40% to 80% higher correct classifi-
cation rate, and a shorter training time, than when using reg-
ular classifiers, and a 35% higher rate than when using only
classical focal point techniques without applying any learn-
ing algorithm. In another series of experiments, we show that
applying these techniques can also result in agents that are
more robust to changes in the environment.

In Section 2, we describe the motivation and approach of
Focal Point Learning. We then describe the experimental set-
ting (Section 3), its definitions (Section 3.1), and the domains
that were used in the experiments (Section 3.2). In Section 4
we discuss our results. Related work is considered in Sec-
tion 5, and we conclude in Section 6.

2 Focal Point Learning

Coordination in agent-human teams can be strengthened by
having agents learn how a general human partner will make
choices in a given domain. Learning to classify human
choices in tactic coordination games, however, is difficult:
1) No specific function to generalize — there is no known
mathematical function nor behavioral theory that predicts hu-
man choices in these games; 2) Noisy data — Data collected
from humans in tactic coordination games tends to be very
noisy due to various social, cultural, and psychological fac-
tors, that bias their answers; 3) Domain complexity — train-
ing requires a large set of examples, which in turn increases
required training time. On the other hand, human-human
teams are relatively skilled at tactic coordination games. Ex-
periments that examined human tactic coordination strate-
gies [Schelling, 1963; Mehta et al., 1994] showed that people
are often able to coordinate their choices on focal points, even
when faced with a large set of options.

Several attempts have been made to formalize focal points
from a game theoretic, human interaction point of view
([Janssen, 1998] provides a good overview). However, that
work does not provide the practical tools necessary for use
in automated agents. However, Kraus et al. [2000] identified
some domain-independent rules that could be used by auto-
mated agents to identify focal points (and discussed two ap-
proaches for doing so). The following rules are derived from
that work, but are adjusted in our presentation (by adding
Firstness, and making minor changes in others).

• Centrality — give prominence to choices directly in the
center of the set of choices, either in the physical envi-
ronment, or in the values of the choices.

• Extremeness — give prominence to choices that are ex-
treme relative to other choices, either in the physical en-
vironment, or in the values of the choices.

• Firstness — give prominence to choices that physically
appear first in the set of choices. It can be either the
option closest to the agent, or the first option in a list.

• Singularity — give prominence to choices that are
unique or distinguishable relative to other choices in the
same set. This uniqueness can be, for example, with re-
spect to some physical characteristics of the options, a
special arrangement, or a cultural convention.

We employ learning algorithms to help our agent discover
coordination strategies. Training samples, gathered from hu-
mans playing a tactic coordination game, are used to create
an automated agent that performs well when faced with a
new human partner in a newly generated environment. How-
ever, because of the aforementioned problems, applying ma-
chine learning on raw domain data results in classifiers hav-
ing poor performance. Instead, we use a Focal Point Learning
approach: we preprocess raw domain data, and place it into
a new representation space, based on focal point properties.
Given our domain’s raw data Oi, we apply a transformation
T , such that Nj = T (Oi), where i, j are the number of at-
tributes before and after the transformation, respectively.

The new feature space Nj is created as follows: each
v ∈ Oi is a vector of size i representing a game instance in
the domain (world description alongside its possible choices).
The transformation T takes each vector v and creates a new
vector u ∈ Nj , such that j = 4×[number of choices]. T iter-
ates over the possible choices encoded in v, and for each such
choice computes four numerical values signifying the four fo-
cal point properties presented above. For example, given a co-
ordination game encoded as a vector v of size 25 that contains
3 choices (c1, c2, c3), the transformation T creates a new vec-
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notes the centrality/extremeness/firstness/singularity values
for choice l. Note that j might be smaller than, equal to, or
greater than i, depending on the domain.

The transformation from raw domain data to the new rep-
resentation in focal point space is done semi-automatically.
To transform raw data from some new domain, one needs to
provide a domain-specific implementation of the four general
focal point rules. However, due to the generic nature of the
rules, this task is relatively simple, intuitive, and suggested
by the domain itself (we will see such rules in Section 3.2).
When those rules are implemented, the agent can itself easily
carry out the transformation on all instances in the data set.

