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1.  ABSTRACT
The cost of accessing main memory is increas-
ing. Machine designers have tried to mitigate 
the consequences of the processor and memory 
technology trends underlying this increasing 
gap with a variety of techniques to reduce or 
tolerate memory latency. These techniques, 
unfortunately, are only occasionally successful 
for pointer-manipulating programs. Recent 
research has demonstrated the value of a com-
plementary approach, in which pointer-based 
data structures are reorganized to improve 
cache locality.
This paper studies a technique for using a gen-
erational garbage collector to reorganize data 
structures to produce a cache-conscious data 
layout, in which objects with high temporal 
affinity are placed next to each other, so that 
they are likely to reside in the same cache block. 
The paper explains how to collect, with low 
overhead, real-time profiling information about 
data access patterns in object-oriented lan-
guages, and describes a new copying algorithm 
that utilizes this information to produce a 
cache-conscious object layout.
Preliminary results show that this technique 
reduces cache miss rates by 21–42%, and 
improves program performance by 14–37% 
over Cheney’s algorithm. We also compare our 
layouts against those produced by the Wilson-
Lam-Moher algorithm, which attempts to 
improve program locality at the page level. Our 
cache-conscious object layouts reduces cache 

miss rates by 20–41% and improves program 
performance by 18–31% over their algorithm, 
indicating that improving locality at the page 
level is not necessarily beneficial at the cache 
level.

1.1  Keywords
Garbage collection, cache-conscious data placement, object-
oriented programs, profiling

2.  INTRODUCTION
Since 1980, microprocessor performance has improved 60%
per year, while over the same period, memory access time
decreased only 10% per year [20]. This discrepancy has
produced a large processor-memory imbalance. Memory
caches are the ubiquitous hardware solution to this problem
[29, 23]. In the beginning, a single level of cache sufficed,
but the increasing imbalance (now almost two orders of
magnitude) demands a memory hierarchy, which produces a
large range of memory-access costs. As a result, many
programs’ performance is dominated by memory referenc

A variety of hardware and software techniques—such 
prefetching [19, 2], multithreading [16, 24], non-blockin
caches [14], dynamic instruction scheduling, and specula
execution—have been developed and implemented to red
or tolerate memory latency. These techniques requ
complex hardware and compilers, but have prov
ineffective for many programs [21].

The fundamental problem with these techniques is that t
attack the manifestation (memory latency), not the sou
(poor reference locality), of the bottleneck. Prior resear
has focused on improving cache locality in scientif
programs that manipulate dense matrices through prog
(loop) transformations [31, 3, 12]. Recently, Calder et al.
described a profile-driven, compiler-directed approach 
cache-conscious data placement [1]. Other work h
demonstrated that programs which manipulate pointer-ba
structures can benefit greatly from cache-conscious struc
layouts [9, 22].

This paper describes how a copying garbage collector 
produce a cache-conscious object layout using real-time d
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profiling information. The copying phase of garbage
collection offers a invaluable opportunity to reorganize a
program’s data layout to improve cache performance. A
cache-conscious data layout places objects with high
temporal affinity near each other, so that they are likely to
reside in the same cache block. This paper is a preliminary
investigation into a new area with many possible design
choices. The paper does not claim to explore the choices,
rather it demonstrates that a reasonable set of parameters
leads to significant performance improvements.

In our approach, a program is instrumented to profile its
data access patterns. The profiling data gathered during an
execution is quickly used to optimize that execution, rather
than a subsequent one. Our technique relies on a property of
object-oriented programs—most objects are small (< 32
bytes)—to perform low overhead (< 6%) real-time data
profiling. The garbage collector uses the profile to construct
an object affinity graph, in which weighted edges encode
the temporal affinity between objects (nodes). A new
copying algorithm uses the affinity graph to produce cache-
conscious data layouts while copying objects during
garbage collection. Experimental results for five Cecil
programs [4, 5] show that our cache-conscious data
placement technique reduces cache miss rates by 21–42%
and improves program performance by 14–37%.

