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1.1 Introduction and Definitions of Metasurfaces

In recent years, there has been a great deal of attention devoted to metastructures, which include metamate-
rials and metasurfaces. The prefix “meta” is a Greek preposition meaning (among other things) “beyond”.
In the context of metamaterials or metasurfaces, this refers to a metastructure that has some type of exotic
property that normally does not occur in nature. Although in this chapter we will discuss metasurfaces and
the use of generalized sheet transmission conditions (GSTCs), we begin our discussion with three-dimensional
metamaterials.

Metamaterials are novel, synthetic materials engineered to achieve unique properties, i.e., materials beyond
those occurring naturally. Metamaterials are often engineered by arranging a set of small scatterers (e.g.,
metallic rings and rods, spherical magneto-dielectric particles, or other arbitrarily shaped inclusions) in
a regular array throughout a region of three-dimensional space, in order to obtain some desirable bulk
behavior [1]-[10]. The term metamaterial does not refer to classical periodic structures, such as what are now
called photonic bandgap (PBG) structures, or to frequency-selective surfaces (FSS). The term metamaterial
refers to a material or structure with more exotic properties than artificial dielectrics, but which can still
be described by bulk material parameters in the same way that natural materials can. One example is
a so-called “double-negative” (DNG) material [11]-[26], also known as negative-index material (NIM), a
backward-wave (BW) medium, or left-handed material (LHM). This type of material has the property
that its effective permittivity and effective permeability are simultaneously negative in a given frequency
band. A second example is near-zero refractive index material, with either the permittivity or permeability
designed to have its real part close to zero. Materials with unique properties such as these have a wide range
of potential applications in electromagnetics at frequencies ranging from the low microwaves to optical,
including shielding, low-reflection materials, novel substrates, antennas, electronic switches, devices, perfect
lenses, resonators, and of course cloaking, among many other possibilities.

The concept of three-dimensional metamaterials can be extended by placing the scatterers (or apertures)
in a two-dimensional arrangement on a surface. This surface version of a metamaterial is called a meta-
surface, and includes metafilms, metascreens, and metagratings as special cases [27]-[34]. Metasurfaces are
an attractive alternative to three-dimensional metamaterials because of their simplicity and relative ease
of fabrication. Throughout the literature, there are several applications where metamaterials are replaced
with metasurfaces. Metasurfaces have the advantage of taking up less physical space than do full 3D meta-
material structures; as a consequence they can also offer the possibility of lower losses. The application of
metasurfaces at frequencies from microwave to optical has attracted great interest in recent years [27]-[84].
In addition to the applications mentioned above for metamaterials, metasurfaces allow for controllable smart
surfaces, miniaturized cavity resonators, novel waveguiding structures, compact and wide-angle absorbers,
impedance matching surfaces, biomedical devices, wave front tailoring, polarization conversion, antennas,
and high speed switching devices, to name only a few.

In general, a metasurface is any periodic two-dimensional structure whose thickness and periodicity are
small compared to a wavelength in the surrounding media. Metasurfaces should not be confused with clas-
sical frequency-selective surfaces (FSS); the important distinction between the two is discussed below. We
can identify two important subclasses (metafilms and metascreens) within this general designation of meta-
surfaces. These two subclasses are distinguished by the type of topology that constitutes the metasurface.
Metafilms (as coined in [29]) are metasurfaces that have a “cermet” topology, which refers to an array of
isolated (non-touching) scatterers (see Fig. 1.1). Metascreens are metasurfaces with a “fishnet” structure
(see Fig. 1.2), which are characterized by periodically spaced apertures in an otherwise relatively impene-
trable surface [31]. There are other types of meta-structures that lie somewhere between a metafilm and
a metascreen. For example, a grating of parallel coated wires (a metagrating, see Fig. 1.3) behaves like a
metafilm to electric fields perpendicular to the wire axes and like a metascreen for electric fields parallel
to the wire axes [32]. It is important to note that the individual scatterers constituting a metafilm (or
apertures constituting a metascreen) are not necessarily of zero thickness (or even small compared to the
lattice constants); they may be of arbitrary shape, and their dimensions are required to be small only in
comparison to a wavelength in the surrounding medium, a fortiori because the lattice constant has been
assumed small compared to a wavelength.

It has been shown that a type of boundary conditions known as generalized sheet transition conditions
(GSTCs) is the most appropriate way to model metasurfaces [29]-[34]). While the functional form of the



METASURFACES VERSUS FREQUENCY-SELECTIVE SURFACES 5

x

z

y
arbitrary shaped scatterer

(a) array of arbitrarily shaped scatterers

(b) metafilm: array of spherical particles

Figure 1.1 Illustration of a metafilm, which consists of an array of arbitrarily shaped scatterers placed on the
xz-plane: (a) array of arbitrarily spaced scatterers and (b) array of spherical particles.

GSTCs may be different depending on the type of metasurface, the GSTC description allows the metasurface
to be replaced by an interface as shown in Fig. 1.4. The interaction of the electric (E) and magnetic (H)
fields on either side of the metasurface is taken care of through the GSTCs applied at that interface. In
this model, all the information about the metasurface (geometry of the scatterers or apertures: shape, size,
material properties, etc.) is incorporated into the effective surface parameters that appear explicitly in
the GSTCs. These surface parameters (effective electrical and magnetic surface susceptibilities and surface
porosities) that appear explicitly in the GSTCs are uniquely defined, and as such serve as the physical
quantities that most appropriately characterize the metascreen. The effective surface parameters for any
given metasurface together with the GSTCs are all that are required to model its interaction with an EM
field at the macroscopic level.

In this chapter, we present the GSTCs needed to analyze the three main types of metasurfaces: metafilms,
metascreens, and metagratings. From these GSTCs we derive for each of these metasurfaces the plane-wave
reflection (R) and transmission (T ) coefficients. They are expressed in terms of the surface parameters that
characterize the metasurface. These coefficients are then used to develop a retrieval approach for deter-
mining from measured or simulated data the uniquely defined effective surface parameters (i.e., the electric
and magnetic surface susceptibilities and surface porosities) that characterize the each of the metasurfaces.
Finally, in the last section, we present various other applications of the GSTCs.

1.2 Metasurfaces versus Frequency-Selective Surfaces

Before we introduce and discuss the different types of GSTCs for the various metasurfaces, we need to make
the distinction between metasurfaces and frequency-selective surfaces. Depending on the wavelength and the
periodicity of the inclusions that make up an engineered periodic structure, it may or may not be possible to
model it as an effective medium (as for the case of a metamaterial) or using effective surface parameters (as
for the case of a metasurface). In fact, the electromagnetic field interaction with these types of engineered
structures can be divided into three separate regions of operation (see Fig. 1.5), with distinctive behaviors in
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Figure 1.2 Illustration of a metascreen, which consists of an array of arbitrarily apertures in a conducting screen
located in the xz-plane: (a) array of arbitrarily shaped apertures and (b) array of square apertures.

Figure 1.3 Illustration of a metagrating, which consists of an array of coated arbitrarily shaped and coated wires.

each region. It is important to be aware of this and to understand the behavior in each region when either
performing measurements or analyzing metastructures at different length scales and/or frequencies, as will
be described below. In addressing this, we will comment on (1) the difference between a metamaterial and
a conventional photonic band gap (PBG) or electromagnetic band gap (EBG) structure, and in turn (2) the
difference between a metasurface and a conventional frequency-selective surface (FSS).

Consider first three-dimensional metamaterials; these ideas will be extended below to metasurfaces. The
behavior of such a composite material is qualitatively different in each of the three distinct regions shown
in Fig. 1.5. Region 1 corresponds to the quasi-static region, which implies low frequencies; more specifically,
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Figure 1.4 Reference planes for GSTC models: (a) a metafilm with arbitrarily shaped scatterers, (b) reference plane
for a metafilm at which the GSTCs are applied (c) a metascreen with arbitrarily shaped apertures, (d) reference plane
for a metascreen at which the GSTCs are applied, (e) a metagrating with arbitrary shaped coated wire grating, and (f)
reference plane for a metagrating at which the GSTCs are applied.

frequencies at which the wavelength is much larger than the period of the structure (that is, the periodicity
of the scatterers that compose the composite medium) and at which the scatterers are not resonant. These
scatterers could have induced or permanent dipole moments, as is the case for atoms or molecules for
classical materials, or these scatterers could be generic in shape and placed in a host matrix to obtain a
man-made composite material designed to achieve some specified behavior. In this region, classical mixing
formulas are used to obtain equivalent effective-material properties (permittivity ǫ, permeability µ, etc.).
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Figure 1.5 Three characteristic regions of composite material or metastructure behavior.

The determination of effective-medium properties and the modeling of electromagnetic response to inclusions
embedded in a host material is a problem with a long history going back to Maxwell and Rayleigh, as well as
Poisson, Clausius and Mossotti before that. Much work has been done since then to compute the effective
properties of homogeneous composite materials, a survey of which can be found in [85]-[88].

Before we discuss the behavior in Region 2, let us examine Region 3. Here, the wavelength becomes
comparable to or smaller than the period of the structure, and the fields no longer see the composite
as an effective medium. At these frequencies, a more complicated field behavior exists and more elaborate
techniques to analyze the EM field interaction with the composite periodic structures must be used (i.e., full-
wave approaches). The classical analytical approach for this is the Floquet-Bloch mode expansion [88]-[95] of
spatially modulated plane waves propagating in various directions. As the wavelength becomes smaller than
the period, higher-order Floquet-Bloch modes must be considered. These higher-order modes then interfere
with the fundamental wave propagating through the composite, so that stopbands and passbands will develop
in the structure (in this case, the structures are often referred to as EBG or PBG structures [88], [89], [94],
and [95]). The constructive and destructive interference of the various modes as the wave propagates through
the composite are what give rise to the unique characteristics of EBG and PBG structures. It is important
to note that such effects cannot be represented or captured by a conventional effective medium theory. These
stopband and passband effects in EBG and PBG structures are caused by resonances associated with the
periodicity of the structure.

Resonances associated with the scatterers themselves can cause interesting and unexpected effects in the
effective material properties of a composite. Region 2 in Fig. 1.5 corresponds to a region where the period
of the structure is still small compared to a wavelength, but the individual scatterers are designed in such
a manner (either via their shape or their constitutive properties) such that the scatterers themselves can
resonate. When this occurs, a new class of engineered materials (metamaterials) is realized, making possible
a broad range of unique behavior not commonly found in nature (DNG or near-zero index materials, for
example). Region 2, where the scatters resonate (but not the lattice, as is the case in region 3), is where
metamaterials lie. The medium is dispersive here, but we may still characterize its electromagnetic behavior
with the effective parameters ǫ and µ.

Similar to metamaterials, depending on the wavelength-to-period spacing, three regions of behavior will
occur for electromagnetic interactions with a metasurface. For a two-dimensional lattice of scatterers or
apertures, Region 1 in Fig. 1.5 corresponds to classical thin-film materials, while Region 3 in Fig. 1.5
corresponds to resonances associated with the periodicity of the scatterers or apertures. The conventional
FSS and PBG surfaces [89, 94, 95] fall into this third region. On the other hand, when we talk about a
metasurface, we are referring to an array of scatterers or apertures that lies in Region 2 (or even Region
1). Resonances of the surface may be associated with the resonances of the scatterers or apertures, but not
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with the periodicity of the array. Ordinary FSSs are sometimes operated in this regime, but the distinction
between this type of operation and that of Region 3 is not always made clear.

We emphasize that the characteristic behavior of Region 2 in Figure 1.5 may not always occur for a
given metamaterial or metasurface. The scatterers or apertures need to be properly designed, such that
the scatterers’ (or apertures’) resonances occur at a frequency well below that where the next higher-order
Floquet-Bloch mode can propagate. For example, if the constituent materials or the sizes or shapes of the
scatterers used in the material were not properly chosen [23], the scatterers’ resonances could be pushed
toward the Floquet-Bloch-mode region, and in this case an effective-medium model would not adequately
describe the behavior of the composite material.

