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Abstract. In this article, we explore the use of genetic algorithms (GAs) as a key element in the design and

implementation of robust concept learning systems. We describe and evaluate a GA-based system called GABIL

that continually learns and refines concept classification rules from its interaction with the environment. The

use of GAs is motivated by recent studies showing the effects of various forms of bias built into different concept

learning systems, resulting in systems that perform well on certain concept classes (generally, those well matched

to the biases) and poorly on others. By incorporating a GA as the underlying adaptive search mechanism, we

are able to construct a concept learning system that has a simple, unified architecture with several important

features. First, the system is surprisingly robust even with minimal bias. Second, the system can be easily extended

to incorporate traditional forms of bias found in other concept learning systems. Finally, the architecture of the

system encourages explicit representation of such biases and, as a result, provides for an important additional

feature: the ability to dynamically adjust system bias. The viability of this approach is illustrated by comparing

the performance of GABIL with that of four other more traditional concept learners (AQ14, C4.5, ID5R, and

IACL) on a variety of target concepts. We conclude with some observations about the merits of this approach

and about possible extensions.
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1. Introduction

An important requirement for both natural and artificial organisms is the ability to acquire

concept classification rules from interactions with their environment. In this article, we

explore the use of an adaptive search technique, namely, genetic algorithms (GAs), as the

central mechanism for designing such systems. The motivation for this approach comes

from an accumulating body of evidence that suggests that, although concept learners require

fairly strong biases to induce classification rules efficiently, no a priori set of biases is

appropriate for all concept learning tasks. We have been exploring the design and implemen-

tation of more robust concept learning systems that are capable of adaptively shifting their

biases when appropriate. What we find particularly intriguing is the natural way GA-based

concept learners can provide this capability.

As proof of concept we have implemented a system called GABIL with these features

and have compared its performance with four more traditional concept learning systems

(AQ14, C4.5, ID5R, and IACL) on a set of target concepts of varying complexity.
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We present these results in the following manner. We begin by showing how concept

learning tasks can be represented and solved by traditional GAs with minimal implicit bias.

We illustrate this by explaining the GABIL system architecture in some detail.

We then compare the performance of this minimalist GABIL system with AQ14, C4.5,

ID5R, and IACL on a set of target concepts of varying complexity. As expected, no single

system is best for all of the presented concepts. However, a posteriori, one can identify

the biases that were largely responsible for each system's superiority on certain classes

of target concepts.

We then show how GABIL can be easily extended to include these biases, which improves

system performance on various classes of concepts. However, the introduction of additional

biases raises the problem of how and when to apply them to achieve the bias adjustment

necessary for more robust performance.

Finally, we show how a GA-based system can be extended to dynamically adjust its own

bias in a very natural way. We support these claims with empirical studies showing the

improvement in robustness of GABIL with adaptive bias, and we conclude with a discus-

sion of the merits of this approach and directions for further research.

2. GAs and concept learning

Supervised concept learning involves inducing descriptions (i.e., inductive hypotheses) for

the concepts to be learned from a set of positive and negative examples of the target con-

cepts. Examples (instances) are represented as points in an n-dimensional feature space

that is defined a priori and for which all the legal values of the features are known. Con-

cepts are therefore represented as subsets of points in the given n-dimensional space. A

concept learning program is presented with both a description of the feature space and

a set of correctly classified examples of the concepts, and is expected to generate a reasonably

accurate description of the (unknown) concepts.

The choice of the concept description language is important in several respects. It intro-

duces a language bias that can make some classes of concepts easy to describe while other

class descriptions become awkward and difficult. Most of the approaches have involved

the use of classification rules, decision trees, or, more recently, neural networks. Each

such choice also defines a space of all possible concept descriptions from which the "cor-

rect" concept description must be selected using a given set of positive and negative exam-

ples as constraints. In each case the size and complexity of this search space requires fairly

strong additional heuristic pruning in the form of biases towards concepts that are "simpler,"

"more general," and so on.

The effects of adding such biases in addition to the language bias is to produce systems

that work well on concepts that are well matched to these biases, but perform poorly on

other classes of concepts. What is needed is a means for improving the overall robustness

and adaptability of these concept learners in order to successfully apply them to situations

in which little is known a priori about the concepts to be learned. Since genetic algorithms

(GAs) have been shown to be a powerful adaptive search technique for large, complex spaces

in other contexts, our motivation for this work is to explore their usefulness in building

more flexible and effective concept learners.1

6



USING GENETIC ALGORITHMS FOR CONCEPT LEARNING 163

In order to apply GAs to a concept learning problem, we need to select an internal rep-

resentation of the space to be searched. This must be done carefully to preserve the proper-

ties that make the GAs effective adaptive search procedures (see DeJong (1987) for a more

detailed discussion). The traditional internal representation of GAs involves using fixed-

length (generally binary) strings to represent points in the space to be searched. However,

such representations do not appear well suited for representing the space of concept descrip-

tions that are generally symbolic in nature, that have both syntactic and semantic constraints,

and that can be of widely varying length and complexity.

There are two general approaches one might take to resolve this issue. The first involves

changing the fundamental GA operators (crossover and mutation) to work effectively with

complex non-string objects. Alternatively, one can attempt to construct a string representa-

tion that minimizes any changes to the GA. Each approach has certain advantages and dis-

advantages. Developing new GA operators that are sensitive to the syntax and semantics

of symbolic concept descriptions is appealing and can be quite effective, but also introduces

a new set of issues relating to the precise form such operators should take and the frequency

with which they should be applied. The alternative approach, using a string representation,

puts the burden on the system designer to find a mapping of complex concept descriptions

into linear strings that has the property that the traditional GA operators that manipulate

these strings preserve the syntax and semantics of the underlying concept descriptions.

The advantage of this approach is that, if an effective mapping can be defined, a standard

"off the shelf GA can be used with few, if any, changes. In this article, we illustrate the

latter approach and develop a system that uses a traditional GA with minimal changes.

For examples of the other approach, see Rendell (1985), Grefenstette (1989), Koza (1991),

and Janikow (1991).

The decision to adopt a minimalist approach has immediate implications for the choice

of concept description languages. We need to identify a language that can be effectively

mapped into string representations and yet retains the necessary expressive power to repre-

sent complex descriptions efficiently. As a consequence, we have chosen a simple, yet gen-

eral rule language for describing concepts, the details of which are presented in the follow-

ing sections.

2.1. Representing the search space

A natural way to express complex concepts is as a disjunctive set of possibly overlapping

classification rules, i.e., in disjunctive normal form (DNF). The left-hand side of each

rule (i.e., disjunct or term) consists of a conjunction of one or more tests involving feature

values. The right-hand side of a rule indicates the concept (classification) to be assigned

to the examples that are matched (covered) by the left-hand side of the rule. Collectively,

a set of such rules can be thought of as representing the unknown concept if the rules cor-

rectly classify the elements of the feature space.

If we allow arbitrarily complex terms in the conjunctive left-hand side of such rules,

we will have a very powerful description language that will be difficult to represent as

strings. However, by restricting the complexity of the elements of the conjunctions, we

are able to use a string representation and standard GAs, with the only negative side effect
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that more rules may be required to express the concept. This is achieved by restricting

each element of a conjunction to be a test of the form:

If the value of feature i of the example is in the given value set, return true else,

return false.

For example, a rule might take the following symbolic form:

If (Fl = large) and (F2 = sphere or cube) then it is a widget.

