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Abstract 

The process of drug discovery involves a search over the space of all possible chemical compounds. Generative 

Adversarial Networks (GANs) provide a valuable tool towards exploring chemical space and optimizing known 

compounds for a desired functionality. Standard approaches to training GANs, however, can result in mode collapse, 

in which the generator primarily produces samples closely related to a small subset of the training data. In contrast, 

the search for novel compounds necessitates exploration beyond the original data. Here, we present an approach to 

training GANs that promotes incremental exploration and limits the impacts of mode collapse using concepts from 

Genetic Algorithms. In our approach, valid samples from the generator are used to replace samples from the training 

data. We consider both random and guided selection along with recombination during replacement. By tracking the 

number of novel compounds produced during training, we show that updates to the training data drastically outper-

form the traditional approach, increasing potential applications for GANs in drug discovery.
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Introduction
From materials design to drug discovery, many scientific 

endeavors with significant practical applications can be 

viewed as a search over the space of all possible chemical 

compounds [1, 2]. Due to the high-dimensional nature of 

the search space, an exhaustive enumeration of possible 

candidates is not feasible [1]. To overcome this difficulty, 

traditional approaches in drug discovery have relied 

upon domain knowledge from physics and chemistry 

to construct synthesis rules to guide the search for new 

compounds. However, reliance on current knowledge 

to generate rules may unnecessarily limit the amount of 

chemical space explored [2].

In recent years, a data driven approach has emerged 

to empower searches over chemical space. Deep learn-

ing models have been constructed to learn lower dimen-

sional representations of data to identify meaningful 

clusters and discover related compounds with a desired 

functionality [3–7]. Of particular interest to drug discov-

ery, machine learning (ML) models have been incorpo-

rated into pipelines for iterative refinement of candidates. 

More specifically, generative models have been utilized as 

a key component for providing novel molecules for tar-

geted experimental investigations [1, 2, 8].

Generative models in machine learning seek to recre-

ate the distribution underlying a given set of data. After 

modeling the distribution, new samples can be drawn 

that extend the original data. One type of generative 

approach, known as a Generative Adversarial Network 

(GAN), has been widely used in many applications from 

image generation to drug discovery [9–12]. Recent stud-

ies have utilized GANs to search the space of possible 

molecules for drug design, developing models that can 

generate compounds with a desired feature set [11, 12].

Although generative models (and GANs) have many 

advantages for finding new molecules, a key limitation 

is the propensity for mode collapse  [8, 13]. In mode 

collapse, the model distribution collapses to cover 

only a few samples from the training data. Beyond 

mode collapse, it is intuitively expected that a given 
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generative model will be limited by the training data 

used (i.e. there is no standard way to guide the gen-

erative model in areas of parameter space that it has 

never encountered in training). This limitation hin-

ders the use of GANs in search applications such as 

drug discovery. To overcome mode collapse, several 

approaches have been investigated including updat-

ing the loss function to promote diversity [12, 14, 15]. 

However, these approaches rely on comparisons to 

a fixed training data set, which continues to hinder 

search applications.

Here, we build upon recent work utilizing GANs 

for small molecule discovery  [11] by introducing a 

new approach for training. Our approach enables 

augmented search through incremental updating of 

the training data set using ideas from Genetic Algo-

rithms [16]. Novel and valid molecules that are gener-

ated by the model are stored during a training interval. 

Then, the training data is updated through a replace-

ment strategy, which can be guided or random. Train-

ing resumes and the process is repeated. Our results 

show that this approach can alleviate the decrease in 

new molecules generated that occurs for a standard 

GAN during training. Furthermore, we utilize recom-

bination between generated molecules and the training 

data to increase new molecule discovery. Introducing 

replacement and recombination into the training pro-

cess empowers the use of GANs for broader searches 

in drug discovery.

Results and discussion
To improve the search capabilities of GANs, we updated 

the training process to include concepts from Evolution-

ary (e.g. Genetic) Algorithms [16]. For a typical Genetic 

Algorithm, a parent population is used to generate a child 

population through mutation and recombination. �e 

parent population is then updated (i.e. replaced) using 

selection based on specified fitness criteria. For our pur-

poses, the training data is the population under consider-

ation. �e generator from the GAN produces candidates 

for the child population over multiple training epochs, 

and recombination occurs between the new candidates 

and the parent generation. �rough replacement, the 

training data adapts to better reflect new areas explored 

by the generator.

