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ABSTRACT

The representational change of input along the intermediate layers is an important
aspect of understanding deep learning architectures. To this end, we propose an
approach that relies on the foundation of Function Space theory. In particular, we
argue that a weak-type Besov smoothness index can quantify the geometry of the
clustering in the feature space of each layer. Therefore, our approach may provide
an additional perspective for understanding data-models fit in the setting of deep
learning. While using a different framework and perspective, the experiments we
performed are in line with the results described by Tishby & Zaslavsky (2015) and
Montavon et al. (2010) in the sense that for well-performing trained networks, the
quality of the representation increases from layer to layer. Our approach could
also be used for addressing generalization (Zhang et al., 2016), (Kawaguchi et al.,
2017) as we also show that the Besov smoothness of the layer representations of
the training set decreases as we add more mis-labeling.

1 FUNCTION SPACE ANALYSIS FOR NEURAL NETWORK ARCHITECTURES

1.1 FUNCTION SPACE APPROACH

A function space is a class of functions bundled with a norm that assigns a non-negative magnitude
to every function in the class. In many cases, we are interested in the collection of those functions
for which the definition of the norm makes sense and is finite Tao (2008). For example, the functions
that have a quantity nature, such as Lp spaces, or some smoothness characteristics such as Sobolev
spaces. One of the practical aspects of this field, is finding the functions representation which could
provide a correspondence with its Function Space. A well-known example is the representation of
functions as Fourier series and the correspondence between the Fourier coefficients and the func-
tions error decay rate. In this position paper, we will be using Geometric Wavelets for representing
functions along with Besov space analysis, which is the right mathematical setup for adaptive ap-
proximation using wavelets (Dekel & Leviatan, 2005), (DeVore, 1998). As shown in (Elisha &
Dekel, 2017), the weak-type Besov smoothness besov indication could describe the geometry of the
clustering of the training set in the feature space of each layer.

We begin with an instructive example that could demonstrate our functional perspective for neural
network architectures. Assume we are presented with a set of gray-scale images of dimension

√
n0×√

n0 with L class labels. Assume further that a deep network has been successfully trained to
classify these images with relatively high precision. This allows us to extract the representation of
each image in each of the hidden layers. To create a representation at layer 0, we concatenate the√
n0 rows of pixel values of each image, to create a vector of dimension n0. We also normalize the

pixel values to the range [0, 1]. Since we advocate a function-theoretical approach, we transform the
class labels into vector-values in the space RL−1 by assigning each label to a vertex of a standard
simplex. Thus, the images are considered as samples of a function f0 : [0, 1]n0 → RL−1. In
the general case, there is no hope that there exists geometric clustering of the classes in this initial
feature space and that f0 has sufficient ‘weak-type’ smoothness (as illustrated by our experiments
below). Thus, a transform into a different feature space is needed. We thus associate with each k-th
layer of a DL network, a function fk : [0, 1]nk → RL−1 where the samples are vectors created by
normalizing and concatenating the feature maps computed from each of the images. Interestingly
enough, although the series of functions fk are embedded in different dimensions nk, through the
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simple normalizing of the features, our method is able to assign smoothness indices to each layer
that are comparable. We claim that for well performing networks, the representations in general
‘improve’ from layer to layer and that our method captures this phenomena and shows the increase
of smoothness.

In some sense this formalism resembles to the ’probe’ approach described by Alain & Ben-
gio (2016), which detects the immediate suitability for a linear classifier in each layer. How-
ever, in our approach we treat the input representation of each layer as a discrete dataset
{xi ∈ Ω0, f (xi)}i=1,,m, in some convex bounded domain Ω0 ⊂ Rn, and search for an efficient
representation of the underlying function. This representation should overcome the complexity, ge-
ometry and possibly non-smooth nature of the values of the underlying function. Such evaluation
could be done for each intermediate layer after a simple value normalization of the features and
response variables. The function Space approach is trying to revile the sparsity and the geometric
properties of this representation rather than its accuracy.

1.2 WAVELET DECOMPOSITION OF RANDOM FOREST (RF)

Wavelet decomposition of RF (Elisha & Dekel, 2016) provides a representation of a predictive mode
in a formalism that enables smoothness analysis. The RF algorithm (Breiman, 2001) constructs di-
verse subdivisions of the initial domain Ω0 into decision trees Tj . At each stage of the subdivision
process, the RF forms a partition of any node in a convex domain Ω ⊂ Rn by an hyper-plane parti-
tion into two convex subdomains Ω′,Ω′′, Ω′ ∪Ω′′ = Ω. For the two children nodes this process also
enables an association of two multivariate polynomials QΩ′ , QΩ′′ ∈ Πr−1 (Rn), of fixed (typically
low) total degree r − 1. Observe that for any given subdividing hyperplane, such approximating
polynomials can be uniquely determined for p = 2, by least square minimization. For the simple
case r = 0, these polynomials are nothing but the average values/labels of the points that belongs to
the node.