In summary, in Regions 1 and 2 of Figure 1.5 the interaction of an electromagnetic field with a metasurface
is described by effective surface parameters of some kind, as will be discussed below. In Region 1 (analogous
to the classical mixing theory region for the case of a metamaterial), the effective surface parameters are
not frequency-dependent (except insofar as the constituent bulk properties have a frequency dependence).
In Region 2 (the scatterers’ or apertures’ resonant region), the metasurface is still modeled by effective
surface properties, which now may possess an inherent frequency dependence that make interesting resonant
behaviors possible. In the last region (Region 3 in Figure 1.5), the electromagnetic field’s interaction with
the periodic array is very involved. We may no longer think of the surface as behaving like an interface
with effective surface parameters. When the wavelength is comparable to the period, higher-order Floquet-
Bloch modes must be considered, and one typically does not refer to these materials as metamaterials or
metasurfaces in this region, but refers to them as EBG, PBG or FSS structures.

1.3 Characterization of Metasurfaces: Surface versus Bulk Properties

Like a metamaterial, the behavior of a metafilm is determined by the electric and magnetic polarizabilities
of its constituent scatterers (or for a metascreen, of its constituent apertures). The traditional and most
convenient method by which to model metamaterials is with effective-medium theory. Attempts to use
a similar bulk-parameter analysis for metasurfaces have been less successful (see [27], [33], and [34] for a
detailed discussion on this point). Indeed, some previous metafilm studies have modeled the film as a single-
layer metamaterial in which effective bulk material properties of the metasurface are obtained by forcing
the introduction of an arbitrary non-zero thickness parameter into the analysis. As we will demonstrate,
several problems arise from the physically artificial character of this parameter; the bulk material property
characterization of a metasurface is incorrect at a fundamental level. It is known that localized effects arise
near the boundary of a metamaterial that can significantly modify effects such as plane-wave reflection and
transmission [29, 30, 31, 42, 43, 96]; these are analogous to the effect of cutoff modes near the junction
between two different waveguides. Classical algorithms for bulk parameter extraction do not account for
these boundary effects, and indeed a metamaterial sample that is only one or a few layers thick should be
expected to behave as “all boundary” without exhibiting a uniquely identifiable bulk behavior at all.

To illustrate this point, consider the equivalent-bulk layer representation of a metasurface shown in
Fig. 1.6. The problem we face is that the thickness of a metasurface cannot be uniquely defined, nor can the
effective material properties. In [29]-[34], it is shown that the effective surface parameters of a metafilm or
metascreen are unique properties of the structure, and thus are the most appropriate way to characterize it.
We will see below that the surface parameters for a metafilm are what we will call effective surface suscep-
tibilities (defined below as χMS and χES—the magnetic and electric surface susceptibilities, respectively)
[27, 30], and for a metascreen, the so-called surface porosities (defined below as πMS and πES—the magnetic
and electric surface porosities, respectively) [27], [31]. Techniques for retrieving the surface parameters for a
given metasurface based on reflection and transmission measurements (or simulations) are presented in [27],
[33], [34], and [38], and will be discussed below.

The problems that arise when we try to represent a metasurface as a material with a bulk effective
permittivity and permeability as in Figure 1.6 are demonstrated in Fig. 1.7(a), where retrieved values of
ǫr for an array of lossy spherical particles as shown in Figure 1.1(b) are plotted for different values of
the assumed thickness d. These results were obtained by computing numerically simulated values of the
reflection and transmission coefficients for this array of spheres and then using the modified Nicolson-Ross-
Weir (NRW) method [97]-[103] for determining the effective ǫr of the slab (see [34] for details; there is also
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Figure 1.6 Representing a metafilm as a bulk effective medium with thickness d.

an effective µR which is not shown here). As we expect, these results show a functional dependence of ǫr
on d. Fig. 1.7(b) shows results for d(ǫr − 1) for different values of d. We have also plotted the retrieved
values of the surface susceptibility χyy

ES for this array that appears in (1.84) below (also obtained from using
retrieval algorithms and the simulated numerical values of reflection and transmission coefficients [34], see
also Section 1.6 below). The retrieved values for χyy

ES are the same as the analytical values given in [33].
The results shown in Fig. 1.7(b) illustrate that for sufficiently low frequencies, the product d(ǫr − 1) is
independent of d and identical to χyy

ES . Although the connection between surface susceptibilities and the
effective bulk properties of a slab was not discussed explicitly there, Smith et al. [21] do allude to the fact
that the product of the slab thickness and the effective material properties of the slab should be constant.
Further results for the surface susceptibilities of this same metafilm are shown in Figure 1.8(a)-(b), while
results for an array of thin metallic scatterers (Figure 1.8(d)) are shown in Figure 1.8(c).

As we will see in section 1.4.2, a metascreen requires both surface susceptibilities and surface porosities
for its complete characterization. Figure 1.9 shows plots of these quantities for a metascreen composed of
an array of square apertures—again, these are unique and do not require the postulation of an arbitrary
equivalent slab thickness.

When all is said and done, we would argue that a model for a metafilm that uses uniquely specified
quantities (i.e., χMS or χES as defined below [29], [30]) is more natural than an approach that involves
two arbitrary quantities (d and ǫr). Likewise, for a metascreen we should use both surface susceptibilities
(χES and χMS) and surface porosities (πES and πMS) as defined below [27], [31]. Even though it has been
shown that the electric and magnetic surface parameters are the most appropriate manner to characterize
metasurfaces, some researchers have continued to characterize them in terms of bulk effective material
properties. If one insists on characterizing a metasurface as a thin material slab with bulk effective material
properties and a thickness d, the only meaningful (and unique) parameters will be products such as d(ǫr−1)
and d(µr − 1), if the slab is centered at the plane containing the metafilm. A retrieval approach that gives
unique quantities like χMS , χES , πMS , and πES is more natural than one that merely gives products of
otherwise undetermined quantities [27, 33, 34, 38].

The effective surface parameters (surface susceptibilities and surface porosities) of the metasurface appear
in effective boundary conditions called generalized sheet-transition conditions (GSTCs) [27], [29], [30], [31],
and these parameters are all that are required to model the macroscopic interaction of any given metasurface
with an electromagnetic field. The GSTCs allow this surface distribution of scatterers (or of apertures) to
be replaced with boundary conditions that are applied at an infinitely thin equivalent surface (hence the
name metasurface, metafilm or metascreen), as indicated in Fig. 1.4. The size, shape, and spacing of the
scatterers (or apertures) are incorporated into the GSTCs through the effective surface susceptibilities and
surface porosities.

1.4 Generalized Sheet Transition Conditions (GSTCs)

The GSTCs for a metasurface take on distinct functional forms depending on whether it is a metafilm, a
metascreen, or a metagrating. In this section, we present the GSTCs required to analyze these three kinds
of metastructure.
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(a)

(b)

Figure 1.7 Results for an array of lossy spheres with radius a = 10 mm, period p = 25.59 mm, ǫr2 = 2, µr2 = 900,
and loss tangent tan δ = 0.04: (a) Retrieved ǫr and (b) d(ǫr − 1) and χyy

ES .
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Figure 1.8 Surface electric susceptibilities for two metafilms: (a) χyy
ES and (b) χzz

ES for a metafilm of spherical
particles (a = 10 mm, p = 25.59 mm, ǫr = 2, µr = 900, and tan δ = 0.04); (c) surface electric susceptibility χzz

ES for
the metafilm array of thin metallic scatterers shown in (d) with t = 3 µm, A = 40 µm, p = 54 µm, and l = 12 µm.
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(a) (b)

(c)

Figure 1.9 Surface susceptibilities and surface porosities for a metascreen composed of an array of apertures : (a)
array of square apertures of length l, (b) χzz

MS and πzz
MS for square aperture array (h = 10 mm and p = 100 mm), and

(c) χyy
ES and πyy

ES for circular aperture array (h = 5 mm and p = 100 mm).
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1.4.1 GSTCs for a Metafilm

As stated above, a metafilm is a metasurface that has a “cermet” topology, which refers to an array of
isolated (non-touching) scatterers (see Fig. 1.1). For a metafilm, the GSTCs specify the jumps in the
tangential components of the electric (E) and magnetic (H) fields across the metafilm [see Figs. 1.4(a) and
1.4(c)] and take on the following form [27]-[30]:

ay ×
[

EA −EB
]

y=0
=− jωµ0

(

χ
↔

MS · H̃av

)

t
− ay ×∇t

(

ay · χ
↔

ES · Ẽav

)

(1.1)

and
ay ×

[

HA −HB
]

y=0
=jωǫ0

(

χ
↔

ES · Ẽav

)

t
− ay ×∇t

(

ay · χ
↔

MS · H̃av

)

, (1.2)

where the subscript “t” represents the x and y components and the average fields are defined by

Eav =
1

2

(

EA +EB
)

and Hav =
1

2

(

HA +HB
)

. (1.3)

The superscripts A and B correspond to the regions below and above the reference plane of the metafilm.
The parameters in the GSTCs in eqs. (1.1) and (1.2) are surface susceptibility dyadics and are defined as

χ↔ES = χxx
ESaxax + χxy

ESaxay + χxz
ESaxaz (1.4)

+χyx
ESayax + χyy

ESayay + χyz
ESayaz

+χzx
ESaxax + χzy

ESazay + χzz
ESazaz ,

χ↔MS = χxx
MSaxax + χxy

MSaxay + χxz
MSaxaz (1.5)

+χyx
MSayax + χyy

MSayay + χyz
MSayaz

+χzx
MSaxax + χzy

MSazay + χzz
MSazaz .

The surface susceptibilities have units of length. Note that the coordinate system used here is the same as
that used in [30], but different from the one used in [29], [33], and [34].

1.4.2 GSTCs for a Metascreen

Metascreens are metasurfaces with a “fishnet” structure (see Fig. 1.2), which are characterized by periodically
spaced apertures in an otherwise relatively impenetrable surface. This fundamentally different topology
requires a different functional form of GSTCs than what applies to a metafilm: a set of BCs for the jumps
in both tangential E and H fields at its reference surface. As it turns out, GSTCs can still be used for a
metascreen, but the topology demands a different form for them, for the following reason. For a problem
involving two regions separated by a boundary surface, one needs at least two effective boundary conditions
(EBCs) to constrain the tangential E- and/or H-fields at that boundary. A metascreen differs from a
metafilm in that there is the possibility of having tangential surface currents (flowing on the surface of the
screen along the z and x directions). Typically these currents would only be known once the tangential
components of the H-field are known.

This concept can be illustrated by the case of an electromagnetic field at the surface of a perfect electric
conductor (PEC). For a PEC, only the BC for the tangential E-field at the PEC (i. e., Et = 0 on the PEC) is
used in solving boundary problems for the field. The tangential H-field at the PEC is related to the surface
current flowing on the PEC and this current is only known once the H-field has been determined, so this
second boundary condition is not used to solve for the fields. It is useful, therefore, to classify EBCs either
as essential for the solution of an electromagnetic boundary problem, or applicable only a posteriori when
quantities such as surface current or charge density are to be computed from the fields. For a metascreen,
any EBC for the tangential H field is an a posteriori BC and can only be used once the fields have been
solved for. Thus, the required essential BCs for metascreen should constrain only tangential E, and should
be expressed as conditions on the jump in the tangential E-field and on the sum (twice the average) of the
tangential E-fields, i.e., on

[

EA
x − EB

x

]

y=0
;

[

EA
z − EB

z

]

y=0
[

EA
x + EB

x

]

y=0
;

[

EA
z + EB

z

]

y=0
,

(1.6)
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where the superscripts A and B correspond to the regions above and below the reference plane of the
metascreen, respectively. We add that these types of GSTCs (on both the jump in, and the average of, the
E-field at the interface) also appear in the analysis of a wire grating (or metagrating) [32], as we will see in
the next subsection.

The required GSTCs for a metascreen are given by [27], [31]:

ay ×
[

EA(ro)−EB(r0)
]

= −ay ×
[

χAyy
ES ∇tE

A
y (ro) + χByy

ES ∇tE
B
y (ro)

]

−ax jωµ0

[

χAxx
MS HA

x (ro) + χBxx
MS HB

x (ro)

+χAxz
MSH

A
z (ro) + χBxz

MS HB
z (ro)

]

−az jωµ0

[

χAzx
MSH

A
x (ro) + χBzx

MS HB
x (ro)

+χAzz
MSH

A
z (ro) + χBzz

MSH
B
z (ro)

]

(1.7)

and

ay ×
[

EA(ro) +EB(r0)
]

= −ay ×
[

πAyy
ES ∇tE

A
y (ro)− πByy

ES ∇tE
B
y (ro)

]

−ax jωµ0

[

πAxx
MS HA

x (ro)− πBxx
MS HB

x (ro)

+πAxz
MS HA

z (ro)− πBxz
MS HB

z (ro)
]

−az jωµ0

[

πAzx
MS HA

x (ro)− πBzx
MS HB

x (ro)

+πAzz
MSH

A
z (ro)− πBzz

MS H
B
z (ro)

]

. (1.8)

As before, χES and χMS are effective electric and magnetic surface susceptibilities, respectively, while πES

and πMS are interpreted as effective electric and magnetic surface porosities of the metascreen. Like the
surface susceptibilities, the surface porosities have units of length.