As a first step in using adaptive training data for GANs, 

we consider replacement without recombination on a 

training set from QM9  [17]. In this case, we have three 

different types of training: control, random, drug. For 

control, the training data is held fixed while the GAN 

is trained. For random, the training data is updated by 

the generated molecules. For drug, the training data is 

updated only by generated molecules that outperform 

the current samples on quantitative estimation of drug-

likeness score (i.e. drug-likeness) [18, 19]

As shown in Fig.  1a, the control GAN produces 

new molecules during the initial stage of training, but 

quickly reaches a plateau. Intuitively this is expected, 

as the generator learns to mimic the training data, the 

Fig. 1 New molecules produced for different replacement strategies. For control (blue), the training data is fixed. For random (red), molecules from 

the generator randomly replace molecules in the training data. For drug (green), molecules from the generator only replace training samples if they 

have a higher drug-likeness score. a As training progresses, control stops producing a substantial number of new molecules, but random and drug 

replacement strategies continue production. Plot shows average over three training runs for each selection type. b Although drug produces less 

overall new molecules than random, it generates more top performers. Plot shows average over three runs for each selection type with error bars 

showing one standard deviation
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number of novel molecules produced decreases. Alter-

natively, for random and drug replacement, the GAN 

continues to produce new molecules over the entire 

training period as the training data is updated.

Although the number of new molecules produced is 

an important metric for drug discovery, when optimiz-

ing for some feature (e.g. drug-likeness), the quality of 

the generated samples is also key. As shown in Fig. 1b, 

drug replacement is able to generate the most top per-

formers even though it generates fewer new molecules 

than random. Here, we define top performers as having 

a drug-likeness score above a threshold of 0.6, corre-

sponding to the approximate mean value of optimized 

molecules in previous work [11, 12]. Similar results are 

shown for additional metrics (i.e. synthesizability and 

solubility) in Additional file  1: Figures  S1, S2. Notice 

that the metric-specific selection strategy generates the 

most top performers for each metric considered.

In addition to selection/replacement, another com-

mon mechanism in Genetic Algorithms to intro-

duce diversity into a population is recombination. We 

included recombination into our approach by taking 

half of the generated molecules and applying crossover 

with a sample from the current training data. As shown 

in Fig.  2a, the same hierarchy as the case without 

recombination is observed. Recombination, however, 

does increase the absolute number of new molecules 

produced drastically. �e increase in new molecules 

also translates to many more high performers (Fig. 2b. 

Similar results are shown for additional metrics (i.e. 

synthesizability and solubility) in Additional file 1: Fig-

ures S3, S4.

Beyond the bulk performance metrics shown in 

Fig. 2, Fig. 3 shows specific examples of top performers 

Fig. 2 New molecules produced for different replacement strategies with recombination. For control+re (blue), the training data is fixed. For 

random+re (red), molecules from the generator randomly replace molecules in the training data. For drug+re (green), molecules from the 

generator only replace training samples if they have a higher drug-likeness score. a Similar to the case without recombination, random and drug 

replacement strategies outperform control as training progresses. Plot shows average over three training runs for each selection type. b Although 

drug+re produces less overall new molecules than random+re, it generates more top performers. Plot shows average over three runs for each 

selection type with error bars showing one standard deviation

Fig. 3 6 sample top performers produced by the GAN with drug 

replacement strategy and recombination. Quantitative estimation of 

drug-likeness score and synthesizability score computed using rdkit 

are shown
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for the generator trained using drug replacement strat-

egy and recombination. It is illustrative to consider the 

closest (as measured by Morgan fingerprints  [20] and 

Tanimoto similarity) training set molecule for each 

example (Additional file 1: Figure S5). For most of the 

example top performers, only small rearrangements 

(e.g.  changing an atom type or extending a chain) are 

necessary to provide a boost in the drug-likeness. �e 

prevalence of small rearrangements in the generated 

molecules, however, is intuitively expected due to con-

straining the search space to molecules with 9 atoms or 

less.