Denoting by 1Ω′ , the indicator function over the child domain Ω′, we use the polynomial approx-
imations QΩ′ , QΩ, computed by the local minimization described at (Elisha & Dekel, 2017) and
define

ψΩ′(x) := ψΩ′ (f) (x) := 1Ω′(x) (QΩ′(x)−QΩ(x)) , (1)

as the geometric wavelet associated with the subdomain Ω′ and the function f , or the given discrete
dataset {xi, f (xi)}i=1,,m.

Each wavelet ψΩ′ , is a ‘local difference’ component that belongs to the detail space between two
levels in the tree, a ‘low resolution’ level associated with Ω and a ‘high resolution’ level associated
with Ω′. The norm of a wavelet is computed by

‖ψΩ′‖pp =

∫
Ω′

(QΩ′ (x)−QΩ (x))
p
dx.

Using the weights that are assigned to the trees in the RF (e.g. wj = 1/J), we obtain a wavelet
representation of the entire RF

f̃ (x) =

J∑
j=1

∑
Ω∈Tj

wjψΩ (x). (2)

The theory (see Dekel & Leviatan (2005), Elisha & Dekel (2016) ) tells us that sparse approximation
is achieved by ordering the wavelet components based on their norms

wj(Ωk1)

∥∥ψΩk1

∥∥
p
≥ wj(Ωk2)

∥∥ψΩk3

∥∥
p
≥ · · · (3)

Thus, the adaptive M-term approximation of a RF is

fM (x) :=

M∑
m=1

wj(Ωkm )ψΩkm
(x). (4)

with the notation Ω ∈ Tj ⇒ j (Ω) = j.
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Figure 1: Smoothness analysis of the layer representations of Urban8K’ (left) and CIFAR10 (right)

Table 1: Smoothness analysis of mis-labeled image images

Mis-labeling 0% 10% 20% 30% 40%
MNIST smoothness 0.28 0.106 0.084 0.052 0.03

CIFAR10 smoothness 0.204 0.072 0.053 0.051 0.003

1.3 REVILING THE WEAK-TYPE SMOOTHNESS OF INTERMEDIATE LAYERS

The formal definition and construction of the Besov space of a function with a RF partitioning
|f |Bα,rτ (F) could be found at Elisha & Dekel (2016). Approximation Theory supports cases where
the function is not even continuous, and describe a correspondence between the sparsity of a function
and its Besov smoothness index α. This notion of smoothness indicates that the higher the index
α for which |f |Bα,rτ (F) is finite, the smoother the function is. The theory in Elisha & Dekel (2017)
shows that for the case r = 1, we can infer the smoothness index α from the error in the wavelets
representation

σM (f) := ‖f − fM‖p (5)

without dependence on the dimension of nk. One could numerically model log(σM ) ∼ log(ck) −
αlog(M), M = 1, ..., M̃ , and then find ck, αk through least squares. Finally, we set αk as our
estimate for the ‘critical’ Besov smoothness index of fk. this evaluation could be done solely on the
training set for each of the k representation layers.

2 APPLICATIONS AND EXPERIMENTAL RESULTS

2.1 SMOOTHNESS ANALYSIS ACROSS DEEP LEARNING LAYERS

In the left side of Figure 1 we see how the clustering is ‘unfolded’ by the network, as the Besov α-
index increases from layer to layer, using the ”Urban8K” audio data 1at the layers of the DeepListen
model 2. In right side of Figure 1 we see a clear indication of how the smoothness begins to evolve
during the training after 20 epochs and the ‘unfolding’ of the clustering improves from layer to layer.
We also see that the smoothness improves after 50 epochs, correlating with the improvement of the
accuracy.

2.2 SMOOTHNESS ANALYSIS OF MIS-LABELED DATASETS

Following Zhang et al. (2016) and Kawaguchi et al. (2017), we applied random mis-labeling to the
MNIST and CIFAR10 image sets at various levels. We randomly picked subsets of size q% of the
size of dataset, with q = 10%, 20%, 30%, 40%, and then for each image in this subset we picked a
random label. We then trained the networks on the misclassified datasets. We emphasize that the
goal of this experiment is to understand generalization and automatically detect the level of corrup-
tion solely from the smoothness analysis of the training data. we created a wavelet decomposition
of RF on the representation of the training set at the last inner layer of the network.

1 https://serv.cusp.nyu.edu/projects/urbansounddataset/
2https://github.com/jaron/deep-listening
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