1.4.3 GSTCs for a Metagrating

A metagrating [32] is a metasurface composed of a grating of arbitrary-shaped parallel material-coated wires
as shown in Fig. 1.3. A metagrating behaves like a metafilm to electric fields perpendicular to the wire
axes and like a metascreen for electric fields parallel those axes. Thus, the form of GSTCs required for a
metagrating is a combination of those of the metafilm and metascreen. The GSTCs for the metagrating are
given by [32]

ay ×
[

EA(ro)−EB(ro)
]

= −jωµ0 χ
zz
MSHz,av(ro)az − jω χxy

MSBy,av(ro)ax

+jω
[

χAxx
MS BA

x (ro) + χBxx
MS BB

x (ro)
]

ax

−ay × [χyx
ES ∇Ex,av(ro)]

−ay ×
[

χAyy
ES ∇EA

y (ro) + χByy
ES ∇EB

y (ro)
]

,

(1.9)

HA
z (ro)−HB

z (ro) = jωǫ0 χ
xx
ES Ex,av(ro)

+jωǫ0

[

χAxy
ES EA

y (ro) + χBxy
ES EB

y (ro)
]

− 1
µ0

χyy
MS

∂By,av(ro)
∂z

− 1
µ0

[

χAyx
MS

∂BA
x (ro))
∂z

+ χByx
MS

∂BB
x (ro)
∂z

]

,

(1.10)

and

EA
z (ro) + EB

z (ro) = −jωπxy
MSBy,av(ro)

−jω
[

πAxx
MS BA

x (ro)− πBxx
MS BB

x (ro)
]

−πxy
ES

∂Ex,av(ro)
∂z

−πAyy
ES

∂EA
y (ro)

∂z
− πByy

ES

∂EB
y (ro)

∂z
,

(1.11)
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where certain average fields at the interface have been defined as:

Ex,av(ro) =
EA

x (ro) + EB
x (ro)

2

By,av(ro) =
BA

y (ro) +BB
y (ro)

2
(1.12)

Hz,av(ro) =
HA

z (ro) +HB
z (ro)

2
.

The coefficients χES and χMS are effective electric and magnetic surface susceptibilities of the metagrating,
while πMS,ES are effective electric and magnetic surface porosities of the metagrating; both have units of
length.

1.5 Reflection and Transmission Coefficients

The plane-wave reflection and transmission coefficients for three types of metasurfaces are derived in this
section. We present results for both a transverse electric (TE) and transverse magnetic (TM) polarized plane
wave incident onto the metasurface.

1.5.1 Metafilms

As seen from the GSTCs (1.1) and (1.2), the electric and magnetic surface susceptibilities may have cross-
polarization (or off-diagonal) terms χxz,zx

ES,MS , χzy,yz
ES,MS , and χxy,yx

ES,MS . These terms can result in coupling
between TE and TM fields. Initially, we will assume for simplicity that the scatterers are sufficiently
symmetric that these off-diagonal terms are zero. These assumptions correspond to many metafilms that are
encountered in practice; the more general case will be treated later. The symmetry of the scatterers results
in:

χxz,zx
ES,MS = χzy,yz

ES,MS = χxy,yx
ES,MS ≡ 0 . (1.13)

Under this condition, the surface susceptibility dyadics reduce to:

χ↔ES = χxx
ESaxax + χyy

ESayay + χzz
ESazaz

χ↔MS = χxx
MSaxax + χyy

MSayay + χzz
MSazaz

(1.14)

1.5.1.1 TE Polarization for a Metafilm Let a metafilm be located in the plane y = 0 in free space. Assume
that a TE polarized plane wave is incident onto the metafilm as shown in Fig. 1.10, such that the total
E-field in region A (y > 0) is given by E = Ei +Er, where the incident and reflected fields are

Ei = azE0e
−jki·r

Er = azRTEE0e
−jkr·r

. (1.15)

The transmitted field in region B (y < 0) is given by

Et = azTTEE0e
−jkt·r , (1.16)

where

kt = ki = {ax sin θ − ay cos θ} k0
kr = {ax sin θ + ay cos θ} k0

, (1.17)

and k0 = ω
√
µ0ǫ0 is the wavenumber of free space. In (1.15) and (1.16), RTE and TTE are the reflection

and transmission coefficient, respectively. From Maxwell’s equations, the incident, reflected and transmitted
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Figure 1.10 TE polarized plane-wave incident onto a metastructure.

H-fields are given by:

Hi =
(

k0E0

ωµ

)

{−ax cos θ − ay sin θ} e−jki·r

Hr =
(

k0E0RTE

ωµ

)

{ax cos θ − ay sin θ} e−jkr·r

Ht = −
(

k0E0TTE

ωµ

)

{ax cos θ + ay sin θ} e−jkt·r

. (1.18)

Substituting the electric and magnetic field components given in (1.15), (1.16) and (1.18), into the GSTCs
(1.1) and (1.2) results in

RTE(θ) =
−j

k0

2 cos θ (χ
zz
ES+χ

yy
MS

sin2 θ−χxx
MS cos2 θ)

1−( k0

2 )
2

χxx
MS(χzz

ES
+χ

yy
MS

sin2 θ)+j
k0

2 cos θ (χzz
ES

+χxx
MS

cos2 θ+χ
yy
MS

sin2 θ)
(1.19)

and

TTE(θ) =
1+( k0

2 )
2

χxx
MS(χ

zz
ES+χ

yy
MS

sin2 θ)
1−( k0

2 )
2

χxx
MS(χzz

ES
+χ

yy
MS

sin2 θ)+j
k0

2 cos θ (χzz
ES

+χxx
MS

cos2 θ+χ
yy
MS

sin2 θ)
(1.20)

1.5.1.2 TM Polarization for a Metafilm Assume that a TM polarized H-field plane wave is incident onto
the metafilm shown in Fig. 1.11, such that the H-field components of the incident, reflected, and transmitted
plane waves are given by

Hi = az
E0

ζ0
e−jki·r

Hr = −azRTM
E0

ζ0
e−jkr·r

Ht = azTTM
E0

ζ0
e−jkt·r

. (1.21)

where ζ0 =
√

µ0/ǫ0 is the wave impedance of free space. From Maxwell’s equations, the incident, reflected
and transmitted E-fields are given by:

Ei = E0 (ax cos θ + ay sin θ) e
−jki·r

Er = E0 (ax cos θ − ay sin θ)RTMe−jkr·r

Et = E0 (ax cos θ + ay sin θ)TTM e−jkt·r

. (1.22)

Substituting these expressions into the GSTCs given in (1.1) and (1.2) we obtain:

RTM (θ) =
−j

k0

2 cos θ (χ
xx
ES cos2 θ−χzz

MS−χ
yy
ES

sin2 θ)
1−( k0

2 )
2

χxx
ES(χzz

MS
+χ

yy
ES

sin2 θ)+j
k0

2 cos θ (χzz
MS

+χxx
ES

cos2 θ+χ
yy
ES

sin2 θ)
, (1.23)

and

TTM (θ) =
1+( k0

2 )
2

χxx
ES(χ

zz
MS+χ

yy
ES

sin2 θ)
1−( k0

2 )
2

χxx
ES(χzz

MS
+χ

yy
ES

sin2 θ)+j
k0

2 cos θ (χzz
MS

+χxx
ES

cos2 θ+χ
yy
ES

sin2 θ)
. (1.24)
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Figure 1.11 TM polarized plane-wave incident onto a metastructure.

1.5.1.3 Cross-Polarized Terms When the full surface susceptibility dyadics are included, the reflection and
transmission coefficients are more complicated. In fact, the cross-polarization surface susceptibilities result
in coupling (or mode conversion) between TE and TM modes when a plane-wave is incident onto a metafilm.
For an asymmetric metafilm, an incident TE plane wave can result in both TE and TM waves as defined in
Fig. 1.12. To account for the possibility of polarization conversion, the reflected and transmitted fields [for
the TE incident wave as indicated in eq. (1.15)] are expressed as

Er = azE0 RTEe
−jkr·r

+E0 RTM
TE (ax cos θ − ay sin θ) e−jkr·r

, (1.25)

and

Et = azE0 TTE e−jkt·r

+E0 TTM
TE (ax cos θ + ay sin θ) e−jkt·r

, (1.26)

where

kt = ki and kr = {ax sin θ + ay cos θ} k0 , (1.27)

and RTE and TTE are the (co-polarized) reflection and transmission coefficients of a TE wave, and RTM
TE

and TTM
TE are the (cross-polarized) reflection and transmission coefficients of a TM wave for an incident TE

wave.
Upon substituting these expressions for the fields into the GSTCs, the reflection and transmission coeffi-

cients for a TE incident plane-wave are found to be [104] and [105]

RTE(θ) = − AB − k20χ
yx
MSχ

xy
MS

2(AC + k20χ
yx
MSχ

xy
MS)

+
E N − k20χ

yx
ESχ

xy
ES

2(DE + k20χ
yx
ESχ

xy
ES)

(1.28)

TTE(θ) =
AB − k20χ

yx
MSχ

xy
MS

2(AC + k20χ
yx
MSχ

xy
MS)

+
E N − k20χ

yx
ESχ

xy
ES

2(DE + k20χ
yx
ESχ

xy
ES)

(1.29)

RTM
TE (θ) = − jk0χ

yx
MS(B − C)

2(AC + k20χ
yx
MSχ

xy
MS)

+
jk0χ

xy
ES(N −D)

2(DE + k20χ
yx
ESχ

xy
ES)

(1.30)

TTM
TE (θ) =

jk0χ
yx
MS(B − C)

2(AC + k20χ
yx
MSχ

xy
MS)

+
jk0χ

xy
ES(N −D)

2(DE + k20χ
yx
ESχ

xy
ES)

(1.31)

where

A = 2 + jk0

cos θχ
yy
MS + jk0

cos θχ
zz
ES sin2 θ ; B = 2− jk0χ

xx
MS cos θ , (1.32)
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Figure 1.12 TE Plane wave incident onto a asymmetric metastructure.

N = 2− jk0

cos θχ
yy
ES − jk0

cos θχ
zz
MS sin2 θ ; E = 2 + jk0χ

xx
ES cos θ , (1.33)

and

D = 2 + jk0

cos θχ
yy
ES + jk0

cos θχ
zz
MS sin2 θ ; C = 2 + jk0χ

xx
MS cos θ . (1.34)

From these expressions, we see that due to the anisotropic terms in the GSTCs, polarization conversion will
occur, in that an incident TE wave will generate TM waves in addition to the expected TE waves. If the
cross-coupling terms are zero, then RTM

TE and TTM
TE are also zero; and we are left with a pure TE reflection

and transmitted field.
For an asymmetric metafilm, a TM plane wave can also result in both TE and TM waves. Assume that a

TM polarized plane wave is incident onto the metafilm as shown in Fig. 1.13, such that the incident electric
field is given by:

Ei = E0 (ax cos θ + ay sin θ) e
−jki·r . (1.35)

Similar to the derivation above, to account for the possibility of the metafilm converting the incident TM
wave into both TE and TM waves (see Fig. 1.13), the reflected and transmitted fields are expressed as

Er = azE0 RTE
TM e−jkr·r

+E0 RTM (ax cos θ − ay sin θ) e−jkr·r
, (1.36)

and

Et = azE0 TTE
TMe−jkt·r

+E0 TTM (ax cos θ + ay sin θ) e−jkt·r
, (1.37)

where RTM and TTM are the (co-polarized) reflection and transmission coefficients of the TM wave, and
RTE

TM and TTE
TM are the (cross-polarized) reflection and transmission coefficients of a TE wave for a incident

TM wave.
Upon substituting the expressions above into the GSTCs, the reflection and transmission coefficients are

found to be [104] and [105]

RTE(θ) = − CM− k20χ
yx
MSχ

xy
MS

2(AC + k20χ
yx
MSχ

xy
MS)

+
DF − k20χ

yx
ESχ

xy
ES

2(DE + k20χ
yx
ESχ

xy
ES)

(1.38)
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Figure 1.13 TM Plane wave incident onto a asymmetric metastructure.