�e success of guided training data replacement and 

recombination, as seen in the over 10x improvement 

over control (see Figs. 1, 2), motivated us to apply our 

approach to a more realistic data set for drug discov-

ery. �erefore, we extended the training procedure to 

molecules with 20 or less atoms and added 10k mol-

ecules from the ZINC  [21] rings data set (see "Meth-

ods" section). Our results (see Fig.  4) show that our 

approach again provides a drastic improvement over 

the traditional GAN for search. �e total number of 

molecules produced increases over the control run 

(i.e. no replacement, no recombination) by an order 

of magnitude ( ∼10
5 to ∼10

6 ). Furthermore, the distri-

bution of drug-likeness scores is altered drastically to 

favor high scoring compounds (Fig. 4a, b).

A sample of some of the top performers are shown in 

Figure  4c. �e closest molecule from the training set 

for each top performer is shown in Figure S6. Unlike 

the data constrained to 9 atoms or less, the examples 

show substantial rearrangements of functional groups 

compared to the training set. Furthermore, the rear-

rangements result in a substantial boost in drug-like-

ness, which reflects the large shift in the histogram for 

produced molecules (Fig. 4a, b).

To more systematically understand the change in 

properties for molecules produced using selection and 

recombination compared to the traditional approach, 

we computed the distributions for additional metrics 

(Additional file 1: Figures S7–S11, Table S1). Additional 

file  1: Figure S7 shows the fraction of each molecule 

occupied by a given atom type (C, N, O, F). �e mol-

ecules produced by the drug+re strategy show a shift 

towards higher C, F content and lower O, N content 

compared to the training data and control strategy. 

Additional file 1: Figure S8 shows the number of atoms, 

number of rings, and length of rings for the molecules. 

Again, the distributions for the drug+re strategy show 

Fig. 4 Training runs with molecules of 20 atoms or less. Results are shown for control (blue) and drug replacement with recombination (green). a 

Histogram showing number of new molecules produced in control run for different drug-likeness scores. b Histogram showing number of new 

molecules produced in our approach using updates to the training data for different drug-likeness scores. c A few sample new molecules from the 

drug replacement with recombination run



Page 5 of 8Blanchard et al. J Cheminform           (2021) 13:14  

a noticeable shift from the training data, with larger 

molecules, more rings, and larger rings.

An additional 3 metrics (number of rotatable bonds, 

polar surface area, and Crippen LogP [22]) are shown in 

Additional file  1: Figure S9. It is important to note that 

these metrics are commonly utilized to filter drug candi-

dates [18, 23]. Both number of rotatable bonds and Crip-

pen LogP show a substantial increase for the molecules 

from drug+re compared to the training data. �e shifts 

for these metrics can be anticipated as they are both used 

to determine the drug-likeness score. Polar surface areas 

is also used in the drug-likeness score provided by rdkit 

but with a much smaller weight.

�e shift of the drug+re distribution away from the 

original training data can also be quantified using finger-

print similarity. To determine the distance of produced 

molecules from the original data, we computed the Mor-

gan fingerprints for each molecule in rdkit. We then 

found the closest molecule based on Tanimoto similar-

ity (and corresponding distance). Additional file 1: Figure 

S10 shows the distributions of the minimum distance for 

both control and drug+re strategies. In agreement with 

the other metrics, molecules produced by the drug+re 

strategy on average have a larger minimum distance than 

the control molecules. �erefore, the drug+re strategy 

not only produces more molecules than control, it pro-

duces more distinct molecules relative to the training set.

As a final comparison, Additional file  1: Figure S11 

shows the drug-likeness distributions across different 

selection and recombination strategies. �e drug+re 

strategy shows a clear shift towards high scoring drug 

molecules compared to all other options. It is interesting 

to note that although recombination does provide a clear 

benefit in producing higher scoring molecules alone (i.e. 

compare control to control+re), updating the training 

data through selection generates a substantial shift in the 

probability density towards high performers.

�e difficulty of mode collapse presents a major chal-

lenge to researchers using GANs for discovery. Previous 

attempts to prevent mode collapse have altered the loss 

function  [14, 15], however, the issue has still remained 

in drug discovery efforts  [11, 12]. Our approach, updat-

ing the training data, eliminated the plateau in new mol-

ecule discovery compared to the control case without 

any updates to the minimax loss function. Furthermore, 

recombination amplified the increase in new molecules 

for all replacement strategies. Together, these results sug-

gest that replacement and recombination can drastically 

accelerate the use of GANs for drug discovery.