3 The Experimental Setting

We designed three domains for experiments in tactic coordi-
nation. For each domain, a large set of coordination problems
was randomly generated, and the solutions to those problems
were collected from human subjects.

We used the resulting data set to train three agents: 1) an
agent trained on the original domain data set (a Domain Data
agent); 2) an agent using focal point rules without any learn-
ing procedure (an FP agent); and 3) an agent using Focal
Point Learning (an FPL agent). We then compared coordina-
tion performance (versus humans) of the three types of agent.

In the second phase of our experiments (which tested ro-
bustness to environmental changes), we took the first domain
described in Section 3.2, and designed two variations of it;

IJCAI-07
1564



one variant (VSD, a very similar domain) had greater simi-
larity to the original environment than the other variant (SD)
had. Data from human subjects operating in the two variant
settings was collected. We then carried out an analysis of au-
tomated coordination performance in the new settings, using
the agents that had been trained in the original domain.

3.1 Definitions

Definition 1 (Pure Tactic Coordination Games). Pure Tac-
tic Coordination Games (also called matching games) are
games in which two non-communicating players get a posi-
tive payoff only if both choose the same option. Both players
have an identical set of options and the identical incentive to
succeed at coordination.

Our experiments involve pure tactic coordination games.

Definition 2 (Focality Value). Let R be the set of selection
rules used in the coordination domain, c ∈ C be a possible
choice in the domain, r ∈ R be a specific selection rule, and
v(r, c) be its value. Then the focality value is defined as:

FV (c) =

∑
r∈R v(r, c)

|R|
.

A focality value is a quantity calculated for each possible
choice in a given game, and signifies the level of prominence
of that choice relative to the domain. The focality value takes
into account all of the focal point selection rules used in the
coordination domain; their specific implementation is domain
dependent (e.g., what constitutes Centrality in a given do-
main). Since the exact set of selection rules used by human
players is unknown, this value represents an approximation
based on our characterization of the focal point rule set. In
the experiments, our FP agent will use this value to deter-
mine its classification answer to a given game.

Definition 3 (Focality Ratio). Let C be the set of all possible
choices in the coordination domain and FV (c) be the focality
value of c ∈ C, max be the maximum function and 2nd max
be the second maximum function. Then the focality ratio is
defined as:

F Ratio(C) = max
c∈C

(FV (c)) − 2nd max
c∈C

(FV (c)).

A Focality Ratio is a function that gets a set of possible
choices and determines the difficulty level of the tactic co-
ordination game. Naturally, a game with few choices that
have similar focality values is harder to solve than a game
that might have more choices, but with one of the choices
much more prominent than the others.

For each of the experimental domains, we built classifiers
that predict the choice selected by most human partners. We
worked with two widely used machine learning algorithms:
a C4.5 decision learning tree [Quinlan, 1993], and a feed
forward back-propagation (FFBP) neural network [Werbos,
1974]. Each of these was first trained on the raw domain data
set, and then on the new preprocessed focal point data.

The raw data was represented as a multi-valued feature bit
vector. Each domain feature was represented by the mini-
mal number of bits needed to represent all its possible values.
This simple, low level representation helped standardize the

experimental setup with both types of classifiers using exactly
the same domain encoding.

The transformation to focal point encoding provides focal-
ity values in terms of our low-level focal point rules (First-
ness, Singularity, Extremeness, and Centrality) for each of
the possible choices. Their values were calculated in a pre-
processing stage, prior to the training stage (and by an agent
when it needs to output a prediction). It is important to note
that following the transformation to the focal point encoding,
we deprive the classifier of any explicit domain information
during training; it trains only on the focal point information.

Changes in the Environment

To check agent robustness in the face of environment
changes, we took the “Pick the Pile” domain (described be-
low), and designed two variations of it, in which one variant
is more similar to the original environment than the other is:

Definition 4 (Environment Similarity). Similarity between
environments is calculated as the Euclidean distance:

dij =

√√√√
n∑

k=1

(xik − xjk)2,

where the environment vector x is constructed from the num-
ber of goals, number of attributes per goal, number of values
per attribute, and the attribute values themselves.

In our experiments, we put original agents (i.e., agents that
had been trained in the original Pick the Pile game) in the new
environments, and compared their classification performance.

