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A b s t r a c t .  This paper presents a new method for evaluating the spatial 
attitude (position-orientation) of a 3D object by matching a 3D static model 
of this object with sensorial data describing the scene (2D projections or 
3D sparse coordinates). This method is based on the pre-computation of a 
force field derived from 3D distance maps designed to attract any 3D point 
toward the surface of the model. The attitude of the object is infered by 
minimizing the energy necessary to bring all of the 3D points (or projection 
lines) in contact with the surface (geometric configuration of the scene). 
To quickly and accurately compute the 3D distance maps, a precomputed 
distance map is represented using an oetree spline whose resolution increases 
near the surface. 

1 I n t r o d u c t i o n  

One of the most basic ability of any human or artificiM intelligence is the inference 
of knowledge by matching various pieces of information [1]. When only a few data are 
available, one can introduce a priori knowledge to compensate for the lack of information 
and match it with the data. In this latter frame, one of the most classical problematics is 
the inference of the attitude of a 3D object from sensorial data (2D projections or sparse 
3D coordinates). 

This problem can be formulated as follows: assume that we know a 3 D  description 
(model) or some features of an object in a first 3D attitude (location and orientation). 
We acquire various sensorial data describing this object in another (unknown) attitude, 
and we then at tempt to estimate, from the model of the object and this new data, 
this unknown attitude. This generally implies the determination of 6 parameters: three 
components of translation (location) and three components of rotation(orientation). 

In this paper, we will suppose the segmentation of the sensorial data achieved and 
focus on the interpretation of the scene described by the segmented images. 

In spite of a considerable amount of litterature (see [2] for a review of related works), 
no general algorithm has been published yet. This paper presents a new complex object- 
oriented geometric method based on the pre-computation of a force field derived from 
3D distance maps. Experimental results, in the field of computer-assisted surgery, are 
proposed. 

2 P r o b l e m  f o r m u l a t i o n  : a n  e n e r g e t i c  p a r a d i g m  

To be independant from any 3D object representation and in order to have as wide an 
application field as possible, the start point of our matching process will be therefore a 
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set of 3D points disLributed on the surface of the object and defining our model of the 
object. Such a model can be extracted from any 3D initial representation. 

The problem is to estimate the transformation T between Refsensor (the reference 
system of the sensorial data) and Ref3D (reference system in which the 3D model of  
the object is defined). After the sensor calibration ( N-planes spline method ([3]), in 
3D/2D matching every pixel ~i of each projection is associated with a 3-D line, Li, 
called matching line, whose representation is known in Refsensor. 

In 3D/2D matching, when the 3D object is in its final attitude, T, every line Li is 
tangent to the surface S. In the same way, when matching the 3D model with a set of  
sparse 3D control points, these latter are in contact with S. For sufficiently complex ob- 
jects (i.e. without strong symmetries), T is the only att i tude leading to such a geometric 
configuration. Our algorithm is based on this observation : 

1. We first define the 3-D unsigned distance between a point r and the surface S, 
drg(r, S), as the minimum Euclidean distance between r and all the points of  S. 
We use this distance function to define a force field in any point of  the 3D space. 
Every point r is associated with a force vector F( r )  = w - r where w is the point of  
S the closest to r. We therefore have: 

[F(r)[ : dE(r, S) (1) 

2. In 3D/2D matching, an attraction force FL(Li)  is associated to any matching line 
Li by: 
(a) if Li does not cross S ,  FL(Li )  : F(M/)  where Mi is the point of  Li the closest 

to S; 
(b) else FL(L~) = F(N~) where N~ is the point of L~ inside the surface S the farthest 

from S (see fig. 1). 
A simple way to compute F L  is to consider a signed distance, 0~, of same module than 
dF, but negative inside S and to choose the point of Li of minimum signed module. 
same module than 

/ 

Fig. 1. Force vector associated to a matching line 

Li k~ 

3. l e m m a  (not proved here) : The potential energy of  the force field F at a point r with 
respect to the surface S i.e. the energy necessary to bring r in contact with S is 

P E ( r )  = 1F(r)~  + o(F( r ) )  (2) 