One limitation of the current approach is that a defi-

nition for valid generated samples must be given. In 

the current context, valid molecules are determined 

by the ability of rdkit to parse and create the proposed 

molecule. However, in other contexts, the definition of 

valid may not be so straightforward (e.g. what defines 

a valid image). In these cases, some scoring function 

must be introduced to determine replacement/valid-

ity. �is highlights the importance of developing useful 

domain specific metrics for ML applications, including 

drug discovery [2].

Allowing updates to the training data provides much 

needed flexibility towards utilizing GANs in drug dis-

covery. �is can be seen in our search for drug-like 

compounds with 20 atoms or less. �e initial training 

set only contained 10% of molecules with more than 9 

atoms (the rest coming from QM9), however, through 

replacement and recombination, the search adapted to 

explore regions of parameter space with higher scores. 

�e ability to adapt relieves some of the pressure in 

generating large data sets for each new desired task, as 

an incremental approach can be used.

Updates to the training data can be placed within 

a broader context of data augmentation for GANs. 

Recent work  [24, 25] has explored ways to improve 

GAN training on images by augmenting labeled data 

while preserving the underlying target distribution. 

Data augmentation techniques are particularly rele-

vant due to the inherent costs associated with manual 

labeling. In the context of drug discovery, our results 

show that search for novel compounds is broadened 

by allowing the GAN to explore regions of parameter 

space outside the original training set through incre-

mental updates. �e key tradeoff is that features of 

the original distribution may be lost as the training 

data shifts. �e type of application and diversity of the 

training data can then be used to determine the costs 

and benefits associated with training data updates. In 

cases where labeled data is abundant and diverse, tra-

ditional approaches to training can be used. In cases 

with limited initial data, or limited initial data with 

desired characteristics, training updates can be used to 

improve search performance.

Our approach in updating the training data also has 

many connections to previous searches over chemical 

space using genetic algorithms  [26–28]. For a genetic 

algorithm, hand-crafted rules are created for mutation 

(e.g. switch an atom type, delete an atom, add an atom) 

and recombination (e.g. swap functional groups between 

two molecules). Iterations of mutations and recombina-

tion are then performed on an initial population, with 

selection occurring to improve fitness in subsequent 

populations. In this context, the current work serves as a 

step towards automating the manual creation of rules for 

mutation. �e generator network serves to produce can-

didate molecules based on the current training popula-

tion, which is updated over time. Automating the process 
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of recombination (in addition to mutation) is an interest-

ing direction for future work.

Previous work has explored a possible way to incor-

porate genetic algorithms into GAN training [29]. More 

specifically, mutation and recombination were applied 

directly to the generator output in order to stabilize 

the training of the discriminator. �is approach can be 

broadly categorized with other efforts to promote diver-

sity during GAN training through data augmentation [24, 

25] in contrast to our approach of updating the training 

data. It is important to note that improvements to model 

architecture and approaches to prevent overfitting, such 

as dropout, would not alleviate the need for updates to 

the training data in search. Approaches to prevent over-

fitting, by design, would enable the model to more fully 

reproduce the distribution underlying the training data, 

however, they would not promote exploration beyond the 

training data as needed in search applications.

Many of the advances in training GANs [14, 15] should 

be complementary to our approach. Here, we have uti-

lized a relatively simple architecture, i.e. fully connected 

networks with a few layers for both generator and dis-

criminator, and the standard GAN loss function. By 

adding replacement and recombination, however, large 

gains were seen in both the number and quality (i.e. drug 

score) of new molecules produced. �e addition of more 

sophisticated networks (e.g. GCN [30]) to scale the cur-

rent approach to larger molecules is an interesting direc-

tion for future investigations.

Conclusions
Generative machine learning models, including GANs, 

are a powerful tool towards searching chemical space for 

desired functionalities. Here, we have presented a strat-

egy for promoting search beyond the original training 

set using incremental updates to the data. Our approach 

builds upon the concepts of selection and recombination 

common in Genetic Algorithms and can be seen as a step 

towards automating the typically manual rules for muta-

tion. Our results suggest that updates to the data enable 

a larger number of compounds to be explored, leading to 

an increase in high performing candidates compared to a 

fixed training set.