TTE(θ) =
CM− k20χ

yx
MSχ

xy
MS

2(AC + k20χ
yx
MSχ

xy
MS)

+
DF − k20χ

yx
ESχ

xy
ES

2(DE + k20χ
yx
ESχ

xy
ES)

(1.39)

RTM
TE (θ) = − jk0χ

yx
MS(M+A)

2(AC + k20χ
yx
MSχ

xy
MS)

+
jk0χ

xy
ES(E − D)

2(DE + k20χ
yx
ESχ

xy
ES)

(1.40)

TTM
TE (θ) =

jk0χ
yx
MS(B +A)

2(AC + k20χ
yx
MSχ

xy
MS)

− jk0χ
xy
ES(E + F)

2(DE + k20χ
yx
ESχ

xy
ES)

(1.41)

where

M = 2− jk0

cos θχ
MS
ES − jk0

cos θχ
zz
ES sin2 θ ; F = 2− jk0χ

xx
ES cos θ , (1.42)

and A, B, C, D, N , E are given in eqs. (1.32)-(1.34). From these expressions, we see that due to the
anisotropic terms in the GSTC mode conversion will occur in that an incident TM mode will generate a TE
mode. If the cross-coupling terms (χxz,zx

MS and πxz,zx
MS ) are zero, then RTE

TM = 0 and TTE
TM = 0; and RTM and

TTM reduce to the pure TM reflected and transmitted field.

1.5.2 Metascreens

As seen from the GSTCs in (1.7) and (1.8), the magnetic surface parameters for a metascreen may have
cross-polarization (or off-diagonal) terms πxz

MS , π
zx
MS , χ

xz
MS , and χzx

MS . As for a metafilm, these terms can
result in coupling between TE and TM fields. Initially, we will assume for simplicity that the apertures are
sufficiently symmetric that these off-diagonal terms are zero. We will also assume that regions A and B
are both free space, and that the screen possesses mirror symmetry about the reference plane y = 0. These
assumptions correspond to many metascreens that are encountered in practice; the more general case will
be treated below. Symmetry of the apertures results in:

πxz
MS = πzx

MS = χxz
MS = χzx

MS ≡ 0 , (1.43)
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and the symmetry with respect to either side of the metascreen results in

πAyy
ES = πByy

ES ≡ 2πyy
ES ; χAyy

ES = χByy
ES ≡ 1

2χ
yy
ES

πAxx
MS = πBxx

MS ≡ 2πxx
MS ; χAxx

MS = χBxx
MS ≡ 1

2χ
xx
MS

πAzz
MS = πBzz

MS ≡ 2πzz
MS ; χAzz

MS = χBzz
MS ≡ 1

2χ
zz
MS

. (1.44)

Under these conditions, the GSTCs become:

ay ×
[

EA(ro)−EB(ro)
]

= −jωµ0 [axχ
xx
MSHx,av(ro) + azχ

zz
MSHz,av(ro)]

−χyy
ESay ×∇tEy,av(ro)

, (1.45)

and

ay ×Eav(ro) = −jωµ0

{

axπ
xx
MS

[

HA
x (ro)−HB

x (ro)
]

+ azπ
zz
MS

[

HA
z (ro)−HB

z (ro)
]}

−πyy
ESay ×∇t

[

EA
y (ro)− EB

y (ro)
]

. (1.46)

where

Hx,av(ro) =
1

2

[

HA
x (ro) +HB

x (ro)
]

and Eav(ro) =
1

2

[

EA(ro) +EB(ro)
]

(1.47)

represent the average of the fields on the two sides of the reference plane at y = 0.

1.5.2.1 TE Polarization for a Metascreen Let a metascreen be located in the plane y = 0 in free space.
If we assume a TE polarized plane wave is incident onto the metastructure shown in Fig. 1.10, then the
reflected and transmitted E and H fields are given in eqs. (1.15), (1.16) and (1.18). Substituting the fields
into the GSTCs given in eqs. (1.45) and (1.46), we obtain the reflection and transmission coefficients for a
TE incident field [38]:

RTE(θ) =
1 + k20 χ

xx
MS πxx

MS cos2 θ

k20χ
xx
MS πxx

MS cos2 θ − j k0

2 (χxx
MS + 4πxx

MS) cos θ − 1
(1.48)

and

TTE(θ) =
i k0 cos θ

2 [χxx
MS − 4πxx

MS ]

k20χ
xx
MS πxx

MS cos2 θ − j k0

2 (χxx
MS + 4πxx

MS) cos θ − 1
(1.49)

Note that for this polarization only two surface parameters (χxx
MS and πxx

MS) are needed to determine RTE(θ)
and TTE(θ). This is in contrast to a metafilm, where three different surface parameters are needed to
determine these coefficients [27], [33]-[35].

1.5.2.2 TM Polarization for a Metascreen Assume that a TM polarized H-field plane wave is incident onto
the metastructure shown in Fig. 1.11, such that the E and H-field components of the incident, reflected,
and transmitted plane waves are given by eqs. (1.21) and 1.22). Substituting the field into the GSTCs (1.45)
and (1.46), the reflection and transmission coefficients for a TM incident field are found to be [38]:

RTM (θ) =
−1− k2

0

cos2 θ
AB

1− k2

0

cos2 θ
AB + j k0

2 cos θ (A + 4B)
, (1.50)

and

TTM (θ) = −
jk0

cos θ [A− 4B]
1− k2

0

cos2 θ
AB + j k0

2 cos θ (A + 4B)
, (1.51)

where

A = χzz
MS + χyy

ES sin2 θ

B = πzz
MS + πyy

ES sin2 θ
. (1.52)

Note that for this polarization four surface parameters (χzz
MS , π

zz
MS , χ

yy
ES , and πyy

ES) are needed to determine
RTM (θ) and TTM (θ). This is in contrast to a metafilm, where only three different surface parameters are
needed to determine these quantities [27], [33]-[35].
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1.5.2.3 Cross-Polarized Terms As for the metafilm, cross-polarization terms in the GSTCs result in coupling
between TE and TM fields (i.e., TE polarized fields will generate TM fields, and vice-versa). Here we will
assume the apertures are symmetric with respect to the plane y = 0 and that the material properties in
region A and region B are the same. These two assumptions correspond to most metascreens encountered
in practice and result in

πAxz
MS = πBxz

MS = πxz
MS and πAzx

MS = πBzx
MS = πzx

MS

χAxz
MS = χBxz

MS = χxz
MS and χAzx

MS = χBzx
MS = χzx

MS

πAyy
ES = πByy

ES = πyy
ES and χAyy

ES = χByy
ES = χyy

ES

πAxx
MS = πBxx

MS = πxx
MS and χAxx

MS = χBxx
MS = χxx

MS

πAzz
MS = πBzz

MS = πzz
MS and χAzz

MS = χBzz
MS = χzz

MS

. (1.53)

Under these conditions, the GSTCs reduce to a simpler form:

ay ×
[

EA(ro)−EB(r0)
]

= −ax jωµ0

{

χxx
MS

[

HA
x (ro) +HB

x (ro)
]

+ χxz
MS

[

HA
z (ro) +HB

z (ro)
]}

−az jωµ0

{

χzz
MS

[

HA
z (ro) +HB

z (ro)
]

+ χzx
MS

[

HA
x (ro) +HB

x (ro)
]}

−ay × χyy
ES

[

∇tE
A
y (ro) +∇tE

B
y (ro)

]

, (1.54)

and

ay ×
[

EA(ro) +EB(r0)
]

= −ax jωµ0

{

πxx
MS

[

HA
x (ro)−HB

x (ro)
]

+ πxz
MS

[

HA
z (ro)−HB

z (ro)
]}

−az jωµ0

{

πzz
MS

[

HA
z (ro)−HB

z (ro)
]

+ πzx
MS

[

HA
x (ro)−HB

x (ro)
]}

−ay × πyy
ES

[

∇tE
A
y (ro)−∇tE

B
y (ro)

]

. (1.55)

Using the incident, reflected, and transmitted fields as defined in eqs. (1.25) and (1.26) in the GSTCs
(1.54) and (1.55), the reflection and transmission coefficients (as defined in Fig. 1.12) for a TE incident plane
wave are obtained [39]:

RTE(θ) = 1− A

X
(

A+ V
4X

) − B

Y
(

B + 4W
Y

) , (1.56)

TTE(θ) = −
1

4

V
X

X(A+ V
4X )

+
4W

Y

Y (B+ 4W
Y )

+
j2k0π

xx
MS cos θ
Y

− j
k0

2
χxx
MS cos θ

X

, (1.57)

RTM
TE (θ) = −j k0

2 χzx
MS cos θ

X
(

A+ V
4X

) − j2k0π
zx
MS cos θ

Y
(

B + 4W
Y

) , (1.58)

and

TTM
TE (θ) =

j k0

2 χzx
MS cos θ

X
(

A+ V
4X

) − j2k0π
zx
MS cos θ

Y
(

B + 4W
Y

) , (1.59)

where

A = cos θ + j
ko
2
χzz
MS + j

ko
2
χyy
ES sin2 θ , (1.60)

and
B = cos θ + j2 k0π

zz
MS + j2 k0π

yy
ES sin2 θ , (1.61)

X = 1 + j
k0
2
χxx
MS cos θ , Y = 1 + j2k0π

xx
MS cos θ , (1.62)

V = k20χ
xz
MSχ

zx
MS cos θ , W = k20π

xz
MSπ

zx
MS cos θ . (1.63)

From these expressions, we see that due to the anisotropic terms in the GSTCs (χxz,zx
MS and πxz,zx

MS ), polar-
ization conversion will occur, so that an incident TE wave will generate a TM wave. If the anisotropic terms
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are zero (i.e., χxz,zx
MS = 0, πxz,zx

MS = 0), then RTM
TE = 0 and TTM

TE = 0; and RTE and TTE reduce to those given
above [38]. In this case, we are left with pure TE reflected and transmitted fields as defined above.

Using the incident, reflected, and transmitted fields as defined in eqs. (1.35)-(1.37) in the same GSTCs
as for the incident TE case, the reflection and transmission coefficients (as defined in Fig. 1.13) for a TM
incident plane wave are found to be [39]:

RTM (θ) = 1− cos θ

A+ V
4X

− cos θ

B + 4W
Y

, (1.64)

TTM (θ) =
cos θ

A+ V
4X

− cos θ

B + 4W
Y

, (1.65)

RTE
TM (θ) = −j ko

2 χxz
MS cos θ

X
[

A+ V
4X

] − jkoπ
xz
MS cos θ

Y
[

B + 4W
Y

] , (1.66)

and

TTE
TM (θ) =

j ko

2 χxz
MS cos θ

X
[

A+ V
4X

] − jkoπ
xz
MS cos θ

Y
[

B + 4W
Y

] . (1.67)

We see that due to the anisotropic terms in the GSTCs, polarization conversion will occur, and an incident
TM wave will generate a TE wave. If the anisotropic terms are zero (i.e., χxz,zx

MS = 0, πxz,zx
MS = 0), then

RTE
TM = 0 and TTE

TM = 0; and RTM and TTM reduce to those given above [38], and we are left with pure TM
reflected and transmitted fields as defined above.

1.5.3 Metagratings

The GSTCs for the metagrating can be separated into two different sets of expressions that apply to either
a TE or a TM incident plane wave. For the TE polarized case, the GSTCs reduce to [32]:

[

EA
z (ro)− EB

z (ro)
]

= −j ωµ0

[

µ0µAχ
Axx
MS HA

x (ro) + µ0µBχ
Bxx
MS HB

x (ro)
]

(1.68)

[

EA1
z (ro) + EB1

z (ro)
]

= −jω
[

µAπ
Axx
MS HA

x (ro)− µBπ
Bxx
MS HB

x (ro)
]

, (1.69)

while for the TM polarized case, they reduce to [32]:

[

EA
x (ro)− EB

x (ro)
]

= +j ω χzz
MS Hz,av(ro)

+χyx
ES

∂
∂x

Ex,av(ro)

+ ∂
∂x

[

χAyy
ES EA

y (ro) + χByy
ES EB

y (ro)
]

(1.70)

[

H1
zA(ro)−H1

zB(ro)
]

= jωǫ0 χ
xx
ES Ex,av(ro)

+jωǫ0

[

χAxy
ES EA

y (ro) + χBxy
ES EB

y (ro)
] . (1.71)

The forms of these reduced conditions are such that no polarization conversion will occur so long as the
incident wave is either TE or TM to the z-direction.