For a set of N, I 3D control points, ri, to take into account the reliability of  the data,  
we introduce the variance of the noise of the measurement dE(ri, S), o'~, (see section 
4) to weight the energy of a control point and consider the energy E : 

Nq 

E(p)  = Z ~ [dE( r~ ,  S)] ;.  (3) 
i-----I 
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4. In the same way, the potent ial  energy of a matching line Li, i.e. the work necessary 
to bring the line into contact  with S is equal to the potent ia l  energy of the point  
where the a t t rac t ion  force is applied (Mi or Ni). As previously, to take into account 
the reliability of the da t a  on the matching lines, we weight the potent ia l  energy of 
each matching line by the variance of the noise of the measurement  d(li(p), S), o'~, 
and consider the energy E: 

Mr Mr 1 | . . . .  :~ 
(4) 

5. As shown above, when the object is in its final attitude, every line (every control 
point) is in contact with S and the energy of the attitude is therefore zero, the lowest 
possible energy. If the object is sufficiently complex the minimum of the energy 
function is reached only once, in the final attitude, and the energy function is convex 
in a large neighborhood of this attitude. A minimization procedure of convex function 
can therefore be performed (see section 4). 

3 Fast force field computation and octree splines distance maps 

The method described in the previous section relies on the fast computation of the 
distances d~ and d. If the surface S is discretized in r~ 2 points, the computation of 
the distance dE is a O(r~ 2) process. Similarly, if a line li(p) is discretized in m points, 
the computation of the distance d is a O(mn 2) process. To speed up this process, we 
precompute a 3-D distance map, which is a function that gives the signed minimum 
distance to S from any point q inside a bounding volume V that encloses S. 

More precisely, let G a regular grid of N 3 points bounding V. We first compute and 
store the distance d for each point q of G. Then d(q, S~ can be computed for any point 
q using a trilinear interpolation of the 8 corner values dijk of the cube that contains the 
point q. If (u, v, w) E [0, 1] • [0, 1] • [0, i]) are the normalized coordinates of q in the 
cube, 

I I I 

d(q,S)= ~__a~-'~bi(u)bj(v)bk(w)dijk with bt(t)=6zt+(1-6t)(1-t). (5) 
i=0  j--O k=O 

We can compute the gradient Vd(q, S) of the signed distance function by simply 
differentiating (5) with respect to ~, v, and w. Because d is only C ~ Vd(q, S) is discon- 
tinuous on cube faces. However, these gradient discontinuities are relatively small and do 
not seem to affect the convergence of our iterative minimization algorithm. 

In looking for an improved trade-off between memory space, accuracy, speed of com- 
putation, and speed of construction, we have developed a new kind of distance map 
which we call the octree spline. The intuitive idea behind this geometrical representation 
is to have more detailed information (i.e., more accuracy) near the surface than far away 
from it. We start with the classical octrce representation associated with the surface S 
and then extend it to represent a continuous 3-D function that approximates the signed 
Euclidean distance to the surface. This representation combines advantages of adaptive 
splinc functions and hierarchical data structures. For more details on the concept of 
octree-splines, see [2]. 



673 

4 L e a s t  S q u a r e s  M i n i m i z a t i o n  

This section describes the nonlinear least squares minimization of the energy or error 
function E(p) defined in eq. 4 and eq. 3. 

Least squares techniques work well when we have many uncorrelated noisy measure- 
ments with a normal (Gaussian) distribution 3. To begin with, we will make this assump- 
tion, even though noise actually comes from calibration errors, 2-D and 3-D segmentation 
errors, the approximation of the Euclidean distance by octree spline distance maps, and 
non-rigid displacement of the surface between Ref3D and Refsen .... 

To perform the nonlinear least squares minimization, we use the Levenberg-Marquardt 
algorithm because of its good convergence properties [4]. An important point of this 
method is that in both equations 4 and 3 g (p )  can be easily differentiated which allows 
to exhibit simple analytical forms for ghe gradient and Hessian of E(p), used in the 
minimization algorithm. 

