Using Genetic Algorithms for Model-Based Object Recognition

George Bebis, Sushil Louis and Yaakov Varol

Department of Computer Science University of Nevada
Reno NV 89557
bebis@cs.unr.edu

CISST’98
July 6-9, 1998
Las Vegas, Nevada

MODEL-BASED OBJECT RECOGNITION

- Overview

- Environment is rather constrained.
- Search is confined within a finite set of observable models.

- Recognition requirements
- Invariant to translation, rotation, and scale.
- Robust to noise and occlusion.

- Goal of recognition

- The recovery of a geometric transformation which aligns the model(s) with the scene.

- Planar Objects and 2D Affine Transformations

- Assume "weak perspective" projection.
- Different views of the same planar object are related through an affine transformation.

$$
p^{\prime}=A p+b
$$

IMAGE-SPACE APPROACHES

- Procedure

- Identify a set of features from the unknown scene which approximately match a set of features from a model object.
- Recover the geometric transformation that the model object has undergone.

- Examples of methods in this category

- Interpretation tree (Grimson \& Lozano-Perez, 1987)
- Alignment (Huttenlocher and Ullman, 1990)
- Geometric hashing (Lamdan et al., 1990)

TRANSFORMATION-SPACE APPROACHES

- Procedure

- Search the space of possible transformations.
- Find a transformation which aligns a large number of model features with the scene.
- Examples of methods in this category
- Hough-transform based methods (Ballard, 1981).
- Pose clustering techniques (Cass, 1988)

GENETIC ALGORITHMS (GAs)

- Overview

- Parallel search algorithms based on the mechanics of natural selection.
- Operate iteratively on a population of structures.
- Each structure represents a candidate solution.
- Structures are modified at each iteration using selection, crossover, and mutation.
- Why using GAs for Object Recognition ?
- Genetic algorithms were designed to efficiently search large solution spaces.
- Both the image and transformation spaces are very large !!
- Image space: $O\left(M^{3} S^{3}\right)$ possible alignments.
- Transformation space: much larger !! (six dimensional)

- Previous use of GAs in Image Processing/Analysis

- Feature selection (Roth and Levive, 1994)
- Image segmentation (Swets and Punch, 1995)
- Target recognition (Katz and Thrift, 1994)
- Object recognition (Singh et al., 1997, Ansari et al., 1992)
- Image registration (Fitzpatrick et al., 1984)

- Problem and Approaches

- Recognize real, planar, objects from 2D images assuming that the viewpoint is arbitrary.
- Genetic search in the image space (GA-IS)
- Genetic search in the transformation space (GA-TS)

- Important issues

- How to encode solutions?
- How to modify solutions?
- How to evaluate solutions?

IMAGE-SPACE GENETIC SEARCH

- Encoding

- At least three model-scene point matches are need to compute the affine transformation.
- Chromosome contains the binary encoded identities of the three pairs of points.
- Model points: 19 (5 bits)
- Scene points: 19-45 (6 bits)
- Chromosome length: $3 \times 5+3 \times 6=33$ bits

Model pt 1	Model pt 2	Model pt 3	Scene pt 1	Scene pt 2	Scene pt 3

$\leftarrow 5$ bits \longrightarrow

- Fitness evaluation

1. Compute affine transformation.
2. Apply the transformation on all the model points.
3. Compute the error (BE) between transformed model points and scene points.

$$
B E=\sum_{i=1}^{M} d_{j}^{2}
$$

(d_{j} min distance between the j -th model point and the scene)

$$
\text { Fitness }=10000-B E
$$

ESTIMATING THE RANGES OF VALUES OF

THE PARAMETERS OF AFFINE TRANSFORMATION

$$
\begin{align*}
& {\left[\begin{array}{ccc}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
\cdots & \cdots & \cdots \\
x_{M} & y_{M} & 1
\end{array}\right]\left[\begin{array}{c}
a_{11} \\
a_{12} \\
b_{1}
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\cdots \\
x_{M}^{\prime}
\end{array}\right] \text { or } P c_{1}=p_{x^{\prime}}} \tag{1}\\
& {\left[\begin{array}{ccc}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
\cdots & \cdots & \cdots \\
x_{M} & y_{M} & 1
\end{array}\right]\left[\begin{array}{c}
a_{21} \\
a_{22} \\
b_{2}
\end{array}\right]=\left[\begin{array}{c}
y_{1}^{\prime} \\
y_{2}^{\prime} \\
\cdots \\
y_{M}^{\prime}
\end{array}\right] \text { or } P c_{1}=p_{y^{\prime}}} \tag{2}
\end{align*}
$$

- Assume that the image coordinates of the unknown views ($p_{x^{\prime}}, p_{y^{\prime}}$) are restricted to belong to a given interval, (e.g., by scaling the image coordinates in $[0,1]$).
- Use Interval Arithmetic to find all the possible solutions of (1) and (2) assuming that $p_{x^{\prime}}$ and $p_{y^{\prime}} \in[0,1]$.