Other researchers have attempted to improve a program’s
virtual memory (page) locality by changing the traversal
algorithm used by a copying garbage collector [18, 30, 15,
10]. We compare our cache-conscious copying scheme
against one such algorithm (the Wilson-Lam-Moher

algorithm [30]). The results show that our cache-conscio
object layout reduces cache miss rates by 20–41% 
improves program performance by 18–31% over th
technique, indicating that page-level improvements are 
necessarily effective at the cache level. 

The rest of the paper is organized as follows. Section
provides brief background information on generation
garbage collection as well as an overview of the mo
common traversal algorithm for copying objects. Section
describes the design and implementation of our lo
overhead real-time data profiling system for object-orient
programs. Section 5 describes how this profilin
information is used to construct object affinity graph
Section 6 describes our copying algorithm. Section 
presents experimental results that illustrate the benefits
our technique. Finally, Section 8 briefly discusses relat
work.

3.  BACKGROUND: GENERATIONAL GAR-
BAGE COLLECTION
Our system uses the University of Massachusetts langua
independent garbage collector toolkit [13]. The toolk
implements a flexible generation scavenger [17, 26] w
support for a time-varying number of generations of tim
varying size. Figure 1 illustrates the heap organization fro
the garbage collector’s viewpoint. The garbage collect
heap is divided into a number of generations. The young
(first) generation holds the most recently allocated objec
Objects that survive repeated scavenges are promote
older (higher) generations. Garbage collection activ
focuses on young objects, which typically die faster than o
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Generation 2

Step 1

Step 1

Step 2

Step 2

Figure 1.  Garbage collected heap layout.

In
cr

ea
si

ng
 a

ge



ed.
 is

s
cts

ue.
 the
of
 is

 the
 in

ses
rst
 the
is
 by

em
objects. Each generation is divided into one or more steps,
which encode objects’ age. The first step of a generation is
the youngest. Objects that survive scavenges are moved to
the next step. Objects in the oldest step of a generation are
promoted to the youngest step of the next generation. Each
step consists of a collection of fixed size blocks, which are
not necessarily contiguous in memory. To simplify our
implementation, our generations contained a single step.

Ungar and Jackson [27] demonstrated performance
advantages from not copying large objects. The UMass
garbage collector toolkit also provides a separate large
object space (LOS) as part of the collected area. Each step
has an associated set of large objects (≥ 256 bytes) that are
of the same age as the small objects in the step. A step’s
large objects, though logically members of the step, are
never physically moved. Instead, they are threaded onto a
doubly linked list and moved from one list to another. When
a large object survives a collection, it is unlinked from its
current step’s list and added to the TO space list of the step
to which it is promoted. The toolkit does not compact large
object space.

The scavenger always collects a generation g and all
generations younger than g. Collecting a generation
involves copying all objects in the generation that are
reachable from the roots (objects in the generation pointed
to by objects in older generations) into free blocks. The

blocks that previously held the generation can be reus
The new space to which generation objects are copied
called TO space and the old space is called FROM space
[11].

A common traversal algorithm for copying objects into TO
space is Cheney’s algorithm [8] (the toolkit uses thi
algorithm, see Figure 2). Starting with the root set, obje
are traversed in breadth-first order and copied to TO space
as they are visited. Breadth-first traversal requires a que
Objects to be processed are extracted from the head of
queue, while their children (if any) are added to the tail 
the queue. The algorithm terminates when the queue
empty.