Since the left-hand sides are conjunctive forms with internal disjunction (e.g., the disjunc-

tion within feature F2), there is no loss of generality by requiring that there be at most one

test for each feature (on the left-hand side of a rule). The result is a modified DNF that

allows internal disjunction. (See Michalski (1983) for a discussion of internal disjunction.)

With these restrictions we can now construct a fixed-length internal representation for

classification rules. Each fixed-length rule will have N feature tests, one for each feature.

Each feature test will be represented by a fixed-length binary string, the length of which

will depend on the type of feature (nominal, ordered, etc.). Currently, GABIL only uses

features with nominal values. The system uses k bits for the k values of a nominal feature.

So, for example, if the set of legal values for feature Fl is {small, medium, large}, then

the pattern Oil would represent the test for Fl being medium or large.

Further suppose that feature F2 has the values {sphere, cube, brick, tube} and there

are two classes, widgets and gadgets. Then, a rule for this two-feature problem would be

represented internally as

Fl F2 Class

111 1000 0

This rule is equivalent to

If (Fl = small or medium or large) and (F2 = sphere) then it is a widget.

Notice that a feature test involving all 1's matches any value of a feature and is equivalent

to "dropping" that conjunctive term (i.e., the feature is irrelevant for that rule). So, in

the example above, only the values of F2 are relevant, and the rule is more succinctly inter-

preted as

If (F2 = sphere) then it is a widget.

For completeness, we allow patterns of all O's, which match nothing. This means that any

rule containing such a pattern will not match any points in the feature space. While rules

of this form are of no use in the final concept description, they are quite useful as storage

areas for GAs when evolving and testing sets of rules.

The right-hand side of a rule is simply the class (concept) to which the example belongs.

This means that our rule language defines a "stimulus-response" system with no message
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passing or any other form of internal memory such as those found in Holland (1986). In

many of the traditional concept learning contexts, there is only a single concept to be learned.

In these situations there is no need for the rules to have an explicit right-hand side, since

the class is implied. Clearly, the string representation we have chosen handles such cases

easily by assigning no bits for the right-hand side of each rule.

2.1.1. Sets of classification rules

Since a concept description will consist of one or more classification rules, we still need

to specify how GAs will be used to evolve sets of rules. There are currently two basic strate-

gies: the Michigan approach, exemplified by Holland's classifier system (Holland, 1986),

and the Pittsburgh approach, exemplified by Smith's LS-1 system (Smith, 1983). Systems

using the Michigan approach maintain a population of individual rules that compete with

each other for space and priority in the population. In contrast, systems using the Pittsburgh

approach maintain a population of variable-length rule sets that compete with each other

with respect to performance on the domain task. There is still much to be learned about

the relative merits of the two approaches. In this article we report on results obtained from

using the Pittsburgh approach.2 That is, each individual in the population is a variable-

length string representing an unordered set of fixed-length rules. The number of rules in

a particular individual can be unrestricted or limited by a user-defined upper bound.

To illustrate this representation more concretely, consider the following example of a

rule set with two rules:

Fl F2 Class Fl F2 Class

100 1111 0 Oil 0010 0

This rule set is equivalent to

If (Fl = small) then it is a widget

or

If ((Fl = medium or large) and (F2 = brick)) then it is a widget.

2.7.2. Rule set execution semantics

In choosing a rule set representation for use with GAs, it is also important to define simple

execution semantics that encourage the development of rule subsets and their subsequent

recombination with other subsets to form new and better rule sets. One important feature

of our execution semantics with this property is that there is no order-dependency among

the rules in a rule set. When a rule set is used to predict the class of an example, the left-

hand sides of all rules in a rule set are checked to see if they match (cover) a particular

example. This "parallel" execution semantics means that rules perform in a location-

independent manner.
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It is possible that an example might be covered by more than one rule. There are a number

of existing approaches for resolving such conflicts on the basis of dynamically calculated

rule strengths, by measuring the complexity of the left-hand sides of rules, or by various

voting schemes. It is also possible that there are no rules that cover a particular example.

Unmatched examples could be handled by partial matching and/or covering operators. How

best to handle these two situations in the general context of learning multiple concepts

(classes) simultaneously is a difficult issue that we have not yet resolved to our satisfaction.

However, these issues are considerably simpler when single concepts are being learned.

In this case, since there is only one class, the right-hand sides of all rules are the same

and do not need to be explicitly represented. Hence, it is quite natural to view the rules

in a rule set as a union of (possibly overlapping) covers of the concept to be learned. An

example that matches one or more rules is classified as a positive example of the concept,

and an example that fails to match any rule is classified as a negative example.

In this article, we focus on the simpler case of single-concept learning problems (which

have also dominated the concept-learning literature). We have left the extension to multi-

concept problems for future work.

2.1.3. Crossover and mutation

Genetic operators modify individuals within a population to produce new individuals for

testing and evaluation. Historically, crossover and mutation have been the most important

and best understood genetic operators. Crossover takes two individuals and produces two

new individuals, by swapping portions of genetic material (e.g., bits). Mutation simply

flips random bits within the population, with a small probability (e.g., 1 bit per 1000).

One of our goals was to achieve a concept learning representation that could exploit these

fundamental operators. We feel we have achieved that goal with the variable-length string

representation involving fixed-length rules described in the previous sections.

Our mutation operator is identical to the standard one and performs the usual bit-level

mutations. We are currently using a fairly standard extension of the traditional two-point

crossover operator in order to handle variable-length rule sets.3 With standard two-point

crossover on fixed-length strings, there are only two degrees of freedom in selecting the

crossover points, since the crossover points always match up on both parents (e.g., exchang-

ing the segments from positions 12-25 on each parent). However, with variable length strings

there are four degrees of freedom, since there is no guarantee that, having picked two cross-

over points for the first parent, the same points exist on the second parent. Hence, a second

set of crossover points must be selected for it.

As with standard crossover, there are no restrictions on where the crossover points may

occur (i.e., both on rule boundaries and within rules). The only requirement is that the

corresponding crossover points on the two parents "match up semantically." That is, if

one parent is being cut on a rule boundary, then the other parent must be cut on a rule

boundary. Similarly, if one parent is being cut at a point 5 bits to the right of a rule boun-

dary, then the other parent must be cut in a similar spot (i.e., 5 bits to the right of some

rule boundary). As an example, consider the following two rule sets:
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Note that the left cut point is offset two bits from the rule boundary, while the right cut

point is offset one bit from the rule boundary. The bits within the cut points are swapped,

resulting in a rule set of three rules and a rule set of one rule:

Fl F2 Class Fl F2 Class Fl F2 Class

100   0001        0           110    0011       0             011   0010        0

010 0100 0

2.2. Choosing a fitness function

In addition to selecting a good representation, it is important to define a good fitness func-

tion that rewards the right kinds of individuals. In keeping with our minimalist philosophy,

we selected a fitness function involving only classification performance (ignoring, for exam-

ple, length and complexity biases). The fitness of each individual rule set is computed

by testing the rule set on the current set of training examples (which is typically a subset

of all the examples—see section 2.6) and letting

fitness(individual i) = (percent correct)2

This provides a bias toward correctly classifying all the examples while providing a non-

linear differential reward for imperfect rule sets. This bias is equivalent to one that encour-

ages consistency and completeness of the rule sets with respect to the training examples.

A rule set is consistent when it covers no negative examples and is complete when it covers

all positive examples.

