# Using genetic algorithms to solve combinatorial optimization problems 

Xinwei Cui<br>Florida International University

DOI: 10.25148/etd.FI14061560
Follow this and additional works at: https:// digitalcommons.fiu.edu/etd
Part of the Computer Sciences Commons

## Recommended Citation

Cui, Xinwei, "Using genetic algorithms to solve combinatorial optimization problems" (1991). FIU Electronic Theses and Dissertations. 2684.
https://digitalcommons.fiu.edu/etd/2684

# ABSTRACT OF THE THESIS <br> Using Genetic Algorithms to Solve Combinatorial Optimization Problems 

by<br>Xinwei Cui<br>Florida International University, 1991<br>Miami, Florida<br>Professor Mark A. Weiss, Major Professor

Genetic algorithms are stochastic search techniques based on the mechanics of natural selection and natural genetics. Genetic algorithms differ from traditional analytical methods by using genetic operators and historic cumulative information to prune the search space and generate plausible solutions. Recent research has shown that genetic algorithms have a large range and growing number of applications.

The research presented in this thesis is that of using genetic algorithms to solve some typical combinatorial optimization problems, namely the Clique, Vertex Cover and Max Cut problems. All of these are NP-Complete problems. The empirical results show that genetic algorithms can provide efficient search heuristics for solving these combinatorial optimization problems.

Genetic algorithms are inherently parallel. The Connection Machine system makes parallel implementation of these inherently parallel algorithms possible. Both sequential genetic algorithms and parallel genetic algorithms for Clique, Vertex Cover and Max Cut problems have been developed and implemented on the SUN4 and the Connection Machine systems respectively.

# FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida 

Using Genetic Algorithms to Solve Combinatorial Optimization Problems

A thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Computer Science
by

Xinwei Cui

1991

To Professors Luis L. Cova, Masoud T. Milani, Mark A. Weiss:

This thesis, having been approved in respect to form and mechanical execution, is referred to you for judgment upon its substantial merit.

Dean Arthur W. Herriott College of Arts and Sciences

The thesis of Xinwei Cui is approved.

Luis L. Cova

Masoud T. Milaņi

Mark A. Weiss, Major Professor

Date of Examination: April 19, 1991

## ACKNOWLEDGEMENTS

I would like to express my appreciation and gratitude to all those who have been involved in the preparation of this thesis: to my professors who initiated, supervised, and contributed to the final product. A special thanks to Dr. Raimund K. Ege for his granting of a Connection Machine Account; a great appreciation to Dr. Jainendra K. Navlakha for providing the newest research publications in genetic algorithms; and many thanks to the inter-library loan department at Florida International University for their excellent services.

Xinwei Cui

## Table of Contents

1 Introduction ..... 1
1.1 Statement of the Problems ..... 1
1.2 Approach for Solving the Problems ..... 5
1.3 An Outline of the Thesis ..... 6
2 Introduction to Genetic Algorithms ..... 8
2.1 Historical Perspective ..... 8
2.2 Concepts ..... 8
2.3 Unique Features of Genetic Algorithms ..... 13
2.4 Mathematical Foundations of Genetic Algorithms ..... 14
2.5 Genetic Algorithms' Applications ..... 19
3 Genetic Algorithms for Combinatorial Optimization Problems ..... 21
3.1 Genetic Algorithm for the Clique Problem ..... 21
3.1.1 Clique Problem ..... 21
3.1.2 Representation and Evaluation Function ..... 22
3.1.3 Genetic Operators ..... 23
3.1.4 Empirical Results ..... 27
3.1.5 An Example ..... 42
3.2 Genetic Algorithm for the Vertex Cover Problem ..... 43
3.2.1 Vertex Cover Problem ..... 43
3.2.2 Representation and Evaluation Function ..... 48
3.2.3 Generating Input Graph at Random ..... 49
3.2.4 Empirical Results ..... 52
3.3 Genetic Algorithm for the Max Cut Problem ..... 58
3.3.1 Max Cut Problem ..... 58
3.3.2 Representation and Evaluation Function ..... 58
3.3.3 Implementation ..... 59
3.3.4 Comparisons of Genetic Algorithm and Greedy Algorithm ..... 60
3.3.5 Comparisons of Genetic Algorithm Solutions and Optimal So- lutions ..... 61
3.4 Adapting Parameters ..... 62
4 Parallel Genetic Algorithms ..... 69
4.1 Connection Machine System ..... 69
4.2 C* Parallel Programming Language ..... 71
4.3 Implementation of Parallel Genetic Algorithms ..... 73
4.3.1 Parallel Data Structure ..... 73
4.3.2 Evaluation Function ..... 73
4.3.3 Reproduction ..... 76
4.3.4 Crossover ..... 80
4.3.5 Mutation ..... 82
4.4 Analysis of the Parallel Genetic Algorithm ..... 83
5 Advanced Techniques ..... 87
6 Conclusions ..... 89
7 Open Problems and Future Work ..... 91

## List of Tables

1 Clique Size $=20$ in Initial Graph $G$ ..... 32
2 Clique size $=\mathbf{2 5}$ in Initial Graph $G$ ..... 33
3 Clique Size $=30$ in Initial Graph $G$ ..... 34
4 Clique Size $=\mathbf{3 5}$ in Initial Graph $G$ ..... 35
5 Clique Size $=40$ in Initial Graph $G$ ..... 36
6 Report of Initial Generation for the Example ..... 44
7 Report of Generation 1 for the Example ..... 45
8
Report of Generation 7 for the Example ..... 46
9 Report of Generation 25 for the Example ..... 47
10 Total Vertices $=50$ in Initial Graph ..... 54
11 Total Vertices $=60$ in Initial Graph ..... 55
12 Total Vertices $=70$ in Initial Graph ..... 56
13 Total Vertices $=80$ in Initial Graph ..... 57
14 Density Probability $=0.4$ in Initial Graph ..... 63
15 Density Probability $=0.5$ in Initial Graph ..... 64
16 Density Probability $=0.6$ in Initial Graph ..... 65
17 Density Probability $=0.7$ in Initial Graph ..... 66
18 Comparisons of Results for Max Cut ..... 67
19 Increasing the Maximum Generation to Improve the Results ..... 68
20 Total Vertices $=10$ in Initial Graph $G$ ..... 85