Cheney’s algorithm does not use extra space to maintain
queue. Rather, it uses an elegant technique illustrated
Figure 3 which utilizes two pointers (unprocessed and free).
Since the algorithm copies objects as they are visited, it u
these TO space copies as queue elements for breadth-fi
traversal. The head and tail of the queue are marked by
unprocessed and free pointer, respectively. Once an object 
processed, it is removed from the head of the queue
incrementing the unprocessed pointer, and any children it
may have are added to the tail of the queue by copying th
to TO space and incrementing the free pointer. 

scavenge()
{

Flip roles of Fromspace, Tospace;
unprocessed = free = Tospace;
for R in root set

R = Tospace_copy(R);
while unprocessed < free
{

for P in children(unprocessed)
*P = Tospace_copy(*P);

unprocessed +=
sizeof(*unprocessed);

}
}

Tospace_copy(P)
{

if forwarded(P)
return forwarding_addr(P);

else
{

addr = free;
copy(P, free);
free += sizeof(P);
forwarding_addr(P) = addr;
return addr;

}
}

Figure 2.  Cheney’s copying algorithm.

unprocessed
ptr.

free
ptr.

Processed objects

Unprocessed objects

Free space

TO space

Figure 3.  TO space during scavenging.



4.  LOW OVERHEAD REAL-TIME DATA 
PROFILING
In the absence of programmer annotations or compiler
analysis, cache-conscious data placement requires
measurements of data access patterns to be effective. A
profile of an earlier training run is commonly used to guide
program optimizations. However, data access patterns
require real-time profiling because of the difficulty of
providing names for objects that are consistent and usable
between runs of a program. Real-time profiling also spares a
programmer an extra profile-execute cycle, as well as the
difficulty of finding representative training inputs.
However, the overhead of real-time profiling must be low,
so the performance improvements are not outweighed by
profiling costs. The rest of this section describes the design
and implementation of a low-overhead, real-time data
access profiler.

In the most general case, profile-guided data placement
requires tracing every load and store to heap data. The
overhead of such tracing (factor of 10 or more [1])
precludes its use in real-time profiling. However, two
properties of object-oriented programs permit low overhead
data profiling.:

• most objects are small, often less than 32 bytes, and

• most object accesses are not lightweight.

Section 7 provides experimental results to support these
assumptions.

If most objects are small (< 32 bytes), then it is not
necessary for data profiling to distinguish different fields
within the same object, since cache blocks are currently
larger (e.g., 64 bytes in the UltraSparc [25]) and growing.
Profiling can be implemented at object, not field,
granularity. Moreover, if most object accesses are not
lightweight (i.e., multiple fields are accessed together or an
access involves a method invocation), then profiling
instrumentation (several instructions per object access) will
not incur a large overhead.

Our real-time data profiling system instruments loads of
base object addresses, using information provided by a
slightly modified compiler, which retains object type
information until code generation to permit selective load
instrumentation. The instrumentation enters the base object

Guard

Page

Object Access

Buffer

Program

load 0x21d80

Insert
0x21d80

Figure 4.  Object access buffer.

objaccbuf

Figure 5.  Profiling instrumentation for base object 
address loads.

ld baseobjptr, %reg
st %reg, [%objaccbuf]
add %objaccbuf, 4, %objaccbuf

Figure 6.  Constructing object affinity graphs.

construct_obj_affinity_graphs()
{

limit = objaccbuf
objaccbuf = OBJ_ACC_BUF_BASE;
while(objaccbuf < limit)
{

insert_locality_queue(objaccbuf);
if(!exists_obj_affinity_node(objaccbuf))

create_obj_affinity_node(objaccbuf);
increment_obj_affinity_edge_wts(objaccbuf);
objaccbuf += 4;

}
}
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address in an object access buffer, which is a sequential
structure, similar to the sequential store buffer used in the
garbage collection toolkit (Figure 4). This object access
buffer records the temporal ordering of a program’s object
accesses. Figure 5 shows the instrumentation emitted for a
base object address load (assuming the object access buffer
pointer is stored in a dedicated register).

The object access buffer is normally processed just before a
scavenge to construct object affinity graphs (Section 5).
However, it may overflow between scavenges. Rather than
include an explicit overflow check in the instrumentation,
the virtual memory system causes a page trap on buffer
overflow. The trap handler processes the buffer to construct
object affinity graphs and restarts the application. Our
experience indicates that setting the buffer size to 15,000
entries (60 KB) prevents overflow.