2.3. GABIL: A GA-based concept learner

We are now in a position to describe GABIL, our GA-based concept learner. At the heart

of this system is a GA for searching the space of rule sets for ones that perform well on

a given set of positive and negative examples. Figure 1 provides a pseudo-code description

of the GA used.

P(t) represents a population of rule sets. After a random initialization of the population,

each rule set is evaluated with the fitness function described in section 2.2. Rule sets are

probabilistically selected for survival in proportion to their fitness (i.e., how consistent

and complete they are). Crossover and mutation are then applied probabilistically to the
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procedure GA;

begin

t = 0;

initialize population P(t);

fitness P(t);

until (done)

t = t + l ;

select P(t) from P(t-l);

crossover P(t);

mutate P(t);

fitness P(t);

end.

Figure 1. The GA in GABIL.

surviving rule sets, to produce a new population. This cycle continues until as consistent

and complete a rule set as possible has been found within the time/space constraints given.

Traditional concept learners differ in the ways examples are presented. Many systems

presume a batch mode, where all instances are presented to the system at once. Others

work in an incremental mode, where one or a few of the instances are presented to the

system at a time. In designing a GA-based concept learner, the simplest approach involves

using a batch mode, in which a fixed set of training examples is presented and the GA

must search the space of variable-length strings described above for a set of rules with

high fitness (100% implies completeness and consistency on the training set).

However, in many situations learning is a never ending process in which new examples

arrive incrementally as the learner explores its environment. The examples themselves can

in general contain noise and are not carefully chosen by an outside agent. These are the

kinds of problems that we are most interested in, and they imply that a concept learner

must evolve concept descriptions incrementally from non-optimal and noisy instances.

The simplest way to produce an incremental GA concept learner is as follows. The con-

cept learner initially accepts a single example from a pool of examples and searches for

as perfect a rule set as possible for this example within the time/space constraints given.

This rule set is then used to predict the classification of the next example. If the prediction

is incorrect, the GA is invoked (in batch mode) to evolve a new rule set using the two

examples. If the prediction is correct, the example is simply stored with the previous exam-

ple and the rule set remains unchanged. As each new additional instance is accepted, a

prediction is made, and the GA is rerun in batch mode if the prediction is incorrect. We

refer to this mode of operation as batch-incremental and we refer to the GA batch-incremental

concept learner as GABIL.

Although the batch-incremental mode is more costly to run than the batch, it provides

a much more finely grained measure of performance that is more appropriate for situations

in which learning never stops. Rather than measure an algorithm's performance using only

a small training subset of the instances for learning, the batch-incremental mode measures

the performance of this algorithm over all available instances. Therefore, every instance

acts as both a testing instance and then a training instance.
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Our ultimate goal is to achieve a pure incremental system that is capable of responding

to even more complex situations, such as when the environment itself is changing during

the learning process. In this article, however, we report on the performance of GABIL,

our batch-incremental concept learner.

3. Empirical system comparisons

The experiments in this section are designed to compare the predictive performance of

GABIL and four other concept learners as a function of incremental increases in the size

and complexity of the target concept.

3.1. The domains

The experiments involve two domains: one artificial and one natural. Domain 1, the artifi-

cial domain, was designed to reveal trends that relate system biases to incremental increases

in target concept complexity. For this domain, we invented a four-feature world in which

each feature has four possible distinct values (i.e., there are 256 instances in this world).

Within Domain 1, we constructed a set of 12 target concepts. We varied the complexity

of the 12 target concepts by increasing both the number of rules (disjuncts) and the number

of relevant features (conjuncts) per rule required to correctly describe the concepts. The

number of disjuncts ranged from one to four, while the number of conjuncts ranged from

one to three. Each target concept is labeled as nDmC, where n is the number of disjuncts

and m is the number of conjuncts (see appendix 2 for the definition of these target concepts).

For each of the target concepts, all 256 instances in the set were labeled as positive or

negative examples of the target concept. The 256 examples were randomly shuffled and

then presented sequentially in batch-incremental mode. This procedure was repeated 10

times (trials) for each concept and learning algorithm pair.

For Domain 2, we selected a natural domain to further test our conjectures about system

biases. Domain 2 is a well-known natural database for diagnosing breast cancer (Michalski

et al., 1986) This database has descriptions of cases for 286 patients, and each case (in-

stance) is described in terms of nine features. There is a small amount of noise of unknown

origin in the database manifested as cases with identical features but different classifica-

tions. The target concept is considerably more complex than any of the concepts in the

nDmC world. For example, after seeing all 286 instances, the AQ14 system (also known

as NEWGEM, described below) develops an inductive hypothesis having 25 disjuncts and

an average of four conjuncts per disjunct. Since GABIL and ID5R can only handle nominals,

and the breast cancer instances have features in the form of numeric intervals, we converted

the breast cancer (BC) database to use nominal features. This conversion necessarily loses

the inherent ordering information associated with numeric intervals. For example, the feature

age is defined to have numeric interval values {10-19, 20-29, . . . , 90-99} in the original

database, and is represented as the set {Al, A2, . . . , A9} of nominals in the converted

database. When using the BC database, we again randomly shuffled the instances and aver-

aged over 10 runs.
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It should be noted that all the problems in these two test domains are single-class prob-

lems. As discussed earlier, evaluating this approach on multi-class problems is part of our

future plans.

3,2. The systems

The performance of the GABIL system described in section 2.3 was evaluated on both

domains. Standard GA settings of 0.6 for two-point crossover and 0.001 for mutation were

used. The choice of population size was more difficult. With large, complex search spaces,

larger population sizes are preferable but generally require more computation time. With

our unoptimized batch-incremental version of GABIL, we were able to use a population

size of 1000 for the artificial domain. However, for the BC domain, a population size of

100 was used in order to keep the experimental computation time reasonable.4

To better assess the GABIL system, four other concept learners were also evaluated on

the target concept domains. We selected four systems to represent all four combinations

of batch and incremental modes, and two popular hypothesis forms (DNF and decision

trees). The chosen systems are AQ14 (Mozetic, 1985), which is based on the AQ algorithm

described in Michalski (1983), C4.5 (Quinlan, unpublished), ID5R (Utgoff, 1988), and

Iba's Algorithm Concept Learner (IACL) (Gordon, 1990), which is based on Iba's algorithm

described in Iba (1979). AQ14 and IACL form modified DNF hypotheses. The C4.5 and

ID5R systems are based on the ID algorithm described in Quinlan (1986), and form deci-

sion tree hypotheses. AQ14 and C4.5 are run in batch-incremental mode, since they are

batch systems. ID5R and IACL are incremental.

AQ14, like AQ, generates classification rules from instances using a beam search. This

system maintains two sets of classification rules for each concept: one set, which we call the

positive hypothesis, is for learning the target concept, and the other set, which we call

the negative hypothesis, is for learning the negation of the target concept. (Note that GABIL

currently uses only a positive hypothesis.) AQ14, like GABIL, generates classification rules

in a modified DNF that allows internal disjunction of feature values. Internal disjunction

allows fewer external disjuncts in the hypotheses.

AQ14's learning method guarantees that its inductive hypotheses will be consistent and

complete with respect to all training examples. The learning method, called the Star Algo-

rithm, generates a hypothesis for each class C. Potential rules for this hypothesis are formed

from a randomly chosen example, called a seed, by maximally generalizing the description

of the seed without covering any examples of the wrong class. One rule is chosen from

the set of potential rules, using a user-specified set of criteria, and this rule is added to

the hypothesis for C. This procedure repeats to generate more rules for the hypothesis until

all examples of class C are covered by the hypothesis.