21 Total Vertices $=20$ in Initial Graph $G$86

## List of Figures

1 Graph with Maximum Clique Size $4\left(v_{1}, v_{4}, v_{6}, v_{9}\right)$ ..... 2
2 Graph with Minimum Vertex Cover Size $4\left(v_{1}, v_{3}, v_{6}, v_{9}\right)$ ..... 3
3 Graph with Max Cut 44 ..... 4
4 Redrawn Graph with Max Cut 44 ..... 4
5 The Best Results of Generations (Clique Size $=20$ ) ..... 37
6 The Best Results of Generations (Clique Size $=\mathbf{2 5}$ ) ..... 38
$7 \quad$ The Best Results of Generations (Clique Size $=30$ ) ..... 39
8 The Best Results of Generations (Clique Size = 35) ..... 40
$9 \quad$ The Best Results of Generations (Clique Size $=40$ ) ..... 41
10 Input Graph for the Example ..... 42
11 Parallel Algorithm for Calculating Sub-sums ..... 77
12 Recursive Representation for Calculating Sub-sums ..... 78

## 1 Introduction

### 1.1 Statement of the Problems

In complexity theory, NP is the class of all decision problems that can be solved by polynomial time nondeterministic algorithms. P is the class of all decision problems that can be solved by polynomial time deterministic algorithms. Informally, a decision problem $L$ is NP-Complete if $L$ is in NP and, for all other decision problems, $L^{\prime}$ in NP, $L^{\prime}$ can be transformed to $L$ in polynomial time. In short, no NP-Complete problem is known to have a polynomial time deterministic algorithm, so if a problem is NP-Complete, the search for an efficient, exact algorithm for the problem should be accorded low priority [GJ79]. In practice, many problems are NP-Complete; for these we are faced with the task of finding some usable algorithms for dealing with them.

Although the theory of NP-Completeness restricts attention to decision problems, we can extend the implications of the theory to optimization problems. One approach to solve the optimization problems is that we no longer focus on finding an optimal solution, but instead try to find a near optimal solution within an acceptable amount of time.

The problems presented in this thesis are three basic NP-Complete problems which are called the Clique, Vertex Cover, and Max Cut problems.

A subgraph of $G=(V, E)$ is a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, where $V^{\prime} \subseteq V, E^{\prime} \subseteq E ; V, V^{\prime}$


Figure 1: Graph with Maximum Clique Size $4\left(v_{1}, v_{4}, v_{6}, v_{9}\right)$
are the sets of vertices, $E, E^{\prime}$ are the sets of edges.
A complete subgraph is a subgraph of given graph in which there is an edge between any two vertices.

The optimization problem for Clique is: In a given undirected graph, find a complete subgraph with maximum number of vertices. For example, there are 10 vertices in Figure 1. $v_{3}, v_{8}$, and $v_{10}$ is a clique with size 3. $v_{1}, v_{6}$, and $v_{7}$ is also a clique with size 3 . The maximum clique is $v_{1}, v_{4}, v_{6}$, and $v_{9}$ with size 4 .

The optimization problem for Vertex Cover is: In a given undirected graph, find a subset of vertices such that for each edge in the graph, at least one of the endpoints belongs to the subset, and the number of vertices in the subset is minimum.

Vertex Cover is a very practical problem. For example, when one wants to monitor


Figure 2: Graph with Minimum Vertex Cover Size $4\left(v_{1}, v_{3}, v_{6}, v_{9}\right)$
the operation of a large network, one expects to monitor as few nodes as possible. In Figure $2, v_{1}, v_{3}, v_{4}, v_{7}$, and $v_{9}$ are a vertex cover with size 5 . The minimum vertex cover is $v_{1}, v_{3}, v_{6}$, and $v_{9}$ with size 4 .

The optimization problem for $M a x C u t$ is: In a given undirected weighted graph, divide the vertices into two disjoint subsets such that the sum of the weights of the edges that have two endpoints in different subsets is maximized.

The Max Cut problem is also an NP-Complete problem which is very useful for the network design. In Figure 3, the max cut is 44 , since clearly, Figure 3 can be redrawn as Figure 4. The vertices are divided into two disjoint subsets $V_{1}=\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}$ and $V_{2}=\left\{v_{2}, v_{6}, v_{7}, v_{8}, v_{9}\right\}$.


Figure 3: Graph with Max Cut 44


Figure 4: Redrawn Graph with Max Cut 44

### 1.2 Approach for Solving the Problems

A combinatorial optimization problem is either a minimization problem or a maximization problem and consists of the following three parts:
(1) a set of instances;
(2) for each instance, a finite set of candidate solutions; and
(3) a function that assigns to each instance and each candidate solution a positive solution value.

If a problem is a minimization problem, then an optimal solution for an instance is a candidate solution $s_{1}$ such that, $s_{1}$ is less than or equal to all candidate solutions. If a problem is a maximization problem, then an optimal solution for an instance is a candidate solution $s_{2}$ such that, $s_{2}$ is greater than or equal to all candidate solutions. Clique and Max Cut are maximization problems, while Vertex Cover is a minimization problem.

An algorithm is an approximation algorithm for a combinatorial optimization problem if, given any instance, it finds a candidate solution. If for all instances, the algorithm always find an optimal solution, the algorithm is called an optimization algorithm.

The Clique, Vertex Cover and Max Cut problems are NP-Complete, therefore polynomial time optimization algorithms cannot be found unless $P=$ NP. A reasonable goal is that of finding approximation algorithms that run in low-order polynomial time and have the property that, for all instances, the algorithms can find a solution
which is close to optimal.

Genetic algorithms are stochastic search techniques based on the mechanics of natural selection and natural genetics. Genetic algorithms differ from traditional analytical methods by using genetic operators and historic cumulative information to prune the search space and generate plausible solutions. Recent research has shown that genetic algorithms can provide efficient search heuristics for solving optimization problems.