3.2 The Experimental Domains

We now present three experimental domains that were de-
signed to check FPL’s performances. The design principles
for constructing them were as follows: 1) create tactic coor-
dination games (equal utility values for all possible choices);
2) minimize implicit biases that might occur due to psycho-
logical, cultural, and social factors; 3) consider a range of tac-
tic coordination problems, to check the performance of FPL
learning in different domains.

Pick the Pile Game

We designed a simple and intuitive tactic coordination game
that represents a simplified version of a domain where an
agent and a human partner need to agree on a possible meet-
ing place. The game is played on a 5 by 5 square grid board.
Each square of the grid can be empty, or can contain either
a pile of money or the game agents (all agents are situated in
the same starting grid; see Figure 1). Each square in the game
board is colored white, yellow, or red. The players were in-
structed to pick the one pile of money from the three identical
piles, that most other players, playing exactly the same game,
would pick. The players were told that the agents can make
horizontal and vertical moves.

In a simple binary encoding of this domain, for encoding
25 squares with 9 possible values (4 bits) per square, we used
100 neurons for the input layer. Training such a massive net-
work required a large training set, and we built the game as a
web application to be played online. The web site was pub-
licized in various mailing lists. To maintain the generality
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Figure 1: Pick the Pile Game board sample

of the data, each game sequence was limited to 12 game in-
stances; thus, the data set of approximately 3000 games was
generated by 250 different human players from around the
world. Each instance of the game was randomly generated.

The transformation to the focal point space was done in
the following way: the only distinguishable choice attribute
is the color, thus the Singularity of each pile was calculated
according to the number of squares having the same color.
Naturally, a pile of money sitting on a red square in a board
having only 4 red squares, would have a higher degree of sin-
gularity than a pile of money sitting on a white square, if there
were 17 white squares on that board. The Firstness property
was calculated as the Manhattan distance between the agent’s
square and each pile of money. Centrality was calculated as
an exact bisection symmetry, thus giving a positive value to a
pile that lies directly between two other piles either horizon-
tally, vertically, or diagonally. The Extremeness property was
intuitively irrelevant in this domain, so we gave it a uniform
constant value.

Candidate Selection Game

Players were given a list of five candidates in an election for
some unknown position. The candidates were described us-
ing the following properties and their possible values:

1. sex∈{Male, Female}

2. age∈{25, 31, 35, 42, 45}

3. height (in meters)∈{1.71, 1.75, 1.78, 1.81, 1.85}

4. profession∈{Doctor, Lawyer, Businessman, Engineer,
Professor}

Each list was composed of five randomly generated can-
didates. The (pen and paper) experiments were carried out
when subjects (82 first-year university students) were seated
in a classroom, and were told that their coordination partners
were randomly selected from experiments that took place in
other classes, i.e., their partner’s identity is completely un-
known. For a candidate to be elected, it needs to get these two
votes (the player’s and its partner’s); thus, both sides need to
choose the same candidate. To create the necessary motiva-
tion for successful coordination,1 we announced a monetary
reward for success. Figure 2 shows a sample question.

The binary encoding for this domain is a set of 65 input
neurons in the input layer that encodes 5 candidates, each
with 13 possible property values. The focal point transforma-
tion had the following intuitive implementation: the Singu-
larity of a candidate was calculated according to the relative

1It is a well-known phenomenon that coordination in these games
deteriorates without sufficient motivation.

Figure 2: Candidate Selection Game sample

uniqueness of each of its values (i.e., a sole female candidate
in a set of males will have a high singularity value). The Ex-
tremeness property gave high values to properties that exhibit
extreme values in some characteristics of the candidate (for
example, a candidate who is the oldest or youngest among
the set of candidates would get a higher Extremeness value
than a candidate who is not). The Firstness and Centrality
properties simply gave a constant positive value to the first
and third candidates on the list.

Shape Matching Game

Players were given a random set of geometric shapes, and had
to mark their selected shape in order to achieve successful co-
ordination with an unknown partner (presented with the same
set). The shapes were presented in a single row. The game
was randomly generated in terms of the number of shapes
(that ranged from 3 to 7) and the shapes themselves (which
could be a circle, rectangle, or triangle). Questionnaires con-
taining ten game instances were distributed to students (78
students overall). As before, monetary prizes were guaran-
teed to students with the highest coordination scores. Figure 3
shows a sample question in the domain.