AQ14's criteria for hypothesis preference (biases) influence its learning behavior. This

system's performance depends on these criteria, as well as on other parameter settings.

The particular parameter settings that we chose for AQ14 implement a preference for simpler

inductive hypotheses, e.g., inductive hypotheses having shorter rules.5

C4.5 uses a decision tree representation rather than a rule representation for its induc-

tive hypotheses. Each decision tree node is associated with an instance feature. Each node
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represents a test on the value of the feature. Arcs emanating from a feature node correspond

to values of that feature. Each leaf node is associated with a classification (e.g., positive

or negative if one concept is being learned). To view a decision tree as a positive DNF

hypothesis, one would consider this hypothesis to be the disjunction of all paths (a conjunc-

tion of feature values) from the root to a positive leaf. The negative hypothesis is simply

the disjunction of all paths from the root to a negative leaf.

An information-theoretic measure biases the search through the space of decision trees.

Trees are constructed by first selecting a root node, then the next level of nodes, and so

on. Those tree nodes, or features, that minimize entropy and therefore maximize informa-

tion gain are selected first. The result is a preference for simpler (i.e., shorter) decision

trees. C4.5 does not require completeness or consistency.

Two configurations of C4.5 are available: pruned and unpruned. Pruning is a process

of further simplifying decision trees. This process, which occurs after the decision tree

has been generated, consists of testing the tree on previously seen instances and replacing

subtrees with leaves or branches whenever this replacement improves the classification

accuracy.6 Pruning is designed both for tree simplification (which increases the simplicity

preference) and for improved prediction accuracy. Since it was not obvious to us when

either configuration is preferable, we used both versions in our experiments.

ID5R learns with the same basic algorithm as C4.5. However, this system learns incremen-

tally. Other than the incremental learning, ID5R's biases are nearly identical to those of

C4.5 unpruned. One minor difference is that, unlike C4.5, ID5R does not predict the class

of a new instance when it cannot make a prediction, e.g., when the instance is not covered

by the decision tree. We have modified ID5R to make a random prediction in this case.7

The fourth system to be compared with GABIL is IACL (Gordon, 1990), a system similar

to AQ14. IACL is not as well known as the other systems described above, and therefore

we describe it in slightly more detail. IACL maintains two DNF hypotheses, one for learn-

ing the target concept, and one for learning the negation of that concept. Internal disjunc-

tion is permitted, and consistency and completeness are required. Unlike AQ14, though,

IACL learns incrementally and prefers hypotheses that are more specific (i.e., less general)

rather than simpler. A merging process maintains completeness. The merging process in-

corporates each new instance not already covered by a hypothesis into the hypothesis of

the same class as that instance by performing a small amount of generalization. This is

done by forming new hypothesis rules using a most specific generalization (MSG) operator.

From every rule in the hypotheses, IACL forms a new rule that has feature values equal

to the most specific generalization of the feature values of the new instance and those of

the original rule. Each new rule is kept only if it is consistent with previous instances.

Otherwise, the original rule is kept instead. If the instance cannot merge with any existing

rule of the hypothesis, a description of it is added as a new rule.

When the features are nominals, as is the case for our experiments, the most specific

generalization is the internal disjunction of the feature values of the rule and those of the

new instance. For example, suppose the system receives its first instance, which is positive

and is a small sphere. Then the initial positive hypothesis is

If ((Fl = small) and (F2 = sphere)) then it is a widget.
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If the second instance is a medium cube, and it is positive, the positive hypothesis becomes

If ((Fl = small or medium) and (F2 = sphere or cube)) then it is a widget.

Note that this new hypothesis matches medium spheres and small cubes, though they have

not been seen yet.

IACL's splitting process maintains consistency. If the system incorrectly predicts the class

of a new instance, the system uses previously saved instances to relearn the hypotheses

correctly. Let us continue with our example to illustrate the splitting process. Suppose the

system now receives a new negative example that is a medium sphere. The current positive

hypothesis matches this example, thereby violating the consistency requirement. After the

splitting process, the positive hypothesis becomes

If ((Fl = small) and (F2 = sphere)) then it is a widget

or

If ((Fl = medium) and (F2 = cube)) then it is a widget,

and the negative hypothesis is

If (Fl = medium) and (F2 = sphere) then it is not a widget.

New instances can be merged with these rules to generalize the hypotheses whenever merging

preserves consistency with respect to previous instances.

3.3. Performance criteria

We feel that learning curves are an effective means for assessing performance in the context

of incremental concept learning. In the experiments reported here, each curve represents

an average performance over 10 independent trials for learning a single target concept.

During each trial, we keep track of a small window of recent outcomes, counting the cor-

rect predictions within that window. The value of the curve at each time step represents

the percent correct achieved over the most recent window of instances. A window size

of 10 was used for the artificial domain and one of size 50 for the BC domain. The sizes

were chosen experimentally to balance the need for capturing recent behavior and the desire

to smooth short-term variations in the learning curves.

After generating learning curves for each target concept, we collapsed the information

from these curves into two performance criteria. The first, called the prediction accuracy

(PA) criterion, is the average over all values on a learning curve, from the beginning to

the end of learning a target concept. We did this to simplify the presentation of our results

and to facilitate the system performance comparisons. The second performance criterion,

called convergence (C), is the number of instances seen before a 95% prediction accuracy

is maintained. If a 95 % prediction accuracy cannot be achieved (e.g., on the BC database),

then C is not defined. The finely grained measure obtainable with batch-incremental and

incremental modes facilitates this performance criterion as well.
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The criteria just described are local in the sense that they apply to a single target concept.

For each local criterion there is a corresponding global criterion that considers all target

concepts in a domain. The global prediction accuracy criterion is the average of the PA

criteria values on every target concept within a domain. Likewise, the global convergence

criterion is the average of the C criteria values on all the target concepts of a domain. Since

the global criteria are based on far more data than the local criteria, we base most of our

conclusions from the experiments on the former.

3.4. Results

Table 1 shows the results of the PA and global PA (denoted "Average" in the tables) criteria

for measuring the performance of all systems on the nDmC and BC target concepts, while

table 2 shows the results of applying the C and global C (denoted "Average" in the tables)

criteria to measure performance on the nDmC concepts only (since no system achieves

95 % prediction accuracy on the BC database). Although there are differences between tables

1 and 2, the general trend is similar. From these tables we can see that AQ14 is the best

performer overall. In particular, AQ14 is the top or close to the top performer on the nDmC

concepts. This system does not, however, perform as well as the other systems on the BC

target concept (except IACL). These results are due to the fact that AQ14, when using our

chosen parameter settings, is a system that is well tuned to simpler DNF target concepts.8
IACL does not perform as well as the other systems on the BC target concept. We con-

sider this to be a result of IACL's sensitivity to our conversion of numeric intervals to nomi-

nals, as was discussed earlier. IACL's MSG operator is well suited for learning when the

instance features are structured nominals (i.e., have generalization trees to structure their

values) or numeric, but is not well suited for learning when the features are (unstructured)

nominals. According to Gordon (1990), IACL performs very well on the numeric form

of the BC database.9 Other experiments, which are not reported here, indicate that the

Table 1. Prediction accuracy.