Genetic algorithms achieve both power and generality by demanding that problems be mapped into their own particular representation in order to be solved. If a fairly natural mapping exists, impressive robust performance results. Clique, Vertex Cover and Max Cut problems have very natural representations of genetic algorithms. Therefore, the genetic algorithms are useful for solving these problems.

### 1.3 An Outline of the Thesis

The following is a brief outline of the thesis: Section 2 introduces genetic algorithms. This section will discuss the historical perspective of genetic algorithms, concepts, unique features of genetic algorithms, mathematical foundations, and genetic algorithms' applications. Section 3 describes how to use genetic algorithms to solve Clique, Vertex Cover and Max Cut problems in detail and the effects of adaptive genetic parameters. Section 4 illustrates parallel genetic algorithms for Clique, Vertex Cover and Max Cut problems and the implementation of parallel genetic algorithms on the

Connection Machine. Section 5 presents advanced techniques of genetic algorithms.
The conclusions are provided in Section 6. Then finally ended with Section 7 open problems and future work.

## 2 Introduction to Genetic Algorithms

### 2.1 Historical Perspective

John Holland is the founder of the field of genetic algorithms. His publication of the book "Adaptation in Natural and Artificial Systems" [Hol75] provided a summary of the work which Holland and his students had been pursuing for some time. An important theme in this wide ranging study of the properties of adaptive systems was that adaptation can be usefully modeled as a form of search through a space of structural changes which one might make to a complex system in an attempt to "improve" its behavioral characteristics. This gave rise to a methodology for abstracting and rigorously explaining the adaptive processes of natural systems and designing artificial software systems that retains the important mechanisms of natural systems. Holland described the ability of the bit string representations to encode complicated structures, and the power of simple genetic operators to improve such structures. Holland showed that even in a large domain, genetic algorithms would tend to converge on solutions that were globally optimal or nearly so.

### 2.2 Concepts

Genetic algorithms represent a highly idealized model of a natural process and as such can be legitimately viewed as a very high level of abstraction. Genetic algorithms are rooted in both natural genetics and computer science. Biological systems developed
successful strategies of behavior adaptation and synthesis to enhance the probability of survival and propagation during their evolution. Environmental pressures requiring these strategies have effected profound changes in biological organisms. These changes are manifested in structural and functional organization, and internal knowledge representations [Aus90]. The metaphor of a genetic algorithm is that of natural evolution and selection. In cumulative selection, each successive incremental improvement in a solution structure becomes the basis for the next generation. The principles of natural selection and population genetics are intrinsically powerful. Algorithms inspired by these principles have been successful when applied to the challenges of machine learning and function optimization [Gol89].

In a natural genetic system, the chromosomes consist of genes. Each gene has a value and position. The combination of chromosomes form the total genetic prescription for the construction and operation of some organism [Gol89]. Corresponding to the natural genetic system, in an artificial genetic system, we use strings and characters to simulate chromosomes and genes. When using a genetic algorithm to solve a problem, we need to represent the problem by a string, and to define an evaluation function. This function uses the value of the string as a parameter to evaluate the results of the problem.

In a natural genetic system, we have populations and generations. Similar to natural systems, in an artificial genetic system we also have populations and generations. We use a set of strings to represent the populations. We evaluate each string
through the evaluation function and form the new generation by using specific genetic operators.

The behavior of genetic algorithms can be subtle, but their basic construction and execution cycle is straightforward. A genetic algorithm is an interactive procedure maintaining a population of strings that are candidate solutions to specific problems. During each generation, the strings in the current population are rated for their effectiveness as solutions, and on the basis of these evaluations, a new population of candidate solutions is formed using genetic operators such as reproduction, crossover, and mutation.

Reproduction is a process which determines the actual number of offspring each individual string will receive in the next generation based on the value of the evaluation function, which is called the fitness. The strings with higher fitness value have a greater probability of contributing one or more offspring to the next generation, while the strings with lower fitness value cannot survive in the next generation. The initial population can be chosen heuristically or randomly.

When a string has been selected for the next generation, it is entered into a mating pool for the operations of crossover and mutation.

Crossover is a method for sharing information between two successful individual strings. It explores the search space by changing some of the bit values in a string. One point crossover can be implemented by selecting a random integer position in the string and exchanging the segments to the right of this point with another string
similarly partitioned. We illustrate the one point crossover operator as follows:
Suppose that $A$ and $B$ are two parent strings selected randomly from the mating pool, and $k$ is the random integer position.

$$
\begin{gathered}
A=a_{1} a_{2} \ldots a_{k} a_{k+1} a_{k+2} \ldots a_{n} \\
B=b_{1} b_{2} \ldots b_{k} b_{k+1} b_{k+2} \ldots b_{n}
\end{gathered}
$$

After crossover, the children are

$$
\begin{aligned}
& A^{\prime}=a_{1} a_{2} \ldots a_{k} b_{k+1} b_{k+2} \ldots b_{n} \\
& B^{\prime}=b_{1} b_{2} \ldots b_{k} a_{k+1} a_{k+2} \ldots a_{n}
\end{aligned}
$$

Mutation is a simple operator which flips one or more bits of a string at random. In an artificial genetic system, the occasional use of the mutation operator can prevent the loss of some potentially useful genetic material.

Crossover will be affected by the crossover probability, which is the frequency with which the crossover operator is applied. The higher the crossover probability, the more quickly new strings are introduced to the population. When the crossover probability is too high, the string with higher fitness is removed faster than selection can produce improvements.

Mutation will be affected by the mutation probability, which is the frequency with which the mutation operator is applied. A low level of mutation prevents a given position from freezing at a single value.