5.  CONSTRUCTING OBJECT AFFINITY 
GRAPHS
As described in Section 3, generational garbage collection
copies live objects to TO space. Our goal is to use data
profiling information to produce a cache-conscious layout
of objects in TO space that places objects with high
temporal affinity next to each other, so that they are likely to
be in the same cache block. The data profiling information

captures the temporal ordering of base object addres
which our system uses to construct object affinity grap
An object affinity graph is a weighted undirected graph 
which nodes represent objects and edges encode temp
affinity between objects.

Since generational garbage collection processes object
the same generation together, we construct a sepa
affinity graph for each generation (except the first, s
Section 6.2). This is possible because an object’s genera
is encoded in its address. Although this scheme preclu
placing objects in two different generations in the sam
cache block, we choose this approach for two reasons. F
the importance of inter-generation object co-location 
unclear. Second, the only way to achieve inter-generat
co-location is to demote the older object or promote t
younger object. Both alternatives have disadvantages. S
generational garbage collection copies all objects of
generation together, intra-generation pointers are 
explicitly tracked. The only safe way to demote an object
to subsequently collect the generation it originally belong
to, in order to update any pointers to the demoted obje
which can produce unacceptably long garbage collect
times. The other option is to promote the younger obje
Such promotion is safe since the younger objec
generation is being collected (this will update any intr

insert_locality_queue(objaccbuf)
{

if (in_locality_queue(objaccbuf))
{

move_to_queue_tail(objaccbuf);
}
else
{

if (is_queue_full())
delete_queue_hd();

insert_queue_tail(objaccbuf);
}

}

Figure 7.  Locality queue insertion.

increment_obj_affinity_edge_wts(objaccbuf)
{

queue_elem = NULL;
init_locality_queue();
do 
{

queue_elem = next_queue_elem();
if(exists_obj_affinity_edge(queue_elem, queue_tail())

increment_affinity_edge_wt(queue_elem, queue_tail());
else

add_affinity_edge(queue_elem, queue_tail());
}while (queue_elem != queue_tail())

}

Figure 8.  Incrementing affinity graph edge weights.
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Figure 9.  Combining cache-conscious data placement with garbage collection.
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generation pointers to the object) Moreover, generational
collectors track pointers from older objects to younger
objects, so they could be updated (at a possibly high
processing cost). However the locality benefit of this
promotion will not start until the older generation is
collected (since it cannot be co-located with the older object
until that time), which may be much later. In addition, there
is the danger of premature promotion if the younger object
does not survive long enough to merit promotion.

Figure 6, Figure 7, and Figure 8 contain the algorithm used
to construct object affinity graphs (one per generation) from
profile information. The queue size used in the algorithm is
an important parameter. Too small of a queue runs the risk
of missing important temporal relationships, but a large
queue can result in huge object affinity graphs and long
processing times. We used a queue size of 3 for our
experiments, since informal experiments indicated that it
gave the best results. Prior to each scavenge, the object
affinity graphs can either be re-created anew from the
contents of the object access buffer, or the profiling
information can be used to update existing graphs. The
suitability of these approaches depends on application
characteristics. Applications with phases that access objects
in distinct manners could benefit more from re-creation
(provided phase durations are longer than the interval
between scavenges), whereas applications with uniform
behavior might be better suited to the incremental approach.
Our initial implementation re-creates the object affinity
graph prior to initiating a scavenge. This permits demand-
driven graph construction that builds graphs only for the
generations that are going to be collected during the
subsequent scavenge.

6.  COMBINING CACHE-CONSCIOUS 
DATA PLACEMENT WITH GARBAGE 
COLLECTION
Cheney’s algorithm copies objects to TO space in breadth-
first order. Moon describes a modification to this algorithm
that results in approximate depth-first copying [18]. Wilson
et al. further refine the traversal to obtain hierarchical
grouping of objects in TO space [30]. The copying
algorithm (Figure 9) described in this section uses the object
affinity graph to produce a cache-conscious layout of
objects in TO space.