1.5.3.1 TE Polarization for a Metagrating Let a metagrating be located in the plane y = 0 in free space.
If we assume a TE polarized plane wave is incident onto the metagrating shown in Fig. 1.10, then reflected
and transmission E and H field are given in eqs. (1.15), (1.16) and (1.18). Substituting the fields into the
GSTCs (1.68) and (1.69) gives the reflection and transmission coefficients for a TE incident field:

RTE =
2− jk0

(

χAxx
MS − χBxx

MS + πAxx
MS − πBxx

MS

)

cos θ + k20
(

χBxx
MS πAxx

MS + χAxx
MS πBxx

MS

)

cos2 θ

−2− jk0
(

χAxx
MS + χBxx

MS + πAxx
MS + πBxx

MS

)

cos θ + k20
(

χBxx
MS πAxx

MS + χAxx
MS πBxx

MS

)

cos2 θ
(1.72)
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and

TTE =
j2k0

(

χAxx
MS − πAxx

MS

)

cos θ

−2− jk0
(

χAxx
MS + χBxx

MS + πAxx
MS + πBxx

MS

)

cos θ + k20
(

χBxx
MS πAxx

MS + χAxx
MS πBxx

MS

)

cos2 θ
(1.73)

For a symmetric wire grating

χAxx
MS = χBxx

MS = χxx
MS

πAxx
MS = πBxx

MS = πxx
MS

(1.74)

and in that case the reflection and transmission coefficients reduce to

RTE =
1 + k20χ

xx
MSπ

xx
MS cos2 θ

−1− jk0 (χxx
MS + χxx

MS) cos θ + k20χ
xx
MSπ

xx
MS cos2 θ

(1.75)

TTE =
jk0 (χ

xx
MS − πxx

MS) cos θ

−1− jk0 (χxx
MS + χxx

MS) cos θ + k20χ
xx
MSπ

xx
MS cos2 θ

(1.76)

These have same the functional form as those given by Wainstein for an uncoated wire grating [106, eq.
(2.30)].

1.5.3.2 TM Polarization for a Metagrating To simplify the formulas in the TM case, we will assume that
no coupling terms are present:

χAxy
ES = χBxy

ES = χyx
ES ≡ 0 . (1.77)

The more general case can be derived (following a similar procedure) if desired. Assume that a TM polarized
plane wave is incident onto the metascreen shown in Fig. 1.11, such that the E and H-field components of
the incident, reflected, and transmitted plane waves are given by eqs. (1.22) and (1.21). Substituting the
field into the GSTCs (1.70) and (1.71), the reflection coefficient for a TM incident field is found to be:

RTM = − NR

(−2j + k0 χxx
ES cos θ)

(

−2j cos θ + k0

[

χBzz
MS −

(

χAyy
ES + χByy

ES

)

sin2 θ
]) (1.78)

where

NR = k0

[

−2jχxx
ES cos2 θ + k0 χ

xx
SE

(

χAyy
ES − χByy

ES

)

cos θ sin2 θ + 2j
(

χBzz
MS −

(

χAyy
ES + χByy

ES

)

sin2 θ
)]

.

(1.79)
The transmission coefficient for a TM incident field is given by:

TTM =
cos θ

(

4 + k20χ
Bzz
MSχ

xx
ES − 2k20χ

xx
ESχ

Ayy
ES sin2 θ

)

(−2j + k0 χxx
ES cos θ)

(

−2j cos θ + k0

[

χBzz
MS −

(

χAyy
ES + χByy

ES

)

sin2 θ
]) . (1.80)

For the case of a symmetric metagrating,

χAyy
SE = χByy

SE = χyy
SE

χAxy
SE = χBxy

SE = χyx
SE ≡ 0

(1.81)

and the reflection and transmission coefficients reduce to

RTM =
−2jk0

(

χzz
MS − 2χyy

ES sin2 θ − χxx
ES cos2 θ

)

(−2j + k0χxx
ES cos θ)

(

−2j cos θ + k0
(

χzz
MS − 2χyy

ES sin2 θ2
)) (1.82)

and

TTM =
cos θ

(

4 + k20χ
zz
MSχ

xx
ES − 2k20χ

xx
SEχ

yy
ES sin2 θ

)

(−2j + k0χxx
ES cos θ)

(

−2j cos θ + k0
(

χzz
MS − 2χyy

SE sin2 θ2
)) (1.83)

These have the same functional form as Wainstein’s for an uncoated wire grating [106, eq. (2.31)].
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1.6 Determining the Surface Parameters

The surface parameters that appear explicitly in the various boundary conditions for different types of
metasurfaces are uniquely defined, and are their best quantitative characterization when their microscopic
scale is small compared to a wavelength. At times, these surface parameters can be difficult to determine.
For specific geometries, there are various approximate expressions to be found throughout the literature
that are based on dipole interactions. However, these approximate expressions are limited in their range of
application. The electric and magnetic susceptibilities for an array of spherical particles are given in [33] and
[35]. The surface susceptibilities for an array of square patches are given in [37] and [107], and the surface
susceptibility of an array circular wires is given in [32]. The electric and magnetic surface porosities for
arrays of circular apertures or square apertures are given in [108] and [109]. The magnetic surface porosity
for an array of wires is given in [32].

The surface susceptibilities and porosities can also be determined by solving the static field problems
defined in [30]-[32], giving a framework for calculating the surface parameters for metafilms, metascreens, and
metagratings. As shown in these references, the solution of these static field problems can be computationally
challenging for arbitrarily shaped structures.

Alternatively to using approximate expressions or solving the static field problems, we can derive expres-
sions that allow for the surface parameters to be retrieved from measured or simulated values of R and
T . This method is analogous to the modified Nicolson-Ross-Weir (NRW) approach used for retrieving the
effective permeability and permittivity of a metamaterial [97]-[103], which has been extended to the retrieval
of the surface parameters for metafilms and metascreens [33], [34], and [38]. In this section, the GSTCs for
the various metasurfaces presented above will be used here to develop retrieval techniques for the surface
parameters of metafilms, metascreens, and metagratings.

1.6.1 Retrieval Expressions for Metafilms

Once the reflection and transmission coefficients are obtained (either from measurements or from numerical
calculations), the surface susceptibilities can be determined. For the case of scatterers that have diagonal
surface susceptibility dyadics, two different sets of R and T data are required (one at normal incidence
and one at oblique incidence) for each polarization. For the TE polarized wave, the three unknown surface
susceptibilities are determined from eqs. (1.56) and (1.57) to give:

χxx
MS =

2j

k0

RTE(0)− TTE(0) + 1

RTE(0)− TTE(0)− 1
, χzz

ES =
2j

k0

RTE(0) + TTE(0)− 1

RTE(0) + TTE(0) + 1
, (1.84)

and

χyy
MS = − χyy

ES

sin2(θ)
+

2j cos(θ)

k0 sin
2(θ)

RTE(θ) + TTE(θ)− 1

RTE(θ) + TTE(θ) + 1
. (1.85)

In these expressions, RTE(0) and TTE(0) are the reflection and transmission coefficients at normal incidence
(θ = 0◦), while RTE(θ) and TTE(θ) are the reflection and transmission coefficients at some oblique incidence
angle, sufficiently different from θ = 0. If experimental data is used, two angles other than θ = 0 may be
required because measuring the reflection coefficients at θ = 0 can be difficult; this leads to a different set of
equations than those presented above.

For the TM polarized wave, the three unknown surface susceptibilities are determined from eqs. (1.64)
and (1.65) to give [33], [34]:

χxx
ES =

2j

k0

RTM (0) + TTM (0)− 1

RTM (0) + TTM (0) + 1
, χzz

MS =
2j

k0

RTM (0)− TTM (0) + 1

RTM (0)− TTM (0)− 1
, (1.86)

and

χyy
ES = − χyy

MS

sin2(θ)
+

2j cos(θ)

k0 sin
2(θ)

TTM (θ)− 1−RTM (θ)

TTM (θ) + 1−RTM (θ)
(1.87)

Similar to the TE case, RTM (0) and TTM (0) are the reflection and transmission coefficients at normal
incidence, while RTM (θ) and TTM (θ) are the reflection and transmission coefficients at some oblique incidence
angle, sufficiently different from θ = 0.
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(a) RTM (0) (b) TTM (0)

Figure 1.14 Numerically computed RTM (0) and TTM (0) (referred to y = 0) for the array of metallic scatterers
shown in Fig. 1.8(d).

In the retrieval approaches for both polarizations, it is important to realize that the reference plane for
RTE,TM (0), TTE,TM (0), RTM (θ) and TTM (θ) is required to be located at y = 0. This is a consequence of
how the GSTCs were derived in [29] and [30]. The GSTCs (and the surface parameters) would need to be
modified for different choices of reference plane location [106], [110], and [111]. In order to illustrate the
validity of these expressions for retrieving the surface susceptibilities of a metafilm, we will next consider
some examples.

We first use the retrieval method to determine the surface susceptibilities of a metafilm composed of the
metallic scatterers shown in Fig. 1.8(d). The TM mode reflection (RTM (0)) and transmission coefficients
(TTM (0)) at an incidence angle of zero degrees for this structure were obtained from a commercial finite-
element EM field solver. These numerical results are shown in Fig. 1.14, for the E-field polarized along the
x-axis and the reference plane of RTM (0) and TTM (0) located at y = 0. These values are used in eq. (1.86)
to obtain χxx

ES , a plot of which was shown in Fig. 1.8c.
In the next example, we consider a metafilm composed of a square array of spherical particles, as shown

in Fig. 1.1(b). For this metafilm, a = 10 mm, p = 25.59 mm, ǫr = 2, µr = 900, tan δ = 0.04. The TE
reflection and transmission coefficients at incidence angles of 0◦ and 30◦ for this structure were obtained
from a commercial finite-element EM field solver, and are shown in Fig. 1.15. These values were then used
in eqs. (1.84) and (1.85) to obtain χxx

ES and χyy
ES , which are shown in Figs. 1.8a and 1.8b. In [35] and [33]

it is shown that if the scatterers are spaced sufficiently far from each other, the components of the electric
and magnetic surface susceptibility dyadics can be determined by means of “sparse-array” approximation
formulas. These approximate analytical values are also plotted in Figs. 1.8a and 1.8b. From this comparison,
we see that the surface susceptibilities obtained from the retrieval approach are virtually identical to those
obtained from the approximate analytical expressions.

1.6.2 Retrieval Expressions for Metascreens

For a metascreen, we see from (1.48) and (1.49) that only two surface parameters (χxx
MS and πxx

MS) determine
RTE(θ) and TTE(θ). Using these two expressions, the two unknown surface parameters are determined from
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(a) RTM (0) and RTM (30◦) (b) TTM (0) and TTM (30◦)

Figure 1.15 Numerically computed RTM (0) and TTM (0) (referred to y = 0) for the array of spherical particles
shown in Fig. 1.1(b).

[38]:

πxx
MS =

j

2k0

RTE(0) + TTE(0) + 1

RTE(0) + TTE(0)− 1
, (1.88)

and

χxx
MS =

2j

k0

RTE(0)− TTE(0) + 1

RTE(0)− TTE(0)− 1
(1.89)

where RTE(0) and TTE(0) are the reflection and transmission coefficients at normal incidence (θ = 0◦). Any
angle for RTE(θ) and TTE(θ) in (1.88) and (1.89) could have been used, but θ = 0◦ is a convenient choice.
If RTE(0) and TTE(0) are known, either from experimental measurements or from a numerical simulation
of the metascreen, then (1.88) and (1.89) can be used to retrieve the values of χxx

MSS and πxx
MS .