The C code for the general outline of a genetic algorithm is the following:

```
Genetic_Algorithm ()
{
    int generation;
    encode_problem ();
    initialize_population ();
    for (generation=1; generation<=maxgeneration; generation + +)
    {
        selection ();
        crossover ();
        mutation ();
        evaluation ();
        decode_string ();
        statistics ();
        report ();
    }
}
```

If we define:
$L$ is the string length
$P$ is the population size
$G$ is the number of generations
then the time complexity of a genetic algorithm is $O(L \times P \times G)$.
Genetic algorithms are easy to implement. All the operator functions can be used for the different problems. When we want to solve a problem, all we need to do is to encode the problem to a string representation, input the value of the problem, define the evaluation function, and decode the string to the problem itself.

### 2.3 Unique Features of Genetic Algorithms

Genetic algorithms are different from traditional analytical methods. Genetic algorithms are derived from a simple model of population genetics based on the following assumptions [DS87, Gol89]:

- The problem and its inputs and outputs can be represented as fixed length strings having a finite number of possible values, at each position.
- At any time, the system maintains a population which contains a finite number of strings and represents the current set of solutions to the problem.
- Each point in the search space can be uniquely represented by a string generated from the finite number of possible values.
- Each string has a fitness, or relative ability to survive and produce offspring.

Genetic algorithms work from population points, not a single point; and use probabilistic transition rules, not deterministic rules. To use a genetic algorithm to solve a problem, we must:

- represent the problem as a finite length string over some finite alphabet.
- choose a way to create an initial population of solutions.
- define evaluation function, and use the information of the evaluation function to rate solutions in terms of their fitness.
- use genetic operators that alter the composition of children in the next generation.
- set the parameter values of the genetic algorithm.


### 2.4 Mathematical Foundations of Genetic Algorithms

Holland's genetic algorithm theory is called the Schema Theorem which describes the actual behavior of genetic algorithms. A schema is the set of all strings having certain "defining" values at designated positions in the string. For example, schema $0^{* * *} 1$ is the set of all strings of length 5 having the value 0 in the first position and the value 1 in the last position, where * is a wild card. The Schema Theorem provides a lower bound on the expected number of representatives of a particular schema in the next generation under various genetic operators.

For any string of length $l$ over the binary alphabet $\{0,1\}$, there are $3^{l}$ schemata because each of the $l$ positions may be a 0,1 , or ${ }^{*}$. A particular string contains $2^{l}$ schemata because each position may take on its actual value or a *. A population of size $n$ contains somewhere between $2^{l}$ and $n \times 2^{l}$ schemata, depending upon the
population diversity.
The schema describes the similarities among the strings in the population. When we consider the strings, their fitness, and their similarities simultaneously, we can obtain a wealth of new information to help direct our search. The schemata actually processed in each generation are affected by reproduction, crossover, and mutation operators. To analyze the growth and decay of the many schemata contained in a population, we need to define two schema properties: schema order and defining length.

The order of a schema $H$, denoted by $o(H)$, is simply the number of fixed positions presented in the schema. For example, the order of schema $0^{* * *} 1$ is 2 .

The defining length of a schema $H$, denoted by $\delta(H)$, is the distance between its first and last fixed position. For example, the schema $01^{* *} 1$ has defining length $\delta(H)=5-1=4$. The schema ${ }^{* *} 1^{* *}$ has defining length 0 because the first and the last fixed positions are the same (namely the third position).

Schemata and their properties are interesting notational devices for rigorously discussing and classifying string similarities. They provide the basic means for analyzing the individual and combined effect of reproduction, crossover, and mutation on schemata contained within the population strings.

Schema theorem can be represented by the following equation:

$$
m(H, t+1) \geq m(H, t) \times\left[\frac{f(H, t)}{\bar{f}(t)}\right] \times\left[1-\frac{P_{c} \delta(H)}{l-1}-o(H) P_{m}\right]
$$

where $m(H, t)$ is the expected number of strings of a particular schema $H$ in popu-
lation $P(t), f(H, t)$ is simply the average fitness of the strings of schema $H$ at time $t, \bar{f}(t)$ denotes the average fitness of the individuals in population $P(t), P_{c}$ is the crossover probability, $\delta(H)$ is the defining length of schema $H$, which is the distance between the first and last specific string position, $l$ is the length of each individual string, $o(H)$ is the order of schema $H$, which is simply the number of fixed positions, $P_{m}$ is the mutation probability.

The effect of reproduction on the expected number of schemata in the population is easy to determine. Suppose at a given time step $t$ there are $m$ examples of a particular schema $H$ contained within the population $P(t)$. During reproduction, a string $A_{i}$ is copied according to its fitness with probability $p_{i}=\frac{f_{i}}{\sum f_{j}}$. After picking a nonoverlapping population of size $n$ with replacement from the population $P(t)$, we expect to have $m(H, t+1)$ representatives of the schema $H$ in the population at time $t+1$ as given by the equation $m(H, t+1)=m(H, t) \times n \times \frac{f(H, t)}{\sum f_{j}}$, where $f(H, t)$ is the average fitness of the strings representing schema $H$ at time $t$. If we recognize that the average fitness of the entire population is $\bar{f}(t)=\frac{\sum f_{j}}{n}$, then

$$
m(H, t+1)=m(H, t) \frac{f(H, t)}{\bar{f}(t)}
$$

From this equation, we know that schemata with fitness values above the population average will receive an increasing number of samples in the next generation, while schemata with fitness values below the population average will receive a decreasing number of samples.

Reproduction alone does nothing to promote exploration of new regions of the
search space, since no new points are searched. If we only copy old strings without change, we won't ever try anything new. This is why we need crossover.