Methods
Data

�e original training data used for all models was taken 

from QM9 [17], a subset of the GDB-17 chemical data-

base [31], as reported in a previous study [11]. �e data 

was downloaded from deepchem1 and then processed 

using rdkit  [19], with any molecules that caused errors 

during sanitization removed. Only the first 100k (out of 

∼ 133k ) compounds were then used in training.

To modify the training data to include larger molecules 

(i.e. up to 20 atoms), a subset of the ZINC [21] rings data 

set was used. Smiles data was downloaded from ZINC2 

and filtered to include molecules with between 10 and 20 

atoms that contain only C, N, and O. �e first 10k mole-

cules were then used to replace the first 10k entries from 

the original training data. �e resulting training data had 

100k molecules, with 90k from QM9 [17] and 10k from 

Zinc [21].

Models

�e GAN was implemented using pytorch [32], with both 

the discriminator and generator consisting of 4 fully con-

nected layers. �e generator received as input normally 

distributed random vectors with dimension 8. �e out-

put of the generator was an adjacency matrix with the 

off-diagonal elements specifying the bond order and the 

on-diagonal elements specifying the atom type. �e dis-

criminator received as input the one hot representation 

of the adjacency matrix and output a single real number. 

We utilized the standard GAN minimax loss for train-

ing [9]. �e Adam optimizer[33] was used with a learning 

rate of 10−4 for all runs.

Updates to training data

All models were trained in intervals of 5 epochs. During 

each epoch 10k samples were collected from the genera-

tor. Samples that were both novel and valid were aggre-

gated over the 5 epochs. �en, a replacement strategy 

(random or drug) was applied to the original training 

data. For random replacement, current training samples 

were randomly selected and replaced. For drug replace-

ment, current samples were sorted in ascending order 

of drug-likeness score. Updates were only made if the 

new sample had a greater score than the sample being 

replaced. Additional metrics (i.e. synthesizability and sol-

ubility) used the same update procedure as drug-likeness.

For both replacement strategies, we also considered 

recombination. In recombination, half of the 10k genera-

tor sample was combined with the current training data 

using crossover. In crossover, a sample is selected from 

the current training data and copied into a new adjacency 

matrix. �en, a random integer is uniformly sampled 

between 1 and the length of the adjacency matrix. �e 

corresponding slice from the generated matrix (e.g. first 

5 rows and columns) overwrites the same region of the 

1 http://deepc hem.io.s3-websi te-us-west-1.amazo naws.com/datas ets/gdb9.tar.

gz.
2 https ://zinc.docki ng.org/rings .smi?count =all.

http://deepchem.io.s3-website-us-west-1.amazonaws.com/datasets/gdb9.tar.gz
http://deepchem.io.s3-website-us-west-1.amazonaws.com/datasets/gdb9.tar.gz
https://zinc.docking.org/rings.smi?count=all
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copied matrix to produce a new candidate molecule. For 

the drug replacement strategy, samples were drawn from 

the training set weighted by drug score. �e weights were 

determined by taking the softmax of the current metric 

scores for the training data. Replacement then proceeded 

as previously stated. Additional metrics (i.e. synthesiz-

ability and solubility) used the same update procedure as 

drug-likeness.

Metrics

To track the performance of each GAN during train-

ing, we relied upon two key metrics: the number of new 

molecules generated and the quantitative estimation of 

drug-likeness score [11, 18, 19]. Determining that a mol-

ecule is new was accomplished by comparing the canoni-

cal smiles representation of the compound with the full 

training set and any molecules produced up to that point. 

Generation of a canonical smiles string for a given mol-

ecule was performed using rdkit  [19]. To show that the 

results are not unique to drug-likeness, we also included 

runs for selection of synthesizability and solubility. 

�e metrics calculations were performed as previously 

reported [11, 12, 18, 34].

Additional metrics for analysis as shown in Additional 

file  1: Figures  S7-S11 were all computed using built-in 

functionality from rdkit [19]. Similarity (and correspond-

ing distance) between molecules was computed by gen-

erating Morgan fingerprints  [20] and using Tanimoto 

similarity as preformed in a previous study [11].
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