
Using Genetic Algorithms to Improve
Pattern Classification Performance

Eric I. Chang and Richard P. Lippmann

Lincoln Laboratory, MIT
Lexington, MA 02173-9108

Abstract

Genetic algorithms were used to select and create features and to select
reference exemplar patterns for machine vision and speech pattern classi
fication tasks. For a complex speech recognition task, genetic algorithms
required no more computation time than traditional approaches to feature
selection but reduced the number of input features required by a factor of

five (from 153 to 33 features). On a difficult artificial machine-vision task,
genetic algorithms were able to create new features (polynomial functions
of the original features) which reduced classification error rates from 19%
to almost 0%. Neural net and k nearest neighbor (KNN) classifiers were
unable to provide such low error rates using only the original features. Ge
netic algorithms were also used to reduce the number of reference exemplar
patterns for a KNN classifier. On a 338 training pattern vowel-recognition
problem with 10 classes, genetic algorithms reduced the number of stored
exemplars from 338 to 43 without significantly increasing classification er
ror rate. In all applications, genetic algorithms were easy to apply and
found good solutions in many fewer trials than would be required by ex
haustive search. Run times were long, but not unreasonable. These results
suggest that genetic algorithms are becoming practical for pattern classi
fication problems as faster serial and parallel computers are developed.

1 INTRODUCTION

Feature selection and creation are two of the most important and difficult tasks in
the field of pattern classification. Good features improve the performance of both
conventional and neural network pattern classifiers. Exemplar selection is another
task that can reduce the memory and computation requirements of a KNN classifier.
These three tasks require a search through a space which is typically so large that

797

798 Chang and Lippmann

exhaustive search is impractical. The purpose of this research was to explore the
usefulness of Genetic search algorithms for these tasks. Details concerning this

research are available in (Chang, 1990).

Genetic algorithms depend on the generation-by-generation development of possible

solutions, with selection eliminating bad solutions and allowing good solutions to

replicate and be modified. There are four stages in the genetic search process: cre
ation, selection, crossover, and mutation. In the creation stage, a group of possible

solutions to a search problem is randomly generated. In most genetic algorithm

applications, each solution is a bit string with each bit initially randomly set to 1
or O.

After the creation stage, each solution is evaluated using a fitness function and as

signed a fitness value. The fitness function must be tightly linked to the eventual
goal. The usual criterion for success in pattern classification tasks is the percentage

of patterns classified correctly on test data. This was approximated in all experi

ments by using a leave-one-out cross-validation measure of classification accuracy

obtained using training data and a KNN classifier. After solutions are assigned

fitness values, a selection stage occurs, where the fitter solutions are given more

chance to reproduce. This gives the fitter solutions more and more influence over

the changes in the population so that eventually fitter solutions dominate.

A crossover operation occurs after two fitter solutions (called parent solutions) have

been selected. During crossover, portions of the parent solutions are exchanged.

This operation is performed in the hope of generating new solutions which will

contain the useful parts of both parent solutions and be even better solutions.

Crossover is responsible for generating most of the new solutions in genetic search.
When all solutions are similar, the crossover operation loses its ability to generate

new solutions since exchanging portions of identical solutions generates the same
solutions. Mutation (randomly altering bits) is performed on each new solution

to prevent the whole population from becoming similar. However, mutation does

not generally improve solutions by itself. The combination of both crossover and

mutation is required for good performance.

There are many varieties of genetic algorithms. A relatively new incremental static

population model proposed by (Whitley, 1989) was used in all experiments. In
the regular genetic algorithm model, the whole population undergoes selection and

reproduction, with a large portion of the strings replaced by new strings. It is thus

possible for good strings to be deleted from the population. In the static population

model, the population is ranked according to fitness. At each recombination cycle,

two strings are picked as parents according to their fitness values, and two new

strings are produced. These two new strings replace the lowest ranked strings in

the original population. This model automatically protects the better strings in the

population.

2 FEATURE SELECTION

Adding more input features or input dimensions to a pattern classifier often degrades

rather than improves performance. This is because as the number of input features

increases, the number of training patterns required to maintain good generalization

and adequately describe class distributions also often increases rapidly. Performance

with limited training data may thus degrade. Feature selection (dimensionality

-~ o -Q)

as
a:

Using Genetic Algorithms to Improve Pattern Classification Performance 799

A} CLASSIFICATION ERROR RATE

30 ~--.

20 n/\4,,1'\ Testing Set -, -~~J~~, ________ r----------, __________________ _

10 ~ -
~~ _________________________ T_ra_in_i_ng __ S_e_t ______________ -4

O~------------------_~I------------------~

B) NUM BER OF FEATURES USED

"0 200 .--------------r--.---------------,
Q)

en - -
~lro- -

~--~
Initial Number of Features

en
Q)
~

- -
~ 120- -
Q)

u. -o
~

Q)

.0

E
::l
Z

-
80 ~:,. .. -

I- ..