Crossover leaves a schema unscathed if it does not cut the schema, but it may disrupt a schema when it does. For example, consider a particular string of length 10 and two representative schemata within that string:

$$
\begin{aligned}
& A=0110001000 \\
& H_{1}=0 * * * * * * * 0 * \\
& H_{2}=* * 1 * 0^{* * * * *}
\end{aligned}
$$

String $A$ is represented by schemata $H_{1}$ and $H_{2}$, but the effect of crossover on the schemata are different. Suppose string $A$ has been chosen for mating and crossover, the random crossover point is 5 . We use the symbol | to mark the crossover point as follows:

$$
\begin{aligned}
& A=01100 \mid 01000 \\
& H_{1}=0 * * * * \mid * * * 0^{*} \\
& H_{2}=\left.* * 1^{*} 0\right|^{* * * * *}
\end{aligned}
$$

Unless string $A$ 's mate is identical to $A$ at the fixed positions of schema, the schema $H_{1}$ will be destroyed because the fixed positions are on opposite of the crossover point, while schema $H_{2}$ will survive because the fixed positions will be carried intact to a single offspring. Schema $H_{1}$ has a defining length 8 which is bigger than defining length 2 of schema $H_{2}$. It is clear that schema $H_{1}$ is less likely to survive crossover
than schema $H_{2}$ because on average the crossover point is more likely to fall between the fixed positions. If the crossover point is chosen uniformly at random among the $l-1=9$ possible points, then schema $H_{1}$ is destroyed with probability $p_{d 1}=$ $\frac{\delta\left(H_{1}\right)}{l-1}=\frac{8}{9}$, schema $H_{2}$ is destroyed with probability $p_{d 2}=\frac{\delta\left(H_{2}\right)}{l-1}=\frac{2}{9}$. Therefore schema $H_{1}$ survives with probability $p_{s 1}=1-p_{d 1}=\frac{1}{9}$, schema $H_{2}$ survives with probability $p_{s 2}=1-p_{d 2}=\frac{7}{9}$. Generally, the survival probability $p_{s}=1-\frac{\delta(H)}{l-1}$. If crossover is performed with crossover probability $P_{c}$ at a particular mating, the survival probability will be

$$
p_{s} \geq 1-P_{\mathrm{c}} \times \frac{\delta(H)}{l-1}
$$

When $P_{\mathrm{c}}=1.0, p_{s} \geq 1-\frac{\delta(H)}{l-1}$.
Suppose that that the reproduction and crossover operations are independent.
Then the combined effect of crossover and reproduction is

$$
m(H, t+1) \geq m(H, t) \times\left[\frac{f(H, t)}{\bar{f}(t)}\right] \times\left[1-\frac{P_{c} \delta(H)}{l-1}\right]
$$

The last operator is mutation. Mutation is the random change of a single position with mutation probability $P_{m}$. In order for a schema $H$ to survive, all of the specified positions must themselves survive. Since a single character survives with probability ( $1-P_{m}$ ), and since each of mutations is statistically independent, a particular schema survives when each of the $o(H)$ fixed positions within the schema survives. Multiplying the survival probability $\left(1-P_{m}\right)$ by itself $o(H)$ times, the survival probability of mutation is $\left(1-P_{m}\right)^{o(H)}$. For small values of $P_{m}\left(P_{m} \ll 1.0\right)$, the survival probability of mutation is approximately $1-o(H) \times P_{m}$, by the binomial theorem. Therefore the
combined effect of reproduction, crossover and mutation operations is the following equation (ignoring small cross-product terms):

$$
m(H, t+1) \geq m(H, t) \times\left[\frac{f(H, t)}{\bar{f}(t)}\right] \times\left[1-\frac{P_{c} \delta(H)}{l-1}-o(H) P_{m}\right]
$$

The schema theorem tell us that schema $H$ grows or decays depending upon a multiplicative factor. If $f(H, t)>\bar{f}(t), \delta(H)$ is smaller, and $o(H)$ is smaller, then $m(H, t+1)$ will be bigger, i.e. the schemata which have higher fitness than average fitness, short defining length, and low-order will receive more strings in the next generation. [Ant89, BG87, Gol89, GB89, Hol75]

### 2.5 Genetic Algorithms' Applications

Genetic algorithms have a large range and growing number of applications which can be found in scientific areas such as Biology, Chemistry, Computer Science, Engineering and Operations Research, Image Processing and Pattern Recognition, Mathematics, Physical Sciences, and Social Sciences, among others. Industry has used genetic algorithms to carry out commercial optimization. The following is the brief overview of genetic algorithms' applications in different disciplines.

- Job Shop Scheduling: Scheduling the day-to-day workings of a job shop which is an organization composed of a number of work stations capable of performing operations on objects. Specifying which work station is to perform which operations on which objects from which contracts. [Dav85]
- Communication Network: Finding low-cost sets of packet switching communication network links when the network topology has been fixed. [DC87]
- Boolean Satisfiability Problem: Given an arbitrary boolean expression of $n$ variables, finding an assignment to those variables such that the expression is true. [DJS89]
- Visual Recognition: Classifying distorted examples of different but similar classes of image patterns. [Eng85]
- Traveling Salesman Problem: Finding the shortest route to be taken by a salesman who must visit each of $n$ cities exactly once. [FW90]
- Optimization of Pipeline Systems: Applying genetic algorithms to optimization and machine learning problems in natural gas pipeline control. [Gol89]
- Chemometrics: The processing of analytical information and data in chemometrics (which is a subdiscipline of analytical chemistry). [LK89]
- Multiple Objective Optimization: Handling multiple non-commensurable objectives such factors as cost, safety and performance. [Sch85]
- Biological Development: Simulating the evolution of simple multicellular systems. [Wil87]


# 3 Genetic Algorithms for Combinatorial Optimization Problems 

### 3.1 Genetic Algorithm for the Clique Problem

The Clique problem is one of the basic NP-Complete problems. In this section, a genetic approach to generating solutions for the Clique problem is described. Empirical results are reported which demonstrate the effectiveness of genetic algorithms in solving combinatorial optimization problems.

In genetic algorithms, there are some important genetic parameters such as population size, maximum generation, crossover probability and mutation probability. We will discuss their effect for the Clique problem in section 3.4.

### 3.1.1 Clique Problem

The Clique problem can be stated as follows [GJ79]:
INSTANCE: A graph $G=(V, E)$ and a positive integer $K \leq|V|$, where $V$ is a set of vertices, and $E$ is a set of edges.

QUESTION: Does $G$ contain a clique of size $K$ or more, that is, a subset $V^{\prime} \subseteq V$ such that $\left|V^{\prime}\right| \geq K$ and every two vertices in $V^{\prime}$ are joined by an edge in $E$ ?