Figure 3: Shape Matching Game sample

This domain is the easiest among our games to represent
as a simple binary encoding, because each goal has only a
single property, its type. In any game instance, each shape
can be a circle, rectangle, triangle, or “non-existing”, in the
case where the randomized number of shapes is lower than 7.
The focal point transformation was implemented as follows:
the Singularity of a choice was determined by the number of
choices with the same shape (for example, in a game where
all shapes are circles and only a single shape is a triangle,
the triangular shape will have a high singularity value). The
Extremeness property gave higher focality values to the first
and last choices in the set. Those values became higher as the
number of shapes increased (the extremeness in a game with
3 shapes was lower than the extremeness in a game with 6
shapes). Centrality gave additional focality value to the mid-
dle choice, when the number of shapes was odd. In an even
number of shapes, no centrality value was given. Firstness
gave a small bias to the first shape on the list.

This domain is an example of a transformation in which
j > i; the transformation actually increases the search space.

IJCAI-07
1566



4 Results and Discussion

4.1 Prediction Performance

For each of the above domains, we compared the correct clas-
sification performance of both C4.5 learning trees and FFBP
neural network classifiers. As stated above, the comparison
was between a domain data agent (trained on the raw domain
encoding), a focal point (FP) agent (an untrained agent that
used only focal point rules for prediction), and a focal point
learning (FPL) agent. “Correct classification” means that the
agent made the same choice as that of the human who played
the same game.2

We optimized our classifiers’ performance by varying the
network architecture and learning parameters, until attaining
best results. We used a learning rate of 0.3, momentum rate
of 0.2, 1 hidden layer, random initial weights, and no bi-
ases of any sort. Before each training procedure, the data
set was randomly divided into a test and a training set (a stan-
dard 33%–66% division). Each instance of those sets con-
tained the game description (either the binary or focal point
encoding) and the human answer to it. All algorithms were
run in the WEKA data mining software, which is a collection
of machine learning algorithms for data mining tasks. The
classification results using the neural network and the deci-
sion tree algorithms were very close (maximum difference of
3%). Figure 4 compares the correct classification percentage
for the agents’ classification techniques, in each of the three
experimental domains. Each entry in the graph is a result av-
eraged over five runs of each learning algorithm (neural net-
work and C4.5 tree), and the average of those two algorithms.

Figure 4: Average Correct Classification Percentage

Examining the results, we see a significant improvement
when using the focal point learning approach to train classi-
fiers. In all three domains, the domain data agent is not able to
generalize sufficiently, thus achieving classification rates that
are only about 5%–9% higher than a random guess. Using
FPL, the classification rate improved by 40%–80% above the
classification performance of the domain data agent.3 The
results also show that even the classical FP agent performs
better than the domain data agent. However, when the FP
agent faces coordination problems with low focality ratios,
its performance deteriorates to that of random guesses.

2If there were multiple occurrences of a specific game instance,
the choice of the majority of humans was considered the solution.

3Since even humans do not have 100% success with one another
in these games, FPL is correspondingly the more impressive.

Note also that in the first domain, when using FPL instead
of regular raw data learning, the marginal increase in perfor-
mance is higher than the improvement that was achieved in
the second domain (an increase of 30% vs. 21%), which is in
turn higher than the marginal increase in performance of the
third domain (an increase of 21% vs. 14%). From those re-
sults, we hypothesize that the difference in the marginal per-
formance increase is because the first domain was the most
complex one in terms of the number of objects and their prop-
erties. As the domain becomes more complex, there are more
possibilities for human subjects to use their own subjective
rules (for example, in the Pick the Pile domain, we noticed
that few people looked at the different color patterns that were
randomly created, as a decision rule for their selected goal).
As more rules are used, the data becomes harder to gener-
alize. When an agent is situated in a real, highly complex
environment, we can expect that the marginal increase in per-
formance, when using FPL, will be correspondingly large.