Prediction Accuracy

TC

1D1C

1D2C

1D3C

2D1C

2D2C

2D3C

3D1C

3D2C

3D3C

4D1C

4D2C

4D3C

Average

BC

AQ14

99.8

98.4

97.4

98.6

96.8

96.7

98.0

95.5

95.3

95.8

93.8

93.5

96.6

60.5

C4.5P

98.5

96.1

98.5

93.4

94.3

96.9

78.8

92.2

95.4

66.4

90.5

93.8

91.2

72.4

C4.5U

99.8

99.1

99.0

98.2

98.4

97.6

92.4

97.4

96.6

77.0

95.2

95.1

95.5

65.9

ID5R

99.8

99.0

99.1

97.9

98.2

97.9

91.2

96.7

95.6

70.2

81.3

90.3

93.1

63.4

IACL

98.1

96.7

90.4

95.6

94.5

95.3

93.2

92.1

94.9

92.3

89.5

94.2

93.9

60.1

GABIL

95.2

95.8

95.7

92.0

92.7

94.6

90.4

90.3

92.8

89.6

87.4

88.9

92.1

68.7
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Table 2. Convergence to 95%.

Convergence

TC

1D1C

1D2C

1D3C

2D1C

2D2C

2D3C

3D1C

3D2C

3D3C

4D1C

4D2C

4D3C

Average

AQ14

13
28
57
28
43
86

34
78

195

82
78

154

73

C4.5P

37
155

0

100
126
181
253

122

253
253
113
253

154

C4.5U

14
24
0

37
32
86

149

45
135
253

55
134

80

ID5R

12
26
0

44
40

75

137

52

123

255
255
224

104

IACL

33

91
96

61
139
134

203

141
125
222
188
138

131

GABIL

87

100
96

109
148
249

103
125
225

131
142
229

145

conversion of the BC data to a nominal form does not adversely affect performance for

AQ14 and C4.5.

C4.5 pruned (abbreviated C4.5P in the tables) performs well on all but the target con-

cepts that have many short disjuncts. On 4D1C, which has the most short disjuncts of any

target concept in the artificial domain, all ID-based systems (C4.5 pruned and unpruned,

as well as ID5R) perform poorly.10 Based on the global performance criteria, C4.5 un-

pruned (abbreviated C4.5U in the tables) performs the best of the ID-based systems on

the artificial domain, whereas C4.5 pruned performs the best on the BC domain.

GABIL appears to be a good overall performer. It does not do superbly on any particular

concept, but it also does not have a distinct region of the space of concepts on which it

clearly degrades. Furthermore, GABIL is quite competitive on the difficult BC target con-

cept. The statistical significance of these results is presented in appendix 1.

It is clear from these results that none of the systems under evaluation is superior to

all others on all the target concepts. The dominance of one technique on a certain class

of concepts appears to be due in large part to the built-in forms of bias it embodies, and

these can have a negative impact on other classes of concepts.

4. A more robust concept learner

The GABIL system evaluated above incorporates a "pure" GA as its search mechanism

in the sense that there were no specific changes made to the internal representation or genetic

operators relating to the task of concept learning. As in other application tasks, this gener-

ally results in a good overall GA-based problem solver, but one that can be out-performed

by task-specific approaches, particularly on simpler problems (see, for example, De Jong

& Spears, 1989). However, one of the nice properties of a GA-based system is that it is not

difficult to augment GAs with task-specific features to improve performance on that task.
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procedure GA;
begin
t = 0;

initialize population P(t);
fitness P(t);
until (done)

t = t+ 1;
select P(t) from P(t-l);
crossover P(t);
mutate P(t);

new_opl P(t); /* additional operators */
new_op2 P(t);

fitness P(t);
end.

Figure 2. Extending GABIL's GA operators.

After obtaining the performance comparisons described in the previous section, we felt

that extending GABIL with a small set of features appropriate to concept learning would

significantly enhance its overall performance and robustness. Our approach was as follows.

Each of the traditional concept learners evaluated above appeared to contain one or more

biases that we considered to be largely responsible for that system's success on a particular

class of target concepts. We selected a subset of these biases to be implemented as addi-

tional "genetic" operators to be used by GABIL's GA search procedure (see figure 2). The

virtue of this approach is the simple and unified way GABIL's underlying search process

can be extended to include various traditional forms of concept learning bias.

Since AQ14 seemed to be the best overall performer, we selected it as our initial source

of additional operators for GABIL. As we have described above, the AQ14 system used in our

experiments has preferences for simpler and more general rules. After studying the results

of our initial evaluation, we hypothesized that this is one of the biases largely responsible

for AQ14's superior performance on the nDmC concepts. This analysis led to the addition

of two new GABIL operators that add biases for simpler and more general descriptions.

4.1. The adding alternative operator

One of the mechanisms AQ uses to increase the generality of its inductive hypotheses is

the "adding alternative" generalization operator of Michalski (1983). This operator general-

izes by adding a disjunct (i.e., alternative) to the current classification rule. The most useful

form of this operator, according to Michalski (1983), is the addition of an internal disjunct.

For example, if the disjunct is

(Fl = small) and (F2 = sphere)

then the adding alternative operator might create the new disjunct

(Fl = small) and (F2 = sphere or cube).
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This operator, which we call AA (the adding alternative operator), is easily implemented

in GABIL by including an additional mutation that, unlike the normal mutation operator,

has an asymmetric mutation rate. In particular, in the studies reported here, this operator

incorporates a 75% probability of mutating a bit to a 1, but a 25% probability of mutating

it to a 0. Therefore, the AA operator in GABIL has a strong preference for adding internal

disjuncts. To illustrate, the adding alternative operator might change the disjunct

Fl F2

100 100

to

Fl F2

100 110

Note that feature F2 has been generalized in this disjunct.

As with the other genetic operators, the adding alternative operator is applied probabil-

istically to a subset of the population each generation. In the studies reported here it was

applied at a rate of 0.01 (1%)." For clarity in reporting the experimental results, we call

the version of GABIL with the adding alternative operator "GABIL+A."

4.2. The dropping condition operator

A second, and complementary, generalization mechanism leading to simpler hypotheses

involves removing what appear to be nearly irrelevant conditions from a disjunct. This

operator, which we call DC (the dropping condition operator), is based on the generaliza-

tion operator of the same name described in Michalski (1983). For example, if the disjunct is

(Fl = small or medium) and (F2 = sphere)

then the DC operator might create the new disjunct

(F2 = sphere).

The DC operator is easily added to GABIL in the following manner. When this operator

is applied to a particular member of the population (i.e., a particular rule set), each dis-

junct is deterministically checked for possible condition dropping. The decision to drop

a condition is based on a criterion from Gordon (1990) and involves examining the bits

of each feature in each disjunct. If more than half of the bits of a feature in a disjunct

are 1's, then the remaining 0 bits are changed to 1's. By changing the feature to have all

1 values, this operator forces the feature to become irrelevant within that disjunct and thereby

simulates the effect of a shortened disjunct. To illustrate, suppose this operator is applied

to the following disjunct:

Fl F2

110 100
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procedure GA;

begin

t = 0;

initialize population P(t);

fitness P(t);

until (done)

t = t + l ;
select P(t) from P(t-l);

crossover P(t);

mutate P(t);

add_altern P(t); /*+A */

drop_cond P(t); /* +D */

fitness P(t);

end.

Figure 3. Extended GABIL.

Then the dropping condition operator will result in a new disjunct as follows:

Fl F2

111 100

Note that feature Fl is now irrelevant within this disjunct.