The Clique problem is NP-Complete. In complexity theory, NP is the class of all decision problems that can be solved by polynomial time nondeterministic algorithms. Although the theory of NP-Completeness restricts attention to decision problems, we
can extend the implications of the theory to optimization problems. The optimization problem for the Clique problem is to find the maximum $K$ in a graph $G$, where $K$ is the clique size.

### 3.1.2 Representation and Evaluation Function

First, the Clique problem is encoded as a string. In a graph $G=(V, E)$, with $n$ vertices, the vertices are numbered from 1 to $n$. Solutions to the Clique problem can be represented by an $n$-bit string $c_{1} c_{2} \ldots c_{n}$, where $c_{i}=0$ or $1, i=1,2, \ldots, n$. Each bit position corresponds to the numbered vertex. $c_{i}=1$ means vertex $v_{i} \in V^{\prime}$, i.e. $v_{i}$ is in the clique.

Second, the penalty method is used to define the evaluation function as follows [RPLH89]:
evaluation function $=$ total edges which should be in the clique of size $K-$ penalty
penalty $=\left(\text { the number of unconnected edges in } V^{\prime}\right)^{2}$
When the $n$-bit string $c_{1} c_{2} \ldots c_{n}$ has $K 1$ bits $(K \leq n)$, the total edges contained in the clique is

$$
\sum_{i=1}^{K-1} i=\frac{K(K-1)}{2}
$$

When the value of the function (finess) is smaller than 0 , the function returns 0 . If a subset $V^{\prime} \subseteq V$ is a clique, then penalty $=0$.

### 3.1.3 Genetic Operators

Genetic algorithms have three primary operators. They are reproduction, crossover, and mutation.

Reproduction: Genetic algorithms process populations of strings. The string length for the Clique problem is the number of vertices in a graph $G$. We use the function fip with the probability 0.05 to randomly generate the initial population for the Clique problem. Using a smaller probability to generate the initial population can obtain cliques with smaller size first, and improve the result in later generations, and can also avoid the loss of feasible solutions. The function fip returns a boolean value 1 (true) or 0 (false) according to the given probability parameter. The C code fragment for the function fip is the following:

```
# define range 2147483647.0/* 231 - 1 */
flip (probability )
float probability;
{
    return ((double ) random () / range <= probability );
    }
```

Reproduction is a process which determines the actual number of offspring each individual string will receive in the next generation based on the values of their evaluation function. The strings with higher fitness value have a greater probability of contributing one or more offspring to the next generation, while the strings with
lower fitness value cannot survive to the next generation.
There are many algorithms to select offspring. Baker's sampling algorithm is used to implement the reproduction function [Bak87]. This algorithm is more efficient than other algorithms. The time complexity of genetic algorithms' other phases is $O(L \times P)$ in each generation, where $L$ is the string length, $P$ is the population size. It is desirable for the reproduction phase not to increase the genetic algorithms' overall time complexity. The time complexity of Baker's algorithm is $O(P)$, while the complexity of other algorithms is $O(P \log P)$.

The basic idea of the Baker's sampling algorithm is as follows: First, compute the sum of the fitness over all strings. Second, calculate step, which is the sum of the fitness divided by the population size. Then generate pointer randomly by using a random integer uniformly distributed in $[0$, step $)$. Finally, for each string, determine how many copies should be put into the mating pool according to the step and random pointer. The C code fragment for the reproduction operator is the following:

```
# define range 2147483647.0 /* 231 - 1 */
reproduction ()
{
    float ptr, sum=0.0, step;
    int i, flag=0;
        step =(float ) sumfitness / populationsize;
        ptr = random ()/ range * step;
```

$$
\begin{aligned}
& \text { for }(i=1 ; i<=\text { populationsize } ; i++) \\
& \qquad \text { for (sum }+=(\text { float }) \text { fitness }[i] ; \text { sum }>\operatorname{ptr} ; \text { ptr }+=\text { step }) \\
& \text { mating_pool }[++ \text { flag }]=i
\end{aligned}
$$

When a string has been selected for the next generation, it is entered into a mating pool for the operations of crossover and mutation.

Crossover: Crossover is a method for sharing information between two successful individual strings. It explores the search space by changing some of the bit values in a string. In the algorithm, a one point crossover operator is used. The mating schema is that two parents selected randomly from the mating pool are exchanged to produce two children to replace them. Crossover can be implemented by selecting a random integer position in the string and exchanging the segments to the right of this point with another string similarly partitioned. The $C$ code fragment for the crossover operator is following:

```
crossover(j)
int j;
{
int i;
        if (flip(cross_prob)}==1
        jcross=range_random(1, stringlength );
        else
```

```
            jcross=stringlength;
                for (i=1; i<=jcross; i++)
                {
    new_string[j][i]=mutation(old_string[mate1][i]);
    new_string[j+1][i]=mutation(old_string[mate2][i]);
}
if (jcross != stringlength)
    for (i=jcross +1; i<=stringlength; i + +)
    {
        new_string[j][i]=mutation(old_string[mate2][i]);
        new_string[j+1][i]=mutation(old_string[mate1][i]);
    }
}
```

Crossover will be affected by the crossover probability, which is the frequency the crossover operator is applied. When the crossover probability is too high, the string with higher fitness is removed faster than selection can produce improvements. Therefore, crossover probability 0.5 is used in the experiments.