From (??) and (??) we see that R(θ) and T (θ) depend on four of the surface parameters. Thus, unlike
the TE polarization case, two sets of RTM (θ) and TTM (θ) data are required to determine all four unknowns
for the TM polarized wave [38]:

πzz
MS =

j

2k0

RTM (0) + TTM (0) + 1

RTM (0) + TTM (0)− 1
(1.90)

χzz
MS =

2j

k0

RTM (0)− TTM (0) + 1

RTM (0)− TTM (0)− 1
(1.91)

πyy
ES = − πzz

MS

sin2 θ
+

j cos θ

2k0 sin2 θ

RTM (θ) + TTM (θ) + 1

RTM (θ) + TTM (θ)− 1
, (1.92)

and

χyy
ES = − χzz

MS

sin2 θ
+

2j cos θ

k0 sin2 θ

RTM (θ)− TTM (θ) + 1

RTM (θ)− TTM (θ)− 1
(1.93)

where RTM (0) and TTM (0) are the reflection and transmission coefficients at normal incidence (θ = 0◦),
while RTM (θ) and TTM (θ) are the reflection and transmission coefficients at some oblique incidence angle,
sufficiently different from θ = 0◦. With RTM (0), TTM (0), RTM (θ) and TTM (θ) available from either simula-
tion or experiment, (1.90)-(1.93) can be used to retrieve the four unknown surface parameters (χzz

MS , π
zz
MS ,

χyy
ES , and πyy

ES).
Here we consider two examples for retrieving the surface parameters of a metascreen. We first consider

an array of circular apertures in a perfectly conductor of thickness h as shown in Fig. 1.16(a). For this
metascreen, p = 100 mm, the thickness h = 10 mm, and a is the radius of the apertures (which will be
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(a) (b)

Figure 1.16 Metascreen: (a) circular apertures and (b) magnetic surface susceptibility and surface porosity for an
array of circular apertures: p = 100 mm and h = 10 mm.

varied). The reflection and transmission coefficients for the metascreen were determined numerically from
the finite-element software HFSS (mentioning this product does not imply an endorsement, but serves to
clarify the numerical program used) for both θ = 0◦ and θ = 30◦ at a frequency of 500 MHz and a/p
ranging from 0 to 0.5. The numerical values for RTM (0), TTM (0), RTM (θ) and TTM (θ) at the reference
plane y = 0, and were used in (1.90) and (1.91) to determine the two magnetic surface parameters (χzz

MS and
πzz
MS). Fig. 1.16(b) show the retrieved magnetic surface parameters for a range of a. Using dipole-interaction

approximations, closed-form results for these surface porosities and susceptibilities have been obtained in
[108] for an array of circular apertures. These approximations are also shown in Fig. 1.16(b). The surface
susceptibilities and porosities can also be determined by solving the static field problem as defined in [31].
These homogenization-based surface parameters are also shown in Fig. 1.16b. From the comparison, we see
that the retrieved surface magnetic susceptibility and surface magnetic porosity correlate very well with the
other two approaches for the whole range of a/p = 0 to a/p = 0.49.

Next, we consider an array of square apertures in a perfectly conducting plate as shown in Fig. 1.17(a).
For this array, p = 100 mm, the thickness is h = 10 mm, and l is the length of the side of the square (which
will be varied). The numerical values for RTM (0), TTM (0), RTM (θ) and TTM (θ) at the reference plane
y = 0, and were used in (1.90)-(1.93) to determine the two magnetic surface parameters (χzz

MS and πzz
MS).

Fig. 1.17(b) shows the retrieved magnetic surface parameters for a range of l. In this figure, we also show
the dipole-approximation from [108] and results from the homogenization model [31]. From the comparison,
we see that the retrieved surface magnetic susceptibility and surface magnetic porosity correlate very well
with the other two approaches for the whole range of l/p, except that the dipole approximation for πzz

MS

becomes somewhat inaccurate for l/p > 0.5. Retrieved results for other apertures are found in [38].

1.6.3 Retrieval Expressions for Metagratings

As was the case for a TE incident wave onto a metascreen, we see from (1.75) and (1.76) that only two surface
parameters (χxx

SM and πxx
MS) determine RTE(θ) and TTE(θ) for a metagrating. Using these two expressions,

the two unknown surface parameters are determined from:

πxx
MS =

j

k0

RTE(0) + TTE(0) + 1

RTE(0) + TTE(0)− 1
, (1.94)

and

χxx
MS =

j

k0

RTE(0)− TTE(0) + 1

RTE(0)− TTE(0)− 1
. (1.95)
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(a) (b)

Figure 1.17 Metascreen: (a) square apertures and (b) magnetic surface susceptibility and surface porosity for an
array of circular apertures: p = 100 mm and h = 10 mm.

From (1.82) and (1.83) we see that RTM (θ) and TTM (θ) for the symmetric case depend on three surface
parameters. Thus, unlike the TE polarization case, two sets of RTM (θ) and TTM (θ) data are required to
determine all three unknowns for the TM polarized wave:

χzz
MS =

2j

k0

RTM (0)− TTM (0) + 1

RTM (0)− TTM (0)− 1
(1.96)

χxx
ES =

2j

k0

RTM (0) + TTM (0)− 1

RTM (0) + TTM (0) + 1
, (1.97)

and

χyy
ES =

χzz
MS

2 sin2 θ
+

j cos θ

k0 sin
2 θ

RTM (θ) + j k0

2 χxx
ES [1 +RTM (θ)] cos θ

1−RTM (θ)− j k0

2 χxx
ESRTM (θ) cos θ

. (1.98)

As an example, we consider the uncoated circular wire grating shown in Fig. 1.18(a). This metagrating
has only three non-zero surface parameters (χxx

MS , χ
xx
ES , and πxx

MS) [32]. The retrieved surface parameters
are shown in Fig. 1.18(b) for a range of wire radius a, together with Wainstein’s analytical results [106] and
results from homogenization [32] for comparison.

1.7 Some Applications of GSTCs

However they are obtained, we have seen how the surface susceptibilities and porosities together with the
GSTCs allow the plane-wave reflection and transmission coefficients to be computed. In this section we will
discuss the use of GSTCs to the modeling of metasurfaces in a number of other applications.

1.7.1 Guided-waves on a Single Metasurface

As is the case for an ordinary dielectric slab, a metasurface may also support surface waves under suitable
conditions. However, unlike a conventional dielectric slab, forward and backward surface waves as well as
complex modes may be excited simultaneously on the metasurface; this is a direct consequence of engineering
the properties of the constituent scatterers or apertures. In fact, the scatterers that compose a metafilm can
be judiciously chosen such that surface waves and/or complex modes will be present only at certain desired
frequencies. Conditions for guided waves can be supported on a metafilm are given in detail in [36]. Here
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(a) wire grating (b) surface parameters

Figure 1.18 Metagrating: (a) uncoated wire grating and (b) magnetic and electric surface susceptibility and surface
porosity for an array of wires of radius a. Also shown in this figure are results from [106]

Figure 1.19 Line source above a metafilm. The line source is either an electric or magnetic current source located
at z = d and the metafilm is represented by the dashed line at z = 0.

we will merely summarize the use of GSTCs in this analysis, which could be extended to other metasurfaces
such as metascreens or metagratings if desired.

Consider an electric line source oriented in the z-direction, at a distance d above and parallel to a metafilm
of infinite extent in the xy-plane (see Fig. 1.19, and note the change in coordinate system compared to that
used in [36]). The scatterers of the metafilm are assumed to be of rather arbitrary shape, but with enough
symmetry that (1.13)-(1.14) hold. If the regions above and below the metafilm consist of the same dielectric
material, the problem space can be divided into three sections. Region I (y > d) extends to infinity in the
+y-direction, while region III (y < 0) extends to infinity in the −y-direction. Region II (0 < y < d) is the
area between the plane of the line source and the metafilm.

Using a spectral-domain approach and applying the GSTCs at y = 0 and the appropriate jump conditions
at the source location (i.e., y = d), the scattered field for y > 0 is given by [36]

Es = −ωµ0

4π

∫ ∞

−∞

e−jρ (y+d)e−jν x

ρ
RSTE(ν) dν (1.99)

where

RSTE(ν) =
−j

[

k2
0

2ρ
χzz
ES+ ν2

2ρ
χ
yy
MS

−
ρ
2
χxx
MS

]

1−χxx
MS

(

k2
0

4
χzz
ES

+ ν2

4
χ
yy
MS

)

+j

[

k2
0

2ρ
χzz
ES

+ ν2

2ρ
χ
yy
MS

+ ρ
2
χxx
MS

] (1.100)
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Table 1.1 Conditions for surface waves and guided modes for an electric-line source (as well as expressions for the
propagation constant). These results are valid for pure real surface susceptibilities. Note that the total number of guided
waves increases by one if Re(χxx

MS) < 0.

Constraints on Number of Even-class poles Type of

χES and χMS guided waves guided wave

χyy
MS > 0 χzz

ES ≥
1

k2χ
yy
MS

− χyy
MS 2 ρE1,2 =

−j±

√

k2(χzz
ES

+χ
yy
MS)χ

yy
MS

−1

χ
yy
MS

complex mode

−χyy
MS < χzz

ES ≤
1

k2χ
yy
MS

− χyy
MS 2 ρE1,2 = −j

[

1±

√

1−k2(χzz
ES

+χ
yy
MS)χ

yy
MS

χ
yy
MS

]

surface wave

χzz
ES ≤ −χyy

MS 1 ρE1
= −j

[

1+

√

1−k2(χzz
ES

+χ
yy
MS)χ

yy
MS

χ
yy
MS

]

surface wave

χzz
ES = 0 2 ρE1,2 = −j

[

1±

√

1−k2(χyy
MS)

2

χ
yy
MS

]

surface wave

χyy
MS < 0 χzz

ES > −χyy
MS 1 ρE1

= −j

[

1−

√

1−k2(χzz
ES

+χ
yy
MS)χ

yy
MS

χ
yy
MS

]

surface wave

χyy
MS = 0 χzz

ES > 0 1 ρE1
= −jk2

2
χzz
ES surface wave

and ρ and ν are associated with an incidence angle θ by

ρ = k0 cos θ , ν = k0 sin θ (1.101)

The poles of the reflection coefficient RSTE are functions of the surface susceptibilities of the metafilm. Once
these poles are determined, the propagation constant of a surface wave along the metafilm (i.e., along the
x-axis) for this guided-wave pole is given by:

ν =
√

k2 − ρ2s (1.102)

where ρs is given in Table 1.1 under various conditions for an electric line source; values for a magnetic line
source are given in Table 1.2 [36]. When the surface susceptibilities of the metasurface meet certain of these
conditions, surface waves or complex modes can be excited.

As an example, consider a metafilm composed of spherical particles that have a radius of a = 10 mm and
are placed in an array with a period of p = 25.67 mm (see Fig. 1.1(b)). The material properties of these
particles were chosen to be ǫr = 100, µr = 1, and tan δ = 1 × 10−4—representative of some commercially
available ceramics at microwave frequencies. Values for χyy,xx

MS , χyy,xx
ES , χzz

ES χzz
MS as functions of frequency for

this array are given in [36]. The symmetry of the spherical particles means that χzz
ES = χxx

ES and χzz
MS = χxx

MS .
Fig. 1.20 shows the magnitudes of the electric fields for an electric line-source excitation for this array at two
different frequencies (1.5 GHz and 2.0 GHz), as computed by a commercial finite-element program, with the
line source placed 45.59 mm above the metafilm. This figure shows the presence of one surface wave and a
pair of complex modes at the lower frequency [Fig 1.20(a)], while Fig 1.20(b)] illustrates what happens at
the higher frequency when two surface waves are present.

Fig. 1.21 shows the magnitude of the E-field for a magnetic line source place above the same array.
Fig. 1.21(a) illustrates the presence of one surface wave, while Fig. 1.21(b) illustrates the existence of a
complex mode. By varying the properties of the scatterers, the surface susceptibilities will change, and
hence, from the results in Tables 1.1 and 1.2, it is possible to have a surface wave and/or complex mode
exist at any desired frequency, i.e., to realize a frequency-agile guided-wave structure.
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Table 1.2 Conditions for surface waves and guided modes for an magnetic-line source (as well as expressions for the
propagation constant). These results are valid for pure real surface susceptibilities. Note that the total number of guided
waves increases by one if Re(χxx

ES) < 0.