As with the other genetic operators, this new operator is applied probabilistically to a

subset of the population each generation. In the experiments reported here, a rate of 0.60

(60%) was used. We make no claim that the rates used for either of these new operators

are in any sense optimal. In these studies we selected a rate that seemed reasonable on

the basis of a few informal experiments. Our preference (see section 5) is that such things

be self-adaptive.

We call GABIL with the DC operator "GABIL+D." When both task-specific operators

are added to GABIL, the resulting system is called "GABIL+AD" (see figure 3). Note

that there is an interesting complementary relationship between these two operators in that

adding alternatives can set the stage for dropping a condition altogether.

The augmented forms of GABIL do not change in any way the overall structure of the

GA-based system described earlier (compare figures 1 and 3). The only difference is that

the set of "genetic" operators has been expanded. The result is that, after the traditional

crossover and mutation operators have been used in the normal manner to produce new

offspring (rule sets) from parents, the two new operators are (probabilistically) applied

to each offspring, producing additional task-specific changes.

4.3. Results

To study the effects of adding these bias operators to GABIL, GABIL+A, GABIL+D, and

GABIL+AD have been run on the same concept domains used earlier. Table 3 shows the

results of system performance measured using the PA and global PA criteria. Table 4 shows

the results of system performance measured using the C and global C criteria. GABIL is

abbreviated "G" in the tables.
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Table 3. Prediction accuracy.

Prediction Accuracy

TC

1D1C

1D2C

1D3C

2D1C

2D2C

2D3C

3D1C

3D2C

3D3C

4D1C

4D2C

4D3C

Average

BC

GABIL

95.2

95.8

95.7

92.0

92.7

94.6

90.4

90.3

92.8

89.6

87.4

88.9

92.1

68.7

G+A

96.1

96.2

95.7

93.1

95.0

94.5

91.9

91.6

92.7

90.9

89.7

89.2

93.1

69.1

G+D

97.7

97.4

96.7

97.4

96.3

95.8

96.0

94.5

94.2

95.1

93.0

92.3

95.5

71.5

G+AD

97.7

97.3

96.7

97.0

96.9

95.0

96.6

94.6

92.9

95.2

92.7

90.0

95.2

72.0

Table 4. Convergence to 95%.

Convergence

TC

1D1C

1D2C

1D3C

2D1C

2D2C

2D3C

3D1C

3D2C

3D3C

4D1C

4D2C

4D3C

Average

GABIL

87

100

96

109
148
249
103
125
225

131
142
229

145

G+A

58
85
97
90
93

250

104
127
240
120

133
253

138

G+D

28
59
94
42
82

136
54
76

161

67
75

166

87

G+AD

32

68
97
42
55

250
39
62

240

62

75
248

106

According to the global criteria in tables 3 and 4, GABIL+A does not perform as well

as GABIL+D or GABIL+AD. On the BC target concept, the combination of both operators

(GABIL+AD) is the best. It is interesting to note, however, that on the nDmC domain,

GABIL+AD does not perform as well as GABIL+D.

These results indicate that one can improve GABIL's performance on certain classes of

concepts by the addition of an appropriate set of bias operators. On the other hand, it is

not possible in general to know beforehand which set of biases is best. These results also

point out the danger of indiscriminately including multiple biases as a strategy for over-

coming this lack of a priori knowledge, since multiple simultaneous biases can in fact inter-

fere with one another, leading to a degradation in performance. These results, which confirm
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similar bias problems exhibited in other contexts, motivated us to focus on a more sophis-

ticated way of improving GABIL's overall robustness, namely, by having it dynamically

adjust its own task-specific biases.

5. An adaptive GA concept learner

Although genetic algorithms themselves represent a robust adaptive search mechanism,

most GA implementations involve static settings for such things as the population size,

the kind of representation and operators used, and the operator probabilities. There have

been a number of attempts to make these aspects of GAs more adaptive. We provide a brief

overview of this work in the next section.

5.1. Adaptive GAs

There have been two approaches to building more adaptive GAs, which we refer to as the

within-problem approach and the across-problem approach. The within-problem approach

adapts a GA dynamically, as it solves one problem. In contrast, the across-problem approach

adapts GAs over the course of many problems. One good example of the across-problem

approach is provided by Grefenstette (1986). In that paper, a separate meta-GA. is used to

adapt a GA as it solves a suite of problems. The advantage of such an approach is that

the resulting system performs robustly on a suite of problems. Unfortunately, the approach

is also time consuming, since each problem must be solved a large number of times. Fur-

thermore, the adaptation is coarse, in the sense that the system is not necessarily optimal

on any given problem. Within-problem adaptation provides a finer-grained approach, since

the GA is adapted while one problem is solved. Furthermore, since the problem is solved

only once, the approach can require much less time. We concentrate on the within-problem

approach, since we wish to adapt the GA as it solves each concept learning problem.

Within-problem approaches can be further divided into two categories, coupled and un-

coupled, based on the observation that an adaptive GA is in effect searching two spaces:

the original problem space, and the space of adaptations to the underlying GA itself. The

relationship of these two search processes is an important design consideration for adap-

tive GAs.

In a coupled approach, both searches are handled simultaneously by a single GA search

procedure. This is accomplished by using the underlying population to store information

relevant to the adaptive mechanism as well as the standard information regarding the original

problem space being searched. This approach is elegant and straightforward, since no new

adaptive mechanism is required (see Schaffer et al. (1987) for examples of this approach).

Unfortunately, this coupling also means that the additional search can be hindered by the

same issues that hinder the search of the problem space. For example, one possible concern

is that this mechanism may only work well with large population sizes. As with any other

statistical sampling algorithm, small populations (samples) may be misleading and lead

to wrong conclusions. This issue will be raised again later in this article.

An uncoupled approach does not rely upon the GA for the adaptive mechanism. Rather,

the behavior of the underlying GA is adjusted by a separate control mechanism (see Davis
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(1989) and Janikow (1991) for examples). While this may alleviate the problems associated

with coupling, such mechanisms appear to be difficult to construct, and involve complicated

bookkeeping. Although we may explore this route in future work, we concentrate on the

conceptually simpler coupled approach in this article. We next consider how to implement

a coupled within-problem approach within GABIL.

5.2. Adaptive GABIL

Recall that the task-specific operators added to GABIL (DC and AA) were added in a static

way. That is, they were either present or not present for an entire experiment. If they were

present, they were applied via fixed probabilities to all new individuals. The simplest coupled

way to make the selection and application of these operators more adaptive is to have each

individual specify which operators can be applied to it. The intuition here is that those

individuals that enable the "correct" operators will be more fit from a survival point of

view. The result should be a system capable of performing the search for the best set of

operators (biases) and the search for the best hypotheses in parallel (see Baeck et al. (1991)

for related work).