Mutation: Mutation is a simple operator which flips one or more bits at random using some mutation probability. In an artificial genetic system, the occasional use of the mutation operator can prevent the loss of some potentially useful genetic material. Mutation probability 0.01 is used in the experiments. The C code fragment for the
mutation operator is the following:

```
mutation(bit_string)
int bit_string;
\(\{\)
    int res;
        if \((\operatorname{flip}(\) mutation_prob \()==1)\)
        \(\{\)
            if (bit_string \(==1\) )
            res \(=0 ;\)
        else
            res \(=1\);
    \}
    else
        res \(=\) bit_string;
    return(res);
\}
```


### 3.1.4 Empirical Results

For testing purposes, the input graph $G$ is initialized by the following method:
The total number of vertices, $n$, in a graph $G$ is an input parameter, and matrix $M$ represents the graph.

$$
M=\left(\begin{array}{cccccc}
0 & a_{12} & a_{13} & a_{14} & \cdots & a_{1 n} \\
0 & 0 & a_{23} & a_{24} & \cdots & a_{2 n} \\
0 & 0 & 0 & a_{34} & \cdots & a_{3 n} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & 0 & \cdots & a_{n-1 n} \\
0 & 0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

where $a_{i j}=1$ or $0 . a_{i j}=1$ means that there is an edge between vertex $v_{i}$ and vertex $v_{j}$, for $i<j$. (Although the graph is undirected we adopt the following convention: $a_{i j}=0$ if $i \geq j$.)

First, use function fip with 0.5 probability and different random seed to generate the matrix $M$. Second, generate $m$ distinct random numbers between 1 and $n$, where $m=\left|V^{\prime}\right|$ and $m \leq n$, that is, $m$ is the number of vertices in the clique. Then, make the $m$ vertices as a clique. When $m$ is small, it is possible that there is a clique bigger than $m$. However, when $m$ is large, it is unlikely that there is a clique bigger than $m$.

Running the genetic algorithm, the number of unconnected edges in $V^{\prime}$ is computed as follows:
(1) count the number of 1's in a string, put the corresponding position in a buffer;
(2) check whether the subset $V^{\prime}$ consists of a clique by using matrix $M$.

The C code for computing the fitness of each string is the following:
evaluation function(string)

```
    int string[maxsting];
    {
    int res, count=0, i, j;
    int buffer[maxstring];
    penalty = 0;
    for (j=1; j<=stringlength; j++)
        if (string[j] == 1)
        {
            count ++;
            buffer[count] = j;
        }
    res = count * (count - 1)/2;
    for (i=1, i<count; i++)
        for ( }\textrm{j}=\textrm{i}+1;\textrm{j}<==\mathrm{ count; j++)
        if (M[buffer[i]] [buffer[j]] != 1)
        penalty ++;
    res -= penalty * penalty;
    return (max(res, 0));
}
```

In the experiment, population size $=80$, maximum generation $=200$, crossover probability $=0.5$, mutation probability $=0.01$ are used to test the algorithm. Differ-
ent seed numbers and different vertex numbers in the clique are also used to generate the initial graph $G$. The tests are performed separately for the total number 50,60 , $70,80,90$, and 100 vertices in a graph $G$. Empirical results are reported in Tables 1 $-5$.

Let us define [GJ79]:

$$
\text { performance guarantee }=\frac{\text { the clique size in the result }}{\text { the clique size in the initial graph }} \times 100
$$

The results show that $77.33 \%$ tests get optimal results (the performance guarantee $=100.00), 22.67 \%$ tests get near optimal results and the average performance guarantee is $98.80 \%$ which is quite high for the heuristic algorithms or approximation algorithms. The algorithm can get "good" solutions in an acceptable amount of time. For example, the total number of vertices in a graph is 100 , population size $=80$, generation $=200$, the running time of the algorithm is 2 or 3 minutes. All experiments run on the SUN 4 machine under the UNIX operating system.

For a specific clique problem, we can arrange two or three set of parameters to run the program and get optimal or very close to optimal results.

All the operator functions and initial population, statistics and report functions can be used for the other problems. Therefore, when solving a new problem, all we need to do is to encode the problem to a string representation, input the values of the problem and define the evaluation function properly.

Figures 5-9 show the best results in every generation for the problems which population size $=80$, maximum generation $=200$, crossover probability $=0.5$, mu-
tation probability $=0.01$, vertices number $=80$, seed $=1,2,3,5,6$, and clique size in initial graph $=20,25,30,35$, and 40 separately.

| total vertices | best generation | seed | clique size <br> in initial $G$ | clique size in result | performance guarantee |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | 57 | 1 | 20 | 20 | 100.00 |
| 60 | 62 | 1 | 20 | 20 | 100.00 |
| 70 | 63 | 1 | 20 | 20 | 100.00 |
| 80 | 99 | 1 | 20 | 20 | 100.00 |
| 90 | 116 | 1 | 20 | 20 | 100.00 |
| 100 | 111 | 1 | 20 | 20 | 100.00 |
| 50 | 70 | 2 | 20 | 20 | 100.00 |
| 60 | 60 | 2 | 20 | 20 | 100.00 |
| 70 | 43 | 2 | 20 | 20 | 100.00 |
| 80 | 89 | 2 | 20 | 20 | 100.00 |
| 90 | 107 | 2 | 20 | 20 | 100.00 |
| 100 | 67 | 2 | 20 | 20 | 100.00 |
| 50 | 45 | 3 | 20 | 20 | 100.00 |
| 60 | 70 | 3 | 20 | 20 | 100.00 |
| 70 | 59 | 3 | 20 | 20 | 100.00 |
| 80 | 129 | 3 | 20 | 20 | 100.00 |
| 90 | 135 | 3 | 20 | 20 | 100.00 |
| 100 | 130 | 3 | 20 | 20 | 100.00 |
| 50 | 38 | 4 | 20 | 20 | 100.00 |
| 60 | 51 | 4 | 20 | 20 | 100.00 |
| 70 | 80 | 4 | 20 | 20 | 100.00 |
| 80 | 102 | 4 | 20 | 20 | 100.00 |
| 90 | 173 | 4 | 20 | 19 | 95.00 |
| 100 | 110 | 4 | 20 | 20 | 100.00 |
| 50 | 43 | 5 | 20 | 20 | 100.00 |
| 60 | 47 | 5 | 20 | 20 | 100.00 |
| 70 | 58 | 5 | 20 | 20 | 100.00 |
| 80 | 92 | 5 | 20 | 20 | 100.00 |
| 90 | 156 | 5 | 20 | 20 | 100.00 |
| 100 | 93 | 5 | 20 | 20 | 100.00 |