$$
\begin{aligned}
& P c_{1}^{I}=p_{x^{\prime}}^{I} \\
& P c_{2}^{I}=p_{y^{\prime}}^{I}
\end{aligned}
$$

- Solving (1) and (2) using Singular Value Decomposition

$$
\begin{gather*}
P=U_{P} W_{P} V_{P}^{T} \\
c_{1}=P^{+} p_{x^{\prime}} \quad \text { or } \quad c_{1}=\sum_{i=1}^{3}\left(\frac{u_{i} p_{x^{\prime}}}{w_{i i}}\right) v_{i} \tag{3}\\
c_{2}=P^{+} p_{y^{\prime}} \quad \text { or } \quad c_{2}=\sum_{i=1}^{3}\left(\frac{u_{i} p_{y^{\prime}}}{w_{i i}}\right) v_{i} \tag{4}
\end{gather*}
$$

Evaluate (3) and (4) using Interval Arithmetic (Moore, 1966)

$$
\begin{gathered}
t=\left[t_{1}, t_{2}\right], r=\left[r_{1}, r_{2}\right] \\
t+r=\left[t_{1}+r_{1}, t_{2}+r_{2}\right] \\
t * r=\left[\min \left(t_{1} r_{1}, t_{1} r_{2}, t_{2} r_{1}, t_{2} r_{2}\right), \max \left(t_{1} r_{1}, t_{1} r_{2}, t_{2} r_{1}, t_{2} r_{2}\right)\right]
\end{gathered}
$$

- Apply preconditioning to optimize the ranges.

The computed ranges of values.

Ranges of values			
	range of a11	range of a12	range of b1
original	$[-2.953,2.953]$	$[-2.89,2.89]$	$[-1.662,2.662]$
preconditioned	$[-0.408,0.408]$	$[-0.391,0.391]$	$[0.0,1.0]$

TRANSFORMATION-SPACE GENETIC SEARCH

- Encoding

- Each chromosome contains six fields.
- Only the range of each coefficient needs to be represented.
a_{11} assumes values in [-0.408, 0.408]
Its range is: $0.408-(-0.408)=0.816$
2 decimal digit accuracy: 82 values must be encoded.
7 bits are needed to encode 82 values.

- Decoding

- Some encoded solutions might be invalid.

7 bits can encode at most 128 values.
[0,127] should be mapped to $[0,81]$
$\left.a_{11}=\operatorname{MIN}\left(a_{11}\right)+\left(82 / 2^{7}\right)\right) * \operatorname{Decimal}(W)$
(W is the binary encoded solution corresponding to a_{11})

- Fitness evaluation

- Same as before (less costly to compute now)

GENETIC OPERATORS

- Two-point crossover (prcoss: 0.95).
- Point mutation (pmut: 0.05).
- Cross generational selection strategy.
- Fitness scaling (scaling factor: 1.2).

SIMULATIONS AND RESULTS

- Three scenes (S1, S2, S3) of increasing complexity.
- S2, S3 are shown below (S1 was the same as model).
- 10 trials per scene.

- Parameters

Values of Parameters			
	S1	S2	S3
Population Size	100	200	500
Generations (GA-IS)	30	50	50
Generations (GA-TS)	100	100	100

- All other parameters were the same for all scenes.
- Scene1
- Correct solutions were found in all 10 trials.

GS-IS

GA-TS

- Scene2
- Correct solutions were found in all 10 trials.

- Scene3
- The GA-TS approach missed the correct solution once.

$$
M_{3}=\binom{19}{3}=969
$$

Total number of matches $=3!\times M_{3} \times S_{3}$

Summary of results (GA-IS approach).

Results			
Scene	Scene Points	Number of Matches	$G A-I S_{\text {matches }}$
Scene1	19	$5,633,766$	$1800(0.0003)$
Scene2	40	$57,442,320$	$47,800(0.0008)$
Scene3	45	$82,500,660$	$133,250(0.0016)$

Total number of possible transformations:

$$
82^{2} \times 79^{2} \times 101^{2}=428,079,701,284
$$

Summary of results (GA-TS approach).

Results		
Scene	Number of Transforms	GA-TS matches
Scene1	$428,079,701,284$	$8010(0.000000018)$
Scene2	$428,079,701,284$	$8760(0.00000002)$
Scene3	$428,079,701,284$	$8620(0.00000002)$

- Conclusions

- Exact and near exact matches were found reliably and quickly.
- GA-TS converges faster.
- GA-IS finds better solutions.
- GAs are a viable tool for searching the image and transformation spaces efficiently.
- Future work
- Incorporate constraints into the fitness function (e.g, geometric constraints).
- Consider more than one models.
- Extend the work to the case of real 3D objects.
- Consider parallel implementations for real time performance.