Such an approach is easily implemented by adding to each individual additional control

bits (one for each adaptive operator). Each bit determines whether the corresponding oper-

ator can be used on that individual. If the control bit is 0, the associated operator is not

permissible, and cannot be fired (thus ignoring the operator probability). If the control bit

is 1, the associated operator is permissible, and fires according to the relevant operator

probability. These control bits act as added Boolean preconditions for the operators. The

values of the control bits are evolved in the normal way through selection, crossover, and

mutation.12

As an initial test of this approach, GABIL was modified to include two extra control

bits, one for each of the task-specific operators introduced earlier. For example, consider

the following rule set:

Fl F2 Class Fl F2 Class D A

010   001        0           110   011        0        1    0

The two added control bits are indicated with the letters "D" and "A" (for dropping condi-

tion and adding alternative, respectively). For this rule set the dropping condition operator

is permissible, while the adding alternative operator is not. So, for example, the DC operator

would change the rule set to

Fl F2 Class Fl F2 Class D A

010 001 0 111 111 0 1 0

We call this modified system "adaptive GABIL," and have begun to explore its potential

for effective dynamic bias adjustment. To get an immediate and direct comparison with

the earlier results, adaptive GABIL was run on the nDmC and BC target concepts. The

results are presented in tables 5 and 6.
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Table 5. Prediction accuracy.

Prediction Accuracy

TC

1D1C

1D2C

1D3C

2D1C

2D2C

2D3C

3D1C

3D2C

3D3C

4D1C

4D2C

4D3C

Average

BC

GABIL

95.2

95.8

95.7

92.0

92.7

94.6

90.4

90.3

92.8

89.6

87.4

88.9

92.1

68.7

G+A

96.1

96.2

95.7

93.1

95.0

94.5

91.9

91.6

92.7

90.9

89.7

89.2

93.1

69.1

G+D

97.7

97.4

96.7

97.4

96.3

95.8

96.0

94.5

94.2

95.1

93.0

92.3

95.5

71.5

G+AD

97.7

97.3

96.7

97.0

96.9

95.0

96.6

94.6

92.9

95.2

92.7

90.0

95.2

72.0

Adaptive

97.6

97.4

96.5

96.1

96.2

95.4

95.9

94.0

94.7

95.8

92.8

92.1

95.4

70.3

Table 6. Convergence to 95%.

Convergence

TC

1D1C

1D2C

1D3C

2D1C

2D2C

2D3C

3D1C

3D2C

3D3C

4D1C

4D2C

4D3C

Average

GABIL

87
100
96

109
148
249
103
125
225
131
142
229

145

G+A

58
85
97

90
93

250
104
127
240
120
133
253

138

G+D

28
59
94

42
82

136
54
76

161
67
75

166

87

G+AD

32
68
97
42
55

250
39
62

240
62
75

248

106

Adaptive

34
58
97
50
80

120
53
70

128
55
80

130

80

The results of the global criteria, shown at the bottom of tables 5 and 6, highlight a cou-

ple of important points. First, on the nDmC domain, the adaptive GABIL outperforms

the original GABIL, GABIL+A, and GABIL-I-AD. Furthermore, the adaptive GABIL per-

forms almost as well as GABIL+D from a prediction accuracy criterion, and better from

a convergence criterion. Adaptive GABIL outperforms GABIL+AD, particularly from the

standpoint of the global C criterion. This shows the danger of indiscriminately including

multiple fixed biases, which can interfere with each other, producing lower performance.

These results demonstrate the virtues of adaptive GABIL in selecting the appropriate biases.

On the BC target concept, adaptive GABIL performs better than GABIL and GABIL+A,

but is worse than GABIL+D and GABIL+AD. This suggests that adaptive GABIL's
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advantage is diminished when smaller population sizes (e.g., population sizes of 100) are

involved. To address this issue, future versions of GABIL will have to adapt the population

size, as well as operator selection.

In comparison to the other systems, the new adaptive GABIL is much better than C4.5

on the nDmC domain, and close on the BC target concept. Also, adaptive GABIL is com-

petitive with AQ14 on the nDmC domain and is much better on the BC target concept.

We have tested the statistical significance of these results (see appendix 1) and have found

that when adaptive GABIL outperforms other systems, the results are generally significant

(at a 90% level). Furthermore, when other systems outperform adaptive GABIL, the results

are generally not significant (i.e., significance is 80% or lower). The only two notable

exceptions are on the BC database. Both C4.5 and GABIL+AD outperform adaptive GABIL

at a 95 % level of significance. We believe that the latter exception is due to the small pop-

ulation size (100). The former exception will be addressed when we incorporate C4.5's

information-theoretic biases into GABIL. This bias can be quite easily implemented as

a "genetic" operator by making features with higher entropy values more likely to have

1's (since higher entropy values imply less relevance).

An interesting question at this point is whether the improved performance of adaptive

GABIL is the result of any significant bias adjustment during a run. This is easily monitored

and displayed. Figures 4 and 5 illustrate the frequency with which the dropping condition

(DC) and adding alternative (AA) operators are used by adaptive GABIL for two target

Figure 4. 3D3C.

Figure 5. 4D1C.

26



USING GENETIC ALGORITHMS FOR CONCEPT LEARNING 183

concepts: 3D3C and 4D1C. Since the control bits for each operator are randomly initialized,

roughly half of the initial population contain positive control bits resulting in both operators

starting out at a rate of approximately 0.5. As the search progresses towards a consistent

and complete hypothesis, however, these frequencies are adaptively modified. For both

target concepts, the DC operator is found to be the most useful, and consequently is fired

with a higher frequency. This is consistent with table 5, which indicates that GABIL+D

outperforms GABIL+A. Furthermore, note the difference in predictive accuracy between

GABIL and GABIL+D on the two target concepts. The difference is greater for the 4D1C

target concept, indicating the greater importance of the DC operator. This is reflected in

figures 4 and 5, in which the DC operator evolves to a higher firing frequency on the 4D1C

concept, in comparison with the 3D3C concept. Similar comparisons can be made with

the AA operator.

Considering that GABIL is now clearly performing the additional task of selecting appro-

priate biases, these results are very encourging. We are in the process of extending and

refining GABIL as a result of the experiments described here. We are also extending our

experimental analysis to include other systems that attempt to dynamically adjust their bias.

6. Related work on bias adjustment

Adaptive bias, in our context, is similar to dynamic preference (bias) adjustment for con-

cept learning (see Gordon (1990) for related literature). The vast majority of concept learn-

ing systems that adjust their bias focus on changing their representational bias. The few

notable exceptions that adjust the algorithmic bias include the Competitive Relation Learner

and Induce and Select Optimizer combination (CRL/ISO) (Tcheng et al., 1989), Climbing

in the Bias Space (ClimBS) (Provost, 1991), PEAK (Holder, 1990), the Variable Bias Man-

agement System (VBMS) (Rendell et al., 1987), and the Genetic-based Inductive Learner

(GIL) (Janikow, 1991).

We can classify these systems according to the type of bias that they select. Adaptive

GABIL shifts its bias by dynamically selecting generalization operators. The set of biases

considered by CRL/ISO includes the strategy for predicting the class of new instances and

the method and criteria for hypothesis selection. The set of biases considered by ClimBS

includes the beam width of the heuristic search, the percentage of the positive examples

a satisfactory rule must cover, the maximum percentage of the negative examples a satisfac-

tory rule may cover, and the rule complexity. PEAK'S changeable algorithmic biases are

learning algorithms. They are rote learning, empirical learning (with a decision tree), and

explanation-based generalization (EBG). GIL is most similar to GABIL, since it also selects

between generalization operators. However, it does not use a GA for that selection and

only uses a GA for the concept learning task.

We can also classify these systems according to whether or not their searches through

the space of hypotheses and the space of biases are coupled. GABIL is unique along this

dimension because it is the only system that couples these searches. The advantages and

disadvantages of a coupled approach were presented in section 5. We summarize these com-

parisons in table 7.
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Table 7. Comparison of system characteristics.