6.1  Cache-Conscious Copying Algorithm
Our cache-conscious copying algorithm can be divided into
three steps.

STEP 1: Flip the roles of FROM space and TO space.
Initialize the unprocessed and free pointers to the beginning
of TO space. From the set of roots present in the affinity
graph, pick the one with the highest affinity edge weight.
Perform a greedy depth-first traversal of the entire object
affinity graph starting from this node (i.e., visit the next
unvisited node connected by the edge with greatest affinity
weight). The stack depth for the depth-first traversal is
limited to the number of nodes in the object affinity graph,

and hence the object access buffer can be used as a sc
area for this purpose. In parallel with this greedy depth-fi
traversal, copy each object visited to TO space (increment
the free pointer). Store this new object address as 
forwarding address in the FROM space copy of the object.
After this step all affinity graph nodes will be laid out in TO
space in a manner reflecting object affinities (Figure 9), b
will still contain pointers to objects in FROM space.

STEP 2: All objects between the unprocessed and free
pointers are processed using Cheney’s algorithm (except
copy roots portion).

STEP 3: This is a cleanup step where the root set 
examined to ensure that all roots are in TO space (this is
required as all roots may not be present in the object affin
graph or reachable from these objects). Any roots n
present are copied to TO space and processed using
Cheney’s algorithm (Figure 9).

6.2  Discussion
The first step of our algorithm copies objects by traversi
the object affinity graph, which may retain objects n
reachable from the roots of the generation (i.e., garbag
However since the system recreates the object affinity gr
from new profile information prior to each scavenge, su
garbage will be incorrectly promoted at most once. 
addition, we focus our cache-conscious data placem
efforts on longer-lived objects and do not use our copyi
algorithm in the youngest generation (where new objects 
allocated and most of the garbage is generated).

7.  EXPERIMENTAL EVALUATION
This section presents experiments performed to support
assumption that object-oriented programs manipulate sm
objects (< 32 bytes), to demonstrate that our real-time d
profiling technique incurs low overhead, and finally, t
measure the impact of our cache-conscious object layo
on program performance.

7.1  Experimental Methodology
Our system uses the Vortex compiler infrastructu
developed at the University of Washington [7]. Vortex is
language-independent optimizing compiler for objec
oriented languages, with front ends for Cecil, C++, Ja
and Modula-3. Unfortunately, generational garba
collection currently only works with Cecil, though effort
are underway to extend this functionality to Java [6].

Cecil [4, 5] is a dynamically-typed, purely object-oriente
language. It combines multi-methods with a simple classl
object model, a kind of dynamic inheritance, and modul
Instance variables in Cecil are accessed solely throu
messages, and can be replaced or overridden by meth
The Cecil benchmark programs used in the experiments
described in Table 1. The programs were compiled at 
highest optimization level (o2), which applies techniqu
such as class analysis, splitting, class hierarchy analy
class prediction, closure delaying, and inlining, in additio
to traditional optimizations [7]. (We were unable to compi
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Program
Lines of 

Codea Description

richards 400 Operating system simulation

deltablue 650 Incremental constraint solver

instr sched 2,400 Global instruction scheduler

typechecker 20,000b Typechecker for old Cecil type system

new-tc 23,500b Typechecker for new Cecil type system

Table 1: Cecil benchmark programs.

a. Plus, an 11,000 line standard library.
b. The two Cecil typecheckers share approximately 15,000 lines of common support 

code, but the type checking algorithms are completely separate and were written by 
different people.