-
-
-." .. :

40 I- •••••• Features Selected by Genetic Search -
.... _----_ __ ._------_. __ . __ ._-.... __ . __ . __ .--_ ... ----_ ... _----------=-

O'--------------~I-----------~ o 10000 20000

Number of Features Recombinations

Figure 1: Progress Of a Genetic Algorithm Search For Those Features From an
Original 153 Features That Provide High Accuracy in "E" Set Classification For
One Female Talker: (A) Classification Error Rate and (B) Number Of Features
Used.

reduction) is often required when training data is limited to select the subset of
features that best separates classes. It can improve performance and/or reduce
computation requirements.

Feature selection is difficult because the number of possible combinations of features
grows exponentially with the number of original features . For a moderate size
problem with 64 features, there are 264 possible subsets of features. Clearly an
exhaustive evaluation of each possible combination is impossible. Frequently, finding
a near optimal feature subset is adequate. An overview of many different approaches
to feature selection is available in (Siedlecki and Sklansky, 1988).

This work applies genetic search techniques to the problem of feature selection.
Every feature set is represented by a bit string with d bits, where d is the maximum

800 Chang and Lippmann

input dimension. Each bit determines whether a feature is used. The accuracy of
a KNN classifier with the leave-one-out approach to error rate estimation was used
as an evaluation function as described above. A KNN classifier has the advantage
of requiring no training time and providing results directly related to performance.

"E-set" words (9 letters from the English alphabet that rhyme with the letter "E")
taken from a Texas Instruments 46-word speech database were used for experiments.
Waveforms were spectrally analyzed and encoded with a hidden Markov Model
speech recognizer as described in (Huang and Lippmann, 1990). Features were
the average log likelihood distance and duration from all the hidden Markov nodes
determined using Viterbi decoding. The final output of the hidden Markov model
was also included in the feature set. This resulted in 17 features per word class.
The 9 different word classes result in a total of 153 features. For each talker there
were 10 patterns in the training set and 16 patterns in the testing set per word
class. All experiments were talker dependent.

An experiment was performed using the data from one female talker. More conven
tional sequential forward and backward searches for the best feature subset were
first performed. The total number of KNN evaluations for each sequential search
was 11,781. The best feature subset found with sequential searches contained 33
features and the classification error rates were 2.2% and 18.5% on training and test
ing sets respectively. Genetic algorithms provided a lower error rate on the testing
set with fewer than half as many features. Fig. 1 shows the progress of the genetic
search. The bottom plot shows that near recombination 12,100, the number of
features used was reduced to 15. The top plot shows that classification error rates
were 3.3% and 17.5% for the training and testing sets respectively.

3 FEATURE CREATION

One of the most successful techniques for improving pattern classification perfor
mance with limited training data is to find more effective input features. An ap
proach to creating more effective input features is to search through new features
that are polynomial functions of the original features. This difficult search problem
was explored using genetic algorithms. The fitness function was again determined
using the performance of a KNN classifier with leave-one-out testing.

Polynomial functions of the original features taken two at a time were created as

new features. New features were represented by a bit string consisting of substrings
identifying the original features used, their exponents, and the operation to be
applied between the original features. A gradual buildup of feature complexity over
multiple stages was enforced by limiting the complexity of the created features.
Once the accuracy of a KNN classifier had converged at one stage, another stage
was begun where more complex high order features were allowed. This improves
generalization by creating simple features first and by creating more complicated
features only when simpler features are not satisfactory.

A parallel vector problem, where the input data consists of ~x, ~y of two vectors,
was used. Parallel vectors are identified as one class while nonparallel vectors are
identified as another. There were 300 training patterns and 100 testing patterns.
During an experiment, the ratio features ~x2/ ~x1 and ~y2/ ~y1 were first found
near recombination 700. After the error rate had not changed for 2,000 recombina
tions, the complexity of the created features was allowed to increase at recombina-

Using Genetic Algorithms to Improve Pattern Classification Performance 801

tion 2,700. At this point the two ratio features and the four original features were
treated as if they were six original features. The final feature found after this point
was (6X2 *6Y2)/(~Xl *~Yl). Classification error rates for the training set and the
testing set decreased to 0% with this feature. The classification error rate on the
testing set using the original four features was 19% using a KNN classifier. Tests
using the original features with two more complex classifiers also used in (N g and
Lippmann, 1991) resulted in error rates of 13.3% for a GMDH classifier and 8.3%
for a radial basis function classifier. Feature creation with a simple KNN classifier
was thus more effective than the use of more complex classifiers with the original
features.

3000 o head

nhid

+ hod

2000
x had

<> hawed

\I heard
Fl(Hz)

> heed

Ohud

1000
A who'd

<hood

+

~~----------~----------~~--------~
o ~ 1000 1400

Fl (Hz)

Figure 2: Decision Boundaries Of a Nearest Neighbor Classifier For The Vowel
Problem Using All 338 Original Exemplars.