Constraints on Number of Even-class poles Type of

χES and χMS guided waves guided wave

χyy
ES > 0 χzz

MS ≥
1

k2χ
yy
ES

− χyy
ES 2 ρE1,2 =

−j±

√

k2(χzz
MS

+χ
yy
ES)χ
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−1

χ
yy
ES

complex mode

−χyy
ES < χzz

MS ≤
1

k2χ
yy
ES

− χyy
ES 2 ρE1,2 = −j

[

1±

√

1−k2(χzz
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+χ
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ES)χ

yy
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χ
yy
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]

surface wave

χzz
MS ≤ −χyy

ES 1 ρE1
= −j

[
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√

1−k2(χzz
MS

+χ
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ES)χ
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ES

χ
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ES

]

surface wave

χzz
MS = 0 2 ρE1,2 = −j

[

1±

√

1−k2(χyy
ES)

2

χ
yy
ES

]

surface wave

χyy
ES < 0 χzz

MS > −χyy
ES 1 ρE1

= −j

[

1−

√

1−k2(χzz
MS

+χ
yy
ES)χ

yy
ES

χ
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]

surface wave

χyy
ES = 0 χzz

MS > 0 1 ρE1
= −jk2

2
χzz
MS surface wave

(a) f=1.50 GHz (b) f=2.0 GHz

Figure 1.20 Magnitude of the E-field from a electric-line source placed 45.49 mm above an array of spherical particles:
(a) f=1.50 GHz (one surface wave and a complex mode pair) and (b) f=2.0 GHz (two surface waves). For an array of
spherical particles consisting of a = 10 mm, p = 25.67 mm , ǫr = 100, µr = 1, and tan δ = 1× 10−4

Leaky waves are also possible for this metafilm. The angle at which energy propagates away from the
surface for a leaky wave is given by [141].

θLEAKY = arcsin

(

Re[ν]

k0

)

(1.103)
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(a) f=1.42 GHz (b) f=1.5 GHz

Figure 1.21 Magnitude of the E-field (on a linear scale) from a magnetic line source placed 45.49 mm above an array
of spherical particles: (a) f=1.42 GHz: one surface wave, and (b) f=1.5 GHz: complex mode.

Figure 1.22 Leaky-wave angle versus frequency for an array of spherical particles with a = 10 mm, p = 25.67 mm ,
ǫr = 100, µr = 1, and tan δ = 1× 10−4.

under the restriction that

Re[ν] < k0 . (1.104)

Fig. 1.22 shows θLEAKY as a function of frequency for the same array of spherical particles as that used
above. These results were obtained by using (1.103) and the surface parameters for the array given in [36].
To validate these results, Fig. 1.23 shows the magnitudes of the E-field for frequencies of 1.70 GHz, 1.66
GHz and 1.64 GHz. These results were obtained with a commercial finite-element program for the same
array as used in Fig. 1.22. These results illustrate that little energy is flowing along the x-axis, while energy
is propagating at some angle away from the metasurface as a leaky wave. The angles at which the energy
propagates away from the surface correspond to those given in Fig. 1.22.
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(a) f=1.70 GHz: θl = 55◦, (b) f=1.66 GHz: θl = 30◦, (b) f=1.64 GHz: θl = 20◦

Figure 1.23 Magnitude of E-field and Poynting’s vector for an electric line source along the y-axis placed 45.49 mm
above an array of spherical particles: (a) f=1.70 GHz , (b) f=1.66 GHz , and (c) f=1.64 GHz.
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Figure 1.24 Resonator: a metafilm placed between two parallel metal plates.

1.7.2 Resonator Size Reduction

Engheta [142, 143] has demonstrated that the classical lower bound on the size of a resonant structure can
be reduced if a cavity is partially filled with a negative-index material. Extending this idea, it was shown in
[37, 144] that the same thing could be accomplished with a metasurface. The advantage of a metasurface is
that because it requires less physical space than a 3D metamaterial, a cavity or resonator with a metasurface
can in principle be made smaller than those that use 3D metamaterials.

Consider the resonator shown in Fig. 1.24. This resonator consists of perfectly conducting metallic walls
at y = d1 and y = −d2 with a metafilm placed at y = 0. The resonator is divided into two regions (labeled
A and B). It will be assumed for simplicity that both regions are filled with the same homogeneous medium.
An x-polarized electric field, independent of x and z, is assumed. The electric field in region A is then given
by

ĒA = āx
[

E1 e−jβy + E2 ejβy
]

(1.105)

and in region B by
ĒB = āx

[

E3 e−jβy + E4 ejβy
]

(1.106)

where β = ω
√
µǫ = 2π/λ is the wavenumber in the resonator medium, āx is a unit vector, and E1, E2, E3,

and E4 are constants to be determined from the boundary conditions. Applying the boundary condition
that the total electric field on the two perfect conductors at y = d1 and y = −d2 must be zero, we obtain
relationships between E1 and E2 from the y = d1 plane boundary condition and between E4 and E3 from
the y = −d2 plane boundary condition. The GTSCs for the metafilm are then applied at y = 0 in order
to obtain the phase-matching condition for the resonator [37]. The phase-matching conditions required at
resonance for the separation distance d1 = d2 = d between two metal plates with a metasurface placed in
the center is given by [37]:

d = λ
2

[

1 + nπ − 2
π
tan−1

(

π
λ
χES

)]

d = λ
2

[

2nπ − 2
π
tan−1

(

π
λ
χMS

)]

for n = 0, 1, 2, 3, .... (1.107)

where n = 0 is not allowed if χMS ≥ 0 [37]. From these expressions it is seen that by judiciously choosing the
metasurface, it is possible to have a resonator that overcomes the λ/2 size limit. Various cases for different
conditions on the surface parameters are given in [37].

As an example, consider a metafilm composed of thin square perfectly conducting patches placed between
two metal plates. The square match metafilm is shown in Fig. 1.25(a). Fig. 1.25(b) shows the resonant
frequency (fr) versus l/p (where p is the period and l is the length of the side of one of the squares) for
three different plate separations. For reference, the classical result d = λ/2 occurs when l/p = 0. To verify
these theoretical results, this resonator was analyzed with the commercial finite-element (FEM) software
code HFSS from Ansoft Corporation (mentioning this product does not imply an endorsement, but serves
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Figure 1.25 Resonant frequency of air-filled parallel-plate resonator loaded with square-patch capacitive metafilm:
(a) array of square conducting patches and (b) resonant frequency.

Table 1.3 Resonant frequency reduction as a function of l/p for a parallel-plate resonator with a metafilm consisting
of square metal patches with p = 500 µm.

Reduction in fr

l/p d1 + d2 = 0.5 mm d1 + d2 = 1.0 mm d1 + d2 = 2.0 mm

0 0 % 0 % 0 %

0.4 7.3 % 3.8 % 1.9 %

0.6 20.9 % 11.9 % 6.4 %

0.8 38.4 % 25.2 % 14.9 %

0.96 56.1 % 42.6 % 29.0 %

to clarify the numerical program used). It is seen that the capacitive metasurface can significantly reduce
the resonant frequency for a given resonator size d, or equivalently reduce the size of the resonator needed
to obtain a desired resonant frequency. The reduction in resonant frequency of the resonator for the simple
square-patch metafilm resonator is shown in Table 1.3 for p = 500 µm. In this table, the percent reduction
(which is also a measure of size reduction possible for a given resonant frequency) is listed for different values
of l/p. The results in this table show that a square-patch metafilm placed at the center of a resonator can
reduce the size by as much as 56 %. If metasurfaces are designed with scatterers having more elaborate
polarizability characteristics (e.g., judiciously chosen resonant behavior) it should in principle be possible to
achieve even greater reduction in size. In fact, by controlling the properties of the metasurface, a frequency-
agile resonator could be realized.

Losses in the materials making up the metafilm will have a limiting effect on the performance of these
resonators. Losses show up in the GSTC formulation as complex values of the effective surface susceptibilities.
To investigate losses, we consider a nonmagnetic dielectric cylinder with radius a, height l (oriented along
the y-axis) and permittivity ǫr relative to the surrounding medium, see Fig 1.26. If l ≪ a, this is a thin
dielectric disk. Analytical formulas for the surface parameters for an array of dielectric cylinder, which can
be applied to the lossy case simply by making the cylinder’s permittivity complex, are given in [37]. The
resonant frequencies obtained by solution of the GSTC-based equation were compared with FEM results.
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Figure 1.26 A surface array of cylindrical dielectric pucks with relative permittivity ǫr, radius a and height l.

The results are summarized in Tables 1.4 and 1.5. Agreement between the GSTC model and the FEM results
is good.

For reference, recall that this resonator will have a resonant frequency of fr = 10 GHz with no metafilm
present. Is lowest resonant frequency will be fr = 2.887 GHz when completely filled with the dielectric
medium used for the pucks, with a quality factor Q = 25 given the loss tangent of 0.04. We observe that
there is a trade-off between the reduction in resonant frequency (or resonator size) that we can achieve, and
the value of Q. This is quite natural from a physical point of view, since as the polarizability of the metafilm
scatterers increases, the proportion of field energy located in the lossy region increases.

Table 1.4 Resonant frequency and Q as functions of l/2a for a parallel-plate resonator with a metafilm consisting of
cylindrical dielectric pucks with ǫr = 12, tan δ = 0.04, d1 = d2 = 7.5 mm, p = 10 mm and a = 4.6 mm.

GSTC FEM

l/2a fr, GHz Q fr, GHz Q

0.05 8.756 147 8.626 116

0.1 8.116 120 7.919 93

0.2 7.297 106 7.058 81

0.3 6.718 100 6.533 78

Table 1.5 Resonant frequency and Q as functions of l/2a for a parallel-plate resonator with a metafilm consisting of
cylindrical dielectric pucks with ǫr = 12, tan δ = 0.04, d1 = d2 = 7.5 mm, p = 10 mm and a = 4.0 mm.

GSTC FEM

l/2a fr, GHz Q fr, GHz Q

0.05 9.160 221 9.077 179

0.1 8.707 178 8.593 144

0.2 8.100 155 7.986 129

0.3 7.652 144 7.580 124
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Figure 1.27 An illustration of a waveguide composed of two metafilms separated by a distance d.

1.7.3 Waveguides

Because metasurfaces can be designed to give total reflection of an incident plane wave, it should be possible
to trap and guide electromagnetic energy in a region between two metasurfaces [40]. This class of metasurface
waveguides is illustrated in Fig. 1.27 (note the change in coordinate system compared to that used in [40]).
This waveguide consists of a region of space 0 < y < d bounded by two identical parallel metafilms. All
regions are assumed to be air, so we may take their material properties to be those of free space.

Assume that we have a a TE mode polarized in the x-direction, propagating in the z-direction, and with
a time dependence ejωt. The field between the metafilms is given by the superposition of two plane waves
incident at the angle θ to the ±y-directions, as shown in Fig. 1.2:

Ex =
(

E1e
−jkyy + E2e

+jkyy
)

e−jβz 0 < y < d , (1.108)

where β = k0 sin θ is the unknown propagation constant, which must be determined, ky =
√

k20 − β2 =
k0 cos θ, and k0 = ω

√
µ0ǫ0 is the wave number of free space. Outside this region, the field is written as

outgoing (or attenuating) waves:

Ex = E3e
−jkyye−jβz y > d , (1.109)

Ex = E4e
+jkyye−jβz y < 0 , (1.110)

Equations (1.56) and (1.57) show that, in order for total reflection to occur, the normalized propagation
constant must obey

ne =
β

k0
=

√

χyy
MSχ

xx
ES + 4

k2

0

−χyy
MSχ

xx
MS

(1.111)

[see also eq. (1.114) below]. This quantity will generally be complex for leaky modes. Once the scatterers
that compose the metafilm are chosen to meet the above criterion, and β is determined, the transverse
wavenumber in the x direction is given by

kx =
√

k20 − β2 = k0
√

1− n2
e (1.112)

and the separation distance d between the two metasurfaces is given by:

d =

(

n+ 1
2

)

π + 2 tan−1
(

kxχ
yy
MS

2

)

kx
for n = 1, 2, 3, .... (1.113)
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It is desirable to find conditions for which the imaginary part of ne is as small as possible, and we need
to ensure that Im(ne) < 0 and 0 < Re(ne) < 1 (the latter because otherwise the mode will basically be
a surface wave localized near the two metasurfaces and will likely suffer increased attenuation as a result).
Similar sets of expressions for the TM modes along with an example are given in [40].

This waveguide can be compact, with low material and radiation losses. If the metafilms were constructed
of a polymer type of material, it would be possible to have a flexible waveguiding structure. It is also possible
to control the surface properties of the scatterers (and in turn the surface parameters), which would result
in controllable or smart, frequency-agile waveguiding structures.