Program
 # of heap 
allocated 

small objects

Bytes 
allocated 

(small 
objects)

Avg. 
small 
object 

size 
(bytes)

# of heap 
allocated 

large 
objects

Bytes 
allocated 

(large 
objects)

% small 
objects

richards 567,896 4,551,792 8.0 2 2,064 100.0
deltablue 4,575,532 40,173,296 8.8 2 2,064 100.0

instr sched 783,929 7,276,792 9.3 31 50,912 100.0
typechecker 14,095,598 118,520,372 8.4 1,821 1,676,104 100.0

new-tc 13,023,528 112,296,720 8.6 1,268 1,155,276 100.0
Table 2: Most heap allocated objects are small (< 32 bytes).

Program
Avg. # of 
live small 

objects

Bytes 
occupied (live 
small objects)

Avg. live 
small 

object size 
(bytes)

Large 
objects

% live 
small 

objects

richards 645 9,926 15.4 2 99.7
deltablue 16,567 305,637 18.5 2 100.0

instr sched 6,456 157,736 24.4 31 99.5
typechecker 51,627 1,114,865 21.6 1,821 96.5

new-tc 58,858 1,392,212 23.7 1,268 97.9
Table 3: Most live objects are small (< 32 bytes).



Program
Original 
execution 
time (secs)

Instrumented 
program 

execution time 
(secs)

% overhead of 
instrumentation

richards 0.202 0.213 5.45
deltablue 3.369 3.544 5.19

instr sched 3.518 3.683 4.69
typechecker 347.352 358.467 3.20

new-tc 391.250 403.378 3.10
Table 4: Overhead of real-time data profiling.

Program
L2 cache
miss rate

(base)

L2 cache
miss rate
(CCDP)

%
reduction
(L2 miss

rate)

Execution
time (base)

Execution
time

(CCDP)

%
reduction

(execution
time)

richards 0.0131 0.0103 21.4 0.202 0.173 14.4
deltablue 0.0356 0.0240 32.6 3.369 2.578 23.5

instr sched 0.0543 0.0392 27.8 3.518 2.756 21.7
typechecker 0.0947 0.0591 37.6 347.352 238.179 31.4

new-tc 0.0979 0.0571 41.7 391.250 247.622 36.7
Table 5: Impact of our cache-conscious object layout.

Program
L2 cache 
miss rate 
(WLM)

L2 cache 
miss rate 
(CCDP)

% 
reduction 
(L2 miss 

rate)

Execution 
time 

(WLM)

Execution 
time 

(CCDP)

% 
reduction 
(execution 

time)

richards 0.0129 0.0103 20.2 0.211 0.173 18.0
deltablue 0.0341 0.0240 29.6 3.437 2.578 25.0

instr sched 0.0532 0.0392 26.3 3.621 2.756 23.9
typechecker 0.0925 0.0591 36.1 321.433 238.179 25.9

new-tc 0.0963 0.0571 40.7 358.512 247.622 30.9
Table 6: Comparison with the Wilson-Lam-Moher algorithm.
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the typechecking programs at this optimization level due to
a compiler assertion failure and used level o0 instead.)

The experiments were run on a single processor of a Sun
Ultraserver E5000, which contained 12 167Mhz
UltraSPARC processors and 2GB of memory running
Solaris 2.5.1. The large amount of system memory ensures
that locality benefits are due to improved cache
performance and not paging activity.This system has two
levels of data cache—a 16 KB direct-mapped level 1 cache
with 16 byte cache blocks, and a unified (instruction and
data) 1 MB direct-mapped level 2 cache with 64 byte cache
blocks. The system has a 64 entry iTLB, as well as a 64
entry dTLB, both of which are fully associative. A level 1
data cache hit takes one processor cycle. A level 1 cache
miss, followed by a level 2 cache hit, costs 6 additional
cycles. A level 2 cache miss typically results in an
additional 64 cycle delay. Each experiment was repeated
five times and the average value reported (in all cases the
variation between the smallest and largest values was less
than 2%).