4 EXEMPLAR SELECTION

The performance of a KNN classifier typically improves as more training patterns
are stored. This often makes KNN classifiers impractical because both classifica
tion time and memory requirements increase linearly with the number of training
patterns. Previous approaches to reducing the classification time and memory re
quirements of KNN classifiers include using KD trees and condensed k nearest

neighbor (CKNN) classifiers as described in (Ng and Lippmann, 1991). KD trees,
however, are effective only if the input dimensionality is low, and CKNN classifiers
use a heuristic that may not result in minimal memory requirements. An alternate

802 Chang and Lippmann

4000

3000
> o head

t::.. hid

+ hod

2000 X
X had

o hawed

'ilheard
F2(Hz) > heed

Ohud

A who'd
1000

<hood

A

~L- ________ -L __ L-______ ~ ____ ~ ________ ~

o ~ 1000 1400

Fl (Hz)

Figure 3: Decision Boundaries Of a Nearest Neighbor Classifier For The Vowel
Problem Using 43 Exemplars selected Using Genetic Search.

approach is to use genetic algorithms.

Genetic algorithms were used to manipulate bit strings identifying useful exemplar
patterns. A bonus proportional to the number of unused exemplars was given to
strings with classifier accuracy above a user-preset threshold. The value k was also
selected by genetic algorithms in some experiments. The k value was encoded with
three bits which were attached to the end of each string. Exemplar selection was
tested with the vowel database used by (Ng and Lippmann, 1991). There were
ten classes, each class being a word starting with "h" and ending with "d", with a
vowel in between ("head" "hid" "hod" "had" "hawed" "heard" "heed" "hud" , , , , , , , ,
"who'd", and "hood"). A total of 338 patterns was used as the training set and
333 patterns were used as the testing set. Each pattern consisted of two features
which were the two formant frequencies of the vowel determined by spectrographic
analysis.

Genetic algorithms were effective in both reducing the number of exemplars and
selecting k. Classification error rates with selected exemplars were roughly 20%

on both training and test data. Selecting k typically resulted in fewer exemplars
and the number of exemplars required was reduced by a factor of roughly 8 (from
338 to 43). Genetic search was thus much more effective than the CKNN classifier

Using Genetic Algorithms to Improve Pattern Classification Performance 803

described in (N g and Lippmann, 1991) which reduced the number of exemplars by
a factor of roughly 2 (from 338 to 152). Decision boundaries with all 338 original
exemplars are shown in Fig. 2. Boundaries are excessively complex and provide
perfect performance on the training patterns but perform poorly on the testing
patterns (25% error rate). Decision boundaries with the 43 exemplars selected
using genetic algorithms are shown in Fig. 3. Boundaries with the smaller number

of exemplars are smoother and provide an error rate of 20.1 % on test data.

5 CONCLUSIONS

Genetic algorithms proved to be a good search technique which is widely applicable
in pattern classification. Genetic algorithms were relatively easy to apply to feature
selection, feature creation, and exemplar selection problems. Solutions were found
that were better than those provided by heuristic approaches including forward and
backward feature selection and condensed k nearest neighbor algorithms. Genetic
algorithms also required far fewer evaluations than required by exhaustive search
and sometimes required only little more computation than heuristic approaches.
Run times on a Sun-3 workstation were long (hours and sometimes one or two
days) but not impractical. Run times are becoming become less of an issue as
single-processor workstations become more powerful and as parallel computers be
come more available. Compared to developing a heuristic search technique for each
type of search problem, genetic algorithms offer the benefit of simplicity and good

performance on all problems. Further experiments should explore the use of genetic
algorithms in other application areas and also compare alternative search techniques

including simulated annealing.

Acknowledgements

This work was sponsored by the Air Force Office of Scientific Research and the
Department of the Air Force.

References

Eric I. Chang. Using Genetic Algorithm~ to Select and Create Features for Pattern
Classification. Master's Thesis, Massachusetts Institute of Technology, Department
of Electrical Engineering and Computer Science, Cambridge, MA, May 1990.

William Y. Huang and Richard P. Lippmann. HMM Speech Recognition Systems
with Neural Net Discrimination. In D. Touretzky (Ed.) Advances in Neural Infor

mation Processing Systems 2, 194-202, 1990.

Kenney Ng and Richard P. Lippmann. A Comparative Study of the Practical Char
acteristics of Neural Network and Conventional Pattern Classifiers. In Lippmann,
R., Moody, J., Touretzky, D., (Eds.) Advances in Neural Information Processing

Systems 3, 1991.

W. Siedlecki and J. Sklansky. On Automatic Feature Selection. International Jour

nal of Pattern Recognition and Artificial Intelligence, 2:197-220, 1988.

Darrel Whitley. The GENITOR Algorithm and Selection Pressure: Why Rank
Based Allocation of Reproductive Trials is Best . In Proceedings Third International

Conference on Genetic Algorithms, Washington, DC, June 1989.