1.7.4 Controllable Reflections and Transmissions

Given a generic metasurface, one could use any of a number of commercial computational codes to analyze the
interaction of an electromagnetic field with that metasurface. However, as we saw in Section 1.5, the GSTCs
allow us to obtain closed-form expressions for the plane-wave reflection and transmission coefficients, the
advantage of which is that one can get some physical insight into the relationship of the surface parameters
to the reflection and transmission behavior. Expressions given in Section 1.5 illustrate that if the surface
parameters (surface susceptibilities and/or porosities) can be changed, it will be possible to control the
reflection and transmission behavior of the surface.

1.7.4.1 Metafilm From equations (1.56)-(1.65) one can write down the relationship between the electrical
and magnetic surface susceptibilities needed to have either total reflection or total transmission for a metafilm.
For total reflection, the following conditions must be satisfied:

k20 χ
xx
MS

(

χzz
ES + χyy

MS sin2 θ
)

= −4 for TE ,

k20 χ
xx
ES

(

χzz
MS + χyy

ES sin2 θ
)

= −4 for TM ,
(1.114)

while for total transmission, the required conditions are

χzz
ES + χyy

MS sin2 θ − χxx
MS cos2 θ = 0 for TE ,

−χzz
MS − χyy

ES sin2 θ + χxx
ES cos2 θ = 0 for TM ,

(1.115)

1.7.4.2 Metascreen Using eqs. (1.48)-(??), for a metascreen the following conditions must by satisfied for
total reflection

χxx
MS = 4πxx

MS for TE ,

χzz
MS + χyy

ES sin2 θ = 4
[

πzz
MS − πyy

ES sin2 θ
]

for TM ,
(1.116)

while for total transmission, the required conditions are

k20 χxx
MSπ

xx
MS cos2 θ = −1 for TE ,

(

χzz
MS + χyy

ES sin2 θ
) (

πzz
MS − πyy

ES sin2 θ
)

= − cos2 θ
k2

0

for TM ,
(1.117)

1.7.4.3 Metagrating Using eqs. (1.75)-(1.83), for a metagrating the following conditions must by satisfied
for total reflection

χxx
MS = πxx

MS for TE ,

k2oχ
zz
MSχ

xx
ES − 2k20χ

xx
ESχ

yy
ES sin2 θ = −4 for TM ,

(1.118)

while for total transmission, the required conditions are

k20 χxx
MSπ

xx
MS cos2 θ = −1 for TE ,

χzz
SM − 2χyy

SE sin2 θ − χxx
SE cos2 θ = 0 TM ,

(1.119)
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Figure 1.28 Controlling the transmission properties of a surface with an external dc magnetic field., see [41].

In principle, control of the reflection and transmission behavior can be done in a number of ways, e.g.,
(1) by changing the electrical or magnetic surface parameters or (2) by changing the properties (either the
material properties or the geometry) of the substrate on which the metasurfaces lie. For example, a metafilm
made up of spherical magnetic particles can be controlled. Such a controllable surface has been realized by
using a metafilm of spherical YIG particles and controlling the surface parameters (the magnetic surface
susceptibilities) with a DC magnetic bias field [41]. Fig. 1.28 shows the transmission behavior of such a
metafilm as a function of the external DC magnetic field.

Other approaches have been used to control the surface behavior of a metasurface, and a significant
amount of research is ongoing in the area of dynamically controllable metasurfaces, as we discuss in Sections
VII and IX of [27]. For example, the highly resonant nature of metasurfaces provides a means for tuning
the frequency response of these structures. Many metasurfaces are constructed from metallic inclusions that
have plasma resonances governed largely by the choice of their geometry. Aside from the specific geometry,
the resonances of these metallic inclusions may also be controlled by affecting the capacitive and or inductive
properties that dictate the plasma resonances. The electric coupled resonator is a structure that provides
a means for directly perturbing the capacitive response by altering the electrical properties of the material
occupying the electrical gap. One way to accomplish this is to cause different fluids to flow in a channel over
the gap; for details see [44]. Such a structure is shown in Fig. 1.29 and other fluid-tunable structures are
considered in [44].

1.7.4.4 Angularly Independent Behavior and Anisotropic Metastructures The use of metasurfaces with anisotropic
parameters can achieve a number of useful results not possible with isotropic metasurfaces. In particular, if
the surface parameters are varied along the surface, interesting properties might be achieved. For example,
it is possible to design a metasurface so as to focus an EM plane wave to a desired region in space, much
like a focusing antenna array. If the surface parameters of the metasurface were designed in a manner such
that they could be changed at will, one could as a result have a metasurface capable of changing the di-
rection and frequency where the energy is focused, i.e., a frequency- and space-agile surface. One can also
design a metasurface that converts one type of polarization to another. These concepts are currently under
investigation.

Another example deals with how to obtain (at least in some parameter range) angularly independent
behavior of the reflection and transmission [45]. Consider a metafilm. For a given incidence angle, eqs.
(1.114) gives the relationships between the electric and magnetic surface susceptibilities required to obtain
total reflection. This suggests a mechanism by which one could achieve approximate angular independence of
such total reflection. For instance, in the TE case when χzz

ES ≫ χyy
MS , the angular dependence becomes less

significant, because the first term in the parentheses of the first equation in (1.114) dominates over the second
angularly dependent term. Similarly, in the TM case, when χzz

MS ≫ χyy
ES , the angular dependence likewise
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Figure 1.29 A fluid-tunable metafilm composed of a 36 array of metallic resonators fabricated from gold on glass
with PDMS (polydomethykiloxane) fluid-channel sections, see [44].

Figure 1.30 The reflection coefficient for a TE-polarized incident plane wave for an electrical resonator metasurface
structure., see [45].

becomes weak. These conditions could occur, for example, at certain resonance frequencies of the scatterers
that constitute the metafilm. When the indicated terms are dominant, the total reflection conditions become:

χxx
MSχ

yy
ES = − 4

k2

0

for TE

χxx
ESχ

yy
MS = − 4

k2

0

for TM
. (1.120)

Similar expressions can be derived for other types of metastructures. Thus, if a metasurface is designed
such that the transverse components of the surface susceptibilities are highly resonant, as compared to the
normal components, then the metasurface may exhibit angle-independent behavior. Fig. 1.30 shows one
example of this, where we have plotted the reflection coefficient of a metasurface composed of the metallic
structure shown in Fig. 1(b) in [45]. In this figure we see that at about 14 GHz the surface exhibits a nearly
angle-independent behavior up to incidence angles as large as 60◦.

One can extend this concept to many other types of structures. For example, it can be shown that highly
anisotropic slabs of materials can exhibit angle-independent behavior as well. This can be seen by examining
the reflection properties of an inhomogeneous anisotropic slab, as discussed in [45, eqns. (31)-(38)].
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Additionally, the mathematically constructed perfectly matched layer (PML) [83] that has been intro-
duced into computational electromagnetics for reducing non-physical reflections at radiation boundaries also
requires such angle independence. Such PMLs may be physically realizable by use of the concept of meta-
surfaces. The idea of designing a metasurface structure to use as PML in computational codes is under
investigation.

This mechanism offers a unique way to match lossy materials for the purpose of developing compact
electromagnetic absorbers and make possible unique designs of impedance-matching surfaces. Compact
absorbers based on such ideas have recently begun to appear in the literature [46]-[51]. These structures
typically are designed with a metasurface on the front side of a lossy substrate backed by a metal plate. These
structures may be narrowband, but are quite compact in size. An additional benefit of using the metasurface
is the fact that these structures show substantial angle independence (as discussed above). These structures
have been demonstrated both numerically and experimentally [46], [48], [50].

Various groups have also investigated the use of metasurfaces to develop impedance-matching surfaces, a
wide-angle impedance-matching surface having been fabricated [52]. This structure has highly anisotropic
properties, which as we saw above can enable angularly independent behavior. There is a great deal of
attention of using meatsurfaces for tailoring wave fronts and for polarization conversion [74]-[81]. Other
applications of metasurfaces include biomedical, microwave-assisted chemistry, and terahertz devices to name
a few (see [27] for a list of references). In fact, new applications for metasurfaces are emerging almost daily
as researchers understand their potential in all fields of physics and engineering.

1.8 Impedance-Type Boundary Conditions

Some researchers prefer to express the GSTCs in the form of impedance-type boundary conditions [111],
[145]-[148]. For plane wave fields, whose variation parallel to a metafilm is of the form:

e−jk·rt , (1.121)

where
k = kxax + kyay and rt = xax + yay, (1.122)

we can use Maxwell’s equations to write the GSTCs for the metafilm given in eqs. (1.1) and (1.2) as

ay ×
[

EA −EB
]

y=0
= −Z↔MS ·Ht,av , (1.123)

ay ×
[

HA −HB
]

y=0
= Y↔ES ·Et,av . (1.124)

(1.125)

Here, the spatially dispersive (k-dependent) surface transfer admittance and transfer impedance dyadics are
given by

Y↔ES = jωχ↔ES +
jχ↔MS

ωµ
(az × k)(az × k) , (1.126)

Z↔MS = jωχ↔MS +
jχ↔ES

ωǫ
(az × k)(az × k) . (1.127)

Boundary conditions of this form can also be interpreted as lumped elements in equivalent transmission-line
circuits [146]. The GSTCs for metascreens and the metagratings can also be cast in impedance boundary
condition forms if desired.

1.9 Isolated Scatterers and One-Dimensional Arrays

Can metastructures also be realized with one-dimensional structures or single isolated scatterers? The
two-dimensional metamaterial (i.e., metasurface) concept can be extended even further to the concept of
using only a linear array rather than a surface array. Furthermore, one can use only a single sub-wavelength
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resonant structure for some desired effect or behavior. In fact, we have already begun to see a few applications
of this concept. One in particular is the use of a unit-cell in the design of electrically small antennas. In
antenna applications, the unit cell acts like a parasitic element to the radiating element of the antenna and
serves as a means to match the electrically small radiating element to both (1) the feeding transmission line
and (2) free space. Such designs have been shown to enable efficient electrically-small antennas [112]-[119].
Nanoparticles have also been used for tuning “so-called” optical nanoantennas [120]. An additional example
is the use of a one-dimensional unit cell as a tuning structure for planar transmission lines [121]. Another
emerging area of application is the use of one-dimensional chains of nanoparticles as waveguides supporting
surface waves, of which examples can be found in [122]-[128].

1.10 Summary

The recent development of various engineered materials (3-D metamaterials, 2-D metasurfaces, single arrays
and single particles) is bringing us closer to realizing the exciting predictions made over one hundred years
ago by the work of Lamb (1904), Schuster (1904), and Pocklington (1905) [129]-[131]. Although early
investigators in the fledgling area of metamaterials attributed the first study of such media to Veselago [132]
in 1967, the aforementioned authors anticipated some of his work by many decades, and L. I. Mandel’shtam
(1945) [133, 134], Malyuzhinets (1951) [135] and Sivukhin (1957) [136] had all previously discussed the
properties of wave propagation in backward-wave media. Some other historical (or “pre-historical”) surveys
have been given in [137]-[140].

In this chapter, we have discussed two-dimensional metamaterials, referred to as metasurfaces. We have
defined three major types of metasurfaces: metafilms, metascreens, and metagratings, each having a distinct
surface topology. We introduced the GSTCs required to accurately model these three different types of
metasurface. From these GSTCs, we derived the reflection and transmission coefficients for each metasurface.
These coefficients are expressed in terms of the surface parameters that characterize the metasurface. The
coefficients are then used to develop a retrieval approach for determining the uniquely defined effective
surface parameters that characterize the each of the metasurfaces from measured or simulated data. We
concluded the chapter with a presentation of various other applications of the GSTCs.

The application of metasurfaces at frequencies from microwave to optical and beyond has attracted great
interest in recent years [27], [28], [35]-[84]. Metasurfaces allow for controllable smart surfaces, miniaturized
cavity resonators, novel waveguiding structures, compact and wide-angle absorbers, impedance matching
surfaces, biomedical devices, tailoring wave fronts, polarization conversion, antennas, and high-speed switch-
ing devices, to name only a few. While there is still much work to be done in the understanding, analysis,
design, and fabrication of these engineered materials, the potential of these materials has forever changed
the landscape of RF, microwaves, optics and photonics for the future. It seems that nearly every day, new
applications of these metasurfaces emerge as researchers begin to tap into their potential and understand
how to design and utilize them.
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