7.2  Experimental Results
Table 2 shows the results of our first set of experiments,
which tested our assumption that most heap allocated
objects are small. However, small objects often die fast.
Since our cache-conscious layout technique is only effective
for longer-lived objects, which survive scavenges, we are
more interested in live object statistics. Table 3 shows the
results of the next experiment, which measured the number
of small objects that were live after each scavenge, averaged
over the entire program execution. Once again, the results
support our hypothesis that most objects are small (< 32
bytes).

The next set of experiments measured the overhead of our
real-time data profiling (Table 4). The results indicate that
the overhead of our real-time data profiling technique is low
(< 6%).

We used the UltraSPARC’s [25] hardware counters to
measure the effect of our cache-conscious object layouts on
cache miss rates. Table 5 contains measurements of the
overall execution time (including the instrumentation and
processing overhead of our technique). Our cache-conscious
layouts reduces cache miss rates by 21–42% (our technique
had practically no impact on L1 cache miss rates, as L1
cache blocks are only 16 bytes), producing corresponding
reductions in execution times ranging from 14–37%, despite
the technique’s instrumentation and processing overhead. In
addition, the data indicates that the L2 cache miss rate is
correlated with total execution time.

Finally, we compared our approach against the Wilson-
Lam-Moher algorithm [30], which uses a hierarchical
decomposition algorithm for copying data between semi-
spaces (instead of Cheney’s breadth-first traversal) to
improve a program’s virtual memory (page) locality. This
experiment (Table 6) investigated whether techniques
designed to improve locality at the memory (page) level are
effective at the cache level, and to ensure that the cache-

miss rate reductions in Table 5 are not exaggerated by
poor locality of the base case (which uses Cheney’s brea
first traversal algorithm). Comparing Table 5 and Table
we see that for three benchmarks (richards, deltablue, and
instr sched), the Wilson-Lam-Moher algorithm performs
worse than Cheney’s algorithm, while slightl
outperforming it for typechecker, and new-tc. These
surprising results are easily explained. Since the system
2GB of memory, no application pages. In addition, th
system has a 64 entry dTLB (which supports a 512K
working set), hence the only applications that might suf
dTLB misses are typechecker, and new-tc (see Table 3),
which is our result. Since the Wilson-Lam-Moher algorith
is ineffective at reducing a program’s cache miss rate, a
has a slightly higher overhead than Cheney’s algorithm
performs worse for richards, deltablue, and instr sched.

8.  RELATED WORK
White [28] first suggested using garbage collection 
improve a program’s locality of reference. Researche
investigated two approaches to using a garbage collecto
improve paging behavior of Smalltalk and LISP system
[18, 30, 15, 10]. Static regrouping [18, 30] uses the topolo
of heap data structures to rearrange structurally-rela
objects, while dynamic regrouping [10] clusters objec
according to a program’s data access pattern. Moon [
found that depth-first copying generally yields better virtu
memory performance than breadth-first copying for LIS
because it is more likely to place parents and offspring 
the same page, particularly if data structures tend to
shallow, but wide. Wilson et al. [30] treated hash table
which group data in a pseudo-random order, specially, a
‘normal’ data structures were copied in depth-first ord
Their results showed a significant reduction in the inciden
of page faults. However, in a later study [15], the autho
found that the optimal grouping of data structure eleme
was very dependent on the shape and type of the struc
being copied. While hierarchical decomposition perform
well for trees, it was disappointing for other structure
Court’s [10] dynamic regrouping technique takes advanta
of specialized hardware to provide incremental garba
collection, which tends to move objects to TO space in
program access order, and this can dramatically reduce
number of page faults. These studies focused on a progra
paging behavior, not its cache behavior. Our work diffe
not only because of the different cost for a cache miss an
page fault, but also because cache blocks are far sm
than memory pages. As our results indicate, techniques 
improve a program’s page locality, are not necessa
effective at the cache level. In addition, we attempt to l
out objects in program access order with real-time d
profiling, rather than hardware support.