An additional advantage of using FPL is the reduction in
training time (e.g., in the Pick the Pile domain we saw a re-
duction from 4 hours on the original data to 3 minutes), due
to the reduction of input size. Moreover, the learning tree that
was created using FPL was smaller, and can be easily con-
verted to a rule-based system as part of the agent’s design.

4.2 Robustness to Environmental Changes

Follow-on experiments were designed to check the robustness
of agent-human tactic interaction in a changing environment.

We created two different versions of the Pick the Pile game,
which had different similarity values relative to the original
version. In the first variant (VSD), we added a fourth possible
value to the set of values of the color attribute (four colors
instead of three). In the second variant (SD), in addition to
the first change, we also changed the grid structure to a 6 by
4 grid (instead of the original 5 by 5). Moreover, in both
variants, we changed all four color values from actual colors
to various black and white texture mappings.

Additional experiments were conducted in order to collect
human answers to the two new variants of the game. The
agents that had been trained on the original environment (us-
ing the neural network algorithm), were now asked to coordi-
nate with an arbitrary human partner in the new environments.
Figure 5 summarizes performance comparison of the agents
in each of the new environment variants.

Figure 5: Classification Percent in Changing Environments

The prediction results on the first variant (VSD) show that
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all three agents managed to somehow cope with the new, very
similar domain, and suffered only a small decrease in per-
formance. However, when looking at the results of the sim-
ilar domain (SD), we see that the domain data agent’s per-
formance decreased all the way to its classification perfor-
mance’s lower bound, that of random guessing. At the same
time, our FPL agent did suffer a mild decrease in performance
(around 5%), but still managed to keep a considerably high
performance level of around 62%. We can also notice that
the classical FP agent copes with the environmental changes
better than the domain data agent, with performance level of
around 45%; however, it is still low when compared to the
FPL agent’s performance level.

5 Related Work

The first use of focal points in artificial intelligence [Kraus
et al., 2000] employed focal point techniques to coordi-
nate between two computerized agents in communication-
impoverished situations. The authors modeled the process of
finding focal points from domain-independent criteria using
two approaches: decision theory, and step-logic. They also
defined a robot rendezvous domain, and used simulations to
show that their focal point-based algorithm, tailored specifi-
cally for that domain, effectively solved the problem. Focal
points have also been widely studied from the point of view
of a human who is coordinating with another human partner.
[Janssen, 1998] provides a good overview of the formal mod-
els that attempt to describe the focal point phenomenon.

For teams of automated agents, a variety of methods
have been developed to achieve coordination, and coopera-
tion without communication, for specific, well-defined tasks.
[Gervasi and Prencipe, 2004] provides an example solution to
the flocking problem, involving simple robot teams that can-
not communicate with one another. A comparison of experi-
ments with and without communication was done in [Arkin,
1992], to check robot performance in the retrieval task. In a
recent paper, [Schermerhorn and Scheutz, 2006] used prede-
fined social laws for achieving coordination without commu-
nication in the multiagent territory exploration task.

6 Conclusions

We have presented the Focal Point Learning (FPL) approach
to building automated agents that play tactic coordination
games with general human partners in changeable environ-
ments. The technique makes use of learning algorithms to
train agents to coordinate with general human partners in
specific domains; focal points are integrated into the learn-
ing process through the use of focal point selection rules.
Training data is preprocessed and transferred into a new rep-
resentation space, where each vector contains quantified focal
point values, and these are used to train the agent.

We created three experimental domains, and collected data
to be used for training agents to predict human coordination
choices in those domains. Results showed that when trained
solely on the domain-encoded data, the classifiers resulted in
a close-to-random correct classification percentage, while the
FPL agents managed to achieve a significantly higher correct
classification rate.

In the next step we created two variants of one of the do-
mains, collected human data for them, and then checked the
coordination performance, in these variants, of each of the
agents that had been trained in the original domain. Here
again, the FPL agents outperformed the others, and demon-
strated robustness in a changing environment.

When building agents to coordinate with unfamiliar human
partners, without communication, machine learning classi-
fiers have a difficult task generalizing data to predict human
choices. Focal point learning can improve performance and
robustness to environmental changes. In future work we will
explore FPL’s performance on more complex problems. The
first stage will likely be problems in which the agent has some
uncertainty regarding the environment that the human sees.
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