At the end of the iterative minimization process, we compute a robust estimate of 
the parameter p by throwing out the measurements where e~(p) >> 0 .2 and performing 
some more iterations [5]. This process removes the influence of outliers which are likely 
to occur in the automatic 2-D and 3-D segmentation processes (for instance, a partially 
superimposed object on X-ray projections can lead to false contours). 

Using a gradient descent technique such as Levenberg-Marquardt we might expect 
that the minimization would fail because of local minima in the 6-dimensional parameter 
space. However, for the experiments we have conducted, false local minima were few and 
always far away from the solution. So, with a correct initial estimate of the parameters, 
these other minima are unlikely to be reached. 

Finally, at the end of the iterative minimization procedure, we estimate the uncer- 
tainty in the parameters (covariance matrix) to compute the distribution of errors after 
minimization in order to check that it is Gaussian. 

5 Experimental results 

We have performed tests on both real anatomical surfaces and on simulated surfaces. In 
3D/2D matching, the projection curves of these surfaces were obtained by simulation in 
order to know the parameters p* for which the correct pose is reached. Figures 2 and 3 
show an example of convergence for an anatomical surface (VIM of the brain ; surface 
$1) in 3D/2D matching. The state of the iterative minimization algorithm is displayed 
after 0, 2, and 6 iterations. Figure 2 shows the relative positions of the projections lines 
and the surface seen from a general viewpoint. Figure 3 shows the same state seen from 
the viewpoints of the two cameras (computation times expressed below are given for a 
DECstation 5000/200). Experiments have also been conducted to test this method for 
3D/3D matching by simulating a complex transformation on a vertebra (surface $2) (see 
fig. 4 for the convergence). 

6 D i s c u s s i o n  

In comparison with existing methods, the experiments we ran showed the method pre- 
sented in this paper had five main advantages. 

a Under these assumptions, the least squares criterion is equivalent to maximum likelihood 
estimation. 
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Fig. 2. Convergence of algorithm observed from a general viewpoint (surface SD is represented 
by a set of points). Two sets of projection lines evolve in the 3D potential field associated with 
the surface until each line is tangent to St: (a) initial configuration, (b) after 2 iterations, (c) 
after 6 iterations. For this case, the matching is performed in 1.8 s using 77 projection lines, in 
0.9 s using 40 projection lines. 

First, the matching process works for any free- form smooth surface. Second, we 
achieve the best accuracy possible for the estimation of the 6 parameters in p, because 
the octree spline representation we use approximates the true 3-D Euclidean distance 
with an error smaller than the segmentation errors in the input data. Third, we provide 
an est imate of  the uncertaint ies  of the 6 parameters. Fourth, we perform the matching 
process very rapidly. Fifth, in our method, only a f ew pizels on the contours are needed. 
This allows to estimate the at t i tude of the object even if it is partially occluded. More- 
over, reliability factors can be introduced to weight the contribution of uncertain data 
(for instance, the variance of the segmentation can be taken into account). 

This method could also be used for recognition problems, where the purpose is to 
match some contour projections with a finite set of 3-D objects {Oi} .  

Researches are presently underway to adapt this algorithm to non-segmented gray- 
levels images by selecting potential matching lines, then assign credibility factors to them 
and maximize a matching energy. 
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Fig.  3. Convergence of algorithm for surface Sl observed from the 2 projection viewpoints. The 
external contours of the projected surface end up fitting the real contours: (a) initial configura- 
tion, (b) after 2 iterations (c) after 6 iterations. 
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F ig .  4. Convergence of 3-D/3-D matching algorithm for surface S~ (vertebra) segmented from 
a 3D CT image. For this case, the matching is performed in 2 s using 130 data points. 

(a) initial configuration, E(p(~ = 113.47, ])At(~ = 125.23mm, IAc~(~ I = 48.25 ~ 
(b) after 2 iterations, E(p~2))/Mp = 38.58, II~t(2)tl = 2s.97mm, 1~(2) I = 20.53 o, 
(c) after 6 iterations. E(p(6))/Mp = 4.20, II~t(+)ll = 0.75mm, I~a(6)  I = 0.32 ~ 