Recently, Calder et al. [1] applied placement techniqu
developed for instruction caches to data. They use
compiler-directed approach that creates an addr
placement for the stack (local variables), global variabl
heap objects, and constants in order to reduce data c
misses. Their technique, which requires a training run
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gather profile data, shows little improvement for heap
objects, but significant improvement for stack objects and
globals. By contrast, we use low overhead real-time data
profiling and copying garbage collection to implement on-
the-fly cache-conscious data placement, showing significant
improvements for heap objects.

9.  CONCLUSIONS
Extensive and expensive memory hierarchies require
programmers to be concerned about the cache locality of
their data structures. In general, properly laying out
structures requires a deep understanding of a program’s
structures and operation. This paper describes an extremely
attractive alternative for languages that support garbage
collection. A generational garbage collector can easily be
modified to produce cache-conscious data layouts of small
objects. The paper demonstrates the feasibility of low-
overhead, real-time profiling of data access patterns for
object-oriented languages and describes a new copying
algorithm that uses this information to produce cache-
conscious object layouts. Measurements show that this
technique reduces cache miss rates by 21–42% and
improves program performance by 14–37%, as compared to
the commonly used alternative. Techniques such as these
may help narrow, or even reverse, the performance gap
between high-level programming languages, such as Lisp,
ML, or Java, and low-level languages such as C or C++.
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	richards
	400
	Operating system simulation
	deltablue
	650
	Incremental constraint solver
	instr sched
	2,400
	Global instruction scheduler
	typechecker
	20,000
	Typechecker for old Cecil type system
	new-tc
	23,500b
	Typechecker for new Cecil type system
	Table 1: Cecil benchmark programs.

	richards
	567,896
	4,551,792
	8.0
	2
	2,064
	100.0
	deltablue
	4,575,532
	40,173,296
	8.8
	2
	2,064
	100.0
	instr sched
	783,929
	7,276,792
	9.3
	31
	50,912
	100.0
	typechecker
	14,095,598
	118,520,372
	8.4
	1,821
	1,676,104
	100.0
	new-tc
	13,023,528
	112,296,720
	8.6
	1,268
	1,155,276
	100.0
	Table 2: Most heap allocated objects are small (< 32 bytes).

	richards
	645
	9,926
	15.4
	2
	99.7
	deltablue
	16,567
	305,637
	18.5
	2
	100.0
	instr sched
	6,456
	157,736
	24.4
	31
	99.5
	typechecker
	51,627
	1,114,865
	21.6
	1,821
	96.5
	new-tc
	58,858
	1,392,212
	23.7
	1,268
	97.9
	Table 3: Most live objects are small (< 32 bytes).

	richards
	0.202
	0.213
	5.45
	deltablue
	3.369
	3.544
	5.19
	instr sched
	3.518
	3.683
	4.69
	typechecker
	347.352
	358.467
	3.20
	new-tc
	391.250
	403.378
	3.10
	Table 4: Overhead of real-time data profiling.

	richards
	0.0131
	0.0103
	21.4
	0.202
	0.173
	14.4
	deltablue
	0.0356
	0.0240
	32.6
	3.369
	2.578
	23.5
	instr sched
	0.0543
	0.0392
	27.8
	3.518
	2.756
	21.7
	typechecker
	0.0947
	0.0591
	37.6
	347.352
	238.179
	31.4
	new-tc
	0.0979
	0.0571
	41.7
	391.250
	247.622
	36.7
	Table 5: Impact of our cache-conscious object layout.

	richards
	0.0129
	0.0103
	20.2
	0.211
	0.173
	18.0
	deltablue
	0.0341
	0.0240
	29.6
	3.437
	2.578
	25.0
	instr sched
	0.0532
	0.0392
	26.3
	3.621
	2.756
	23.9
	typechecker
	0.0925
	0.0591
	36.1
	321.433
	238.179
	25.9
	new-tc
	0.0963
	0.0571
	40.7
	358.512
	247.622
	30.9
	Table 6: Comparison with the Wilson-Lam-Moher algorithm.