System

CRL/ISO

ClimBS

PEAK

VBMS

GIL
Adaptive GABIL

Bias Space

hypothesis selection criteria, prediction strategy

beam width, hypothesis coverage

learning strategy

concept learners

generalization operators

generalization operators

Searches

uncoupled

uncoupled

uncoupled

uncoupled

uncoupled

coupled

GA

no

no
no

no
yes
yes

The VBMS system is different from the others mentioned above. The primary task of

this system is to identify the concept learner (which implements a particular set of algorithmic

biases) that is best suited for each problem along a set of problem-characteristic dimen-

sions. Problem-characteristic dimensions that this system considers are the number of train-

ing instances and the number of features per instance. Three concept learners are tested

for their suitability along these problem-characteristic dimensions. VBMS would be an

ideal companion to any of the above-mentioned systems. This system could map out the

suitability of biases to problems, and then this knowledge could be passed on to the other

systems to use in an initialization procedure for constraining their bias space search.

7. Discussion and future work

We have presented a method for using genetic algorithms as a key element in designing

robust concept learning systems and have used this approach to implement a system that

compares favorably with other concept learning systems on a variety of target concepts.

We have shown that, in addition to providing a minimally biased yet powerful search strategy,

the GABIL architecture allows for adding task-specific biases in a very natural way in the

form of additional "genetic" operators, resulting in performance improvements on certain

classes of concepts. However, the experiments in this article highlight that no one fixed

set of biases is appropriate for all target concepts. In response to these observations, we

have shown that this approach can be further extended to produce a concept learner that

is capable of dynamically adjusting its own bias in response to the characteristics of the

particular problem at hand. Our results indicate that this is a promising approach for build-

ing concept learners that do not require a "human in the loop" to adapt and adjust the

system to the requirements of a particular class of concepts.

The current version of GABIL adaptively selects between two forms of bias taken from

a single system (AQ14). In the future, we plan to extend this set of biases to include addi-

tional biases from AQ14 and other systems. For example, we would like to implement in

GABIL an information-theoretic bias, which we believe is primarily responsible for C4.5's

successes.

The results presented here have all involved single-class learning problems. An impor-

tant next step is to extend this method to multi-class problems. We have also been focusing

on adjusting the lower-level biases of learning systems. We believe that these same tech-

niques can also be applied to the selection of higher-level mechanisms such as induction
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and analogy. Our final goal is to produce a robust learner that dynamically adapts to chang-

ing concepts and noisy learning conditions, both of which are frequently encountered in

realistic environments.
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Notes

1. Excellent introductions to GAs can be found in Holland (1975) and Goldberg (1989).

2. Greene & Smith (1987) and Janikow (1991) have also used the Pittsburgh approach. See Wilson (1987) and

Booker (1989) for examples of the Michigan approach.

3. We are also investigating the use of a uniform crossover operator that has been recently shown to be more

effective in certain contexts than two-point crossover.

4. Our unoptimized batch-incremental version of GABIL is somewhat slower than C4.5, AQ, and IACL. It is

substantially slower than ID5R. One should not conclude from this, however, that GA concept learners are

inherently slower. See Janikow (1991) for details.

5. The precise criteria used are as follows: the positive and negative inductive hypotheses are allowed to inter-

sect provided the intersection covers no instances, noisy examples are considered positive, the maximum

beam width is set to 20, and the minimum number of features and values are preferred in each rule. Other

settings, which have less impact on system performance, are left at default values.

6. The type of pruning in C4.5 is a variant of pessimistic pruning described by Quinlan (1987) that prunes a

tree to either a subtree or a leaf node (Quinlan, personal communication).

7. ID5R, like GABIL, is a research tool and therefore does not handle some of the realistic data characteristics

(e.g., missing feature values) that can be handled by sophisticated systems such as C4.5.

8. AQ14 does not use flexible (partial) matching of hypotheses of instances. Flexible matching tends to improve

the performance of the AQ systems (Michalski, 1990). The newest version of AQ (AQTT-15), which uses

flexible matching, was unavailable at the time of this study. In the future, we plan to run AQTT-15 on our

suite of target concepts.

9. When run in batch mode on the numeric BC database, with 70% of the instances in the training set and

30% in the test set, 72% of the predictions made on the test set were correct predictions (see Gordon, 1990).

10. An explanation of the difficulty of systems based on IDS on target concepts of this type is in De Jong and

Spears (1991).

11. Note that this is in addition to the standard mutation operator, which continues to fire with a probability of .001.

12. The dropping condition and adding alternative operators do not alter these control bits.

Appendix 1: Statistical significance

The following three tables give statistical significance results. Table 8 compares adaptive

GABIL with all other systems on the nDmC domain (using predictive accuracy). Table 9

makes the same comparison with the convergence criterion. Table 10 compares adaptive

GABIL with all other systems on the BC target concept. The column Sig denotes the level

of significance of each comparison. The Wins column is "Yes" if adaptive GABIL outper-

formed the other system; otherwise it is "No."
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In comparison with all other systems, adaptive GABIL has 19 wins, 7 losses, and 1 tie.

At the 90% level of significance, 11 wins and 2 losses are significant. In comparison with

the non-GA systems, adaptive GABIL has 10 wins, 4 losses, and 1 tie. Again, at the 90%

level of significance, 6 wins and 1 loss are significant.

Table 8. Predictive accuracy on nDmC.

System

AQ14

C4.5P

C4.5U

ID5R

IACL

GABIL

G + A

G + D

G + AD

Sig

80%
80%

<80%

<80%

80%
95%
95%

<80%

<80%

Wins

No
Yes

No

Yes
Yes
Yes
Yes
No
Yes

Table 9. Convergence on nDmC.

System

AQ14

C4.5P

C4.5U

ID5R

IACL

GABIL

G+A
G + D

G+AD

Sig

<80%

95%
<80%

<80%

95%
95%

95%
<80%

<80%

Wins

No

Yes
Tie

Yes
Yes
Yes

Yes
Yes
Yes

Table JO. Predictive accuracy on BC.

System

AQ14

C4.5P

C4.5U

ID5R

IACL

GABIL

G+A

G+D

G+AD

Sig

95%
95%
95%

95%
95%
90%
80%
80%
95%

Wins

Yes
No

Yes

Yes
Yes
Yes
Yes
No
No

Appendix 2: Artificial domain target concepts

This appendix fully describes the target concepts of the artificial domain. There are four

features, denoted as Fl, F2, F3, and F4. Each feature has four values {vl, v2, v3, v4}.
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All the target concepts have the following form:

4DmC == dl vd2 vd3 v d4
3DmC = = dl v d2 v d3
2DmC == dl vd2
IDmC == dl

For the nD3C target concepts, we have

dl == (Fl = vl) & (F2 = vl) & (F3 = vl)
d2 = = (Fl = v2) & (F2 = v2) & (F3 = v2)
d3 = = (Fl = v3) & (F2 = v3) & (F3 = v3)
d4 = = (Fl = v4) & (F2 = v4) & (F3 = v4)

For the nD2C target concept, we have

dl = = (Fl = vl) & (F2 = vl)
d2 = = (Fl = v2) & (F2 = v2)
d3 = = (Fl = v3) & (F2 = v3)
d4 = = (Fl = v4) & (F2 = v4)

Finally, we define the nDIC target concepts:

dl == (Fl = vl)

d2 = = (Fl = v2)
d3 = = (Fl = v3)
d4 = = (Fl = v4)
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