Table 1: Clique Size $=20$ in Initial Graph $G$

| total vertices | best generation | seed | clique size in initial $G$ | clique size in result | performance guarantee |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | 67 | 1 | 25 | 25 | 100.00 |
| 60 | 78 | 1 | 25 | 25 | 100.00 |
| 70 | 96 | 1 | 25 | 25 | 100.00 |
| 80 | 99 | 1 | 25 | 25 | 100.00 |
| 90 | 56 | 1 | 25 | 25 | 100.00 |
| 100 | 133 | 1 | 25 | 25 | 100.00 |
| 50 | 68 | 2 | 25 | 25 | 100.00 |
| 60 | 78 | 2 | 25 | 25 | 100.00 |
| 70 | 69 | 2 | 25 | 25 | 100.00 |
| 80 | 78 | 2 | 25 | 25 | 100.00 |
| 90 | 85 | 2 | 25 | 25 | 100.00 |
| 100 | 97 | 2 | 25 | 25 | 100.00 |
| 50 | 64 | 3 | 25 | 25 | 100.00 |
| 60 | 66 | 3 | 25 | 25 | 100.00 |
| 70 | 120 | 3 | 25 | 25 | 100.00 |
| 80 | 75 | 3 | 25 | 25 | 100.00 |
| 90 | 176 | 3 | 25 | 25 | 100.00 |
| 50 | 57 | 4 | 25 | 25 | 100.00 |
| 60 | 60 | 4 | 25 | 25 | 100.00 |
| 70 | 87 | 4 | 25 | 25 | 100.00 |
| 80 | 73 | 4 | 25 | 25 | 100.00 |
| 90 | 134 | 4 | 25 | 25 | 100.00 |
| 100 | 135 | 4 | 25 | 25 | 100.00 |
| 50 | 87 | 5 | 25 | 25 | 100.00 |
| 60 | 67 | 5 | 25 | 25 | 100.00 |
| 70 | 68 | 5 | 25 | 25 | 100.00 |
| 80 | 83 | 5 | 25 | 25 | 100.00 |
| 90 | 121 | 5 | 25 | 25 | 100.00 |
| 100 | 65 | 5 | 25 | 25 | 100.00 |

Table 2: Clique size $=25$ in Initial Graph $G$

| total <br> vertices | best generation | seed | clique size <br> in initial $G$ | clique size in result | performance guarantee |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | 75 | 1 | 30 | 30 | 100.00 |
| 60 | 55 | 1 | 30 | 30 | 100.00 |
| 70 | 99 | 1 | 30 | 30 | 100.00 |
| 80 | 77 | 1 | 30 | 30 | 100.00 |
| 90 | 116 | 1 | 30 | 30 | 100.00 |
| 100 | 119 | 1 | 30 | 30 | 100.00 |
| 50 | 85 | 2 | 30 | 30 | 100.00 |
| 60 | 99 | 2 | 30 | 30 | 100.00 |
| 70 | 101 | 2 | 30 | 30 | 100.00 |
| 80 | 104 | 2 | 30 | 30 | 100.00 |
| 90 | 114 | 2 | 30 | 29 | 96.67 |
| 100 | 192 | 2 | 30 | 30 | 100.00 |
| 50 | 81 | 3 | 30 | 30 | 100.00 |
| 60 | 110 | 3 | 30 | 30 | 100.00 |
| 70 | 102 | 3 | 30 | 30 | 100.00 |
| 80 | 129 | 3 | 30 | 30 | 100.00 |
| 90 | 132 | 3 | 30 | 30 | 100.00 |
| 100 | 85 | 3 | 30 | 30 | 100.00 |
| 50 | 62 | 4 | 30 | 30 | 100.00 |
| 60 | 130 | 4 | 30 | 30 | 100.00 |
| 70 | 79 | 4 | 30 | 30 | 100.00 |
| 80 | 130 | 4 | 30 | 30 | 100.00 |
| 90 | 186 | 4 | 30 | 30 | 100.00 |
| 100 | 169 | 4 | 30 | 30 | 100.00 |
| 50 | 102 | 5 | 30 | 30 | 100.00 |
| 60 | 126 | 5 | 30 | 30 | 100.00 |
| 70 | 122 | 5 | 30 | 30 | 100.00 |
| 80 | 135 | 5 | 30 | 30 | 100.00 |
| 90 | 118 | 5 | 30 | 30 | 100.00 |
| 100 | 141 | 5 | 30 | 30 | 100.00 |

Table 3: Clique Size $=\mathbf{3 0}$ in Initial Graph $G$

| total vertices | best generation | seed | clique size in initial $G$ | clique size in result | performance guarantee |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | 149 | 1 | 35 | 35 | 100.00 |
| 60 | 113 | 1 | 35 | 35 | 100.00 |
| 70 | 154 | 1 | 35 | 35 | 100.00 |
| 80 | 89 | 1 | 35 | 34 | 97.14 |
| 90 | 103 | 1 | 35 | 35 | 100.00 |
| 100 | 123 | 1 | 35 | 34 | 97.14 |
| 50 | 103 | 2 | 35 | 35 | 100.00 |
| 60 | 75 | 2 | 35 | 35 | 100.00 |
| 70 | 133 | 2 | 35 | 34 | 97.14 |
| 80 | 120 | 2 | 35 | 35 | 100.00 |
| 90 | 189 | 2 | 35 | 35 | 100.00 |
| 100 | 115 | 2 | 35 | 34 | 97.14 |
| 50 | 136 | 3 | 35 | 35 | 100.00 |
| 60 | 98 | 3 | 35 | 35 | 100.00 |
| 70 | 156 | 3 | 35 | 35 | 100.00 |
| 80 | 188 | 3 | 35 | 35 | 100.00 |
| 90 | 189 | 3 | 35 | 34 | 97.14 |
| 100 | 144 | 3 | 35 | 35 | 100.00 |
| 50 | 100 | 4 | 35 | 35 | 100.00 |
| 60 | 117 | 4 | 35 | 35 | 100.00 |
| 70 | 86 | 4 | 35 | 35 | 100.00 |
| 80 | 84 | 4 | 35. | 35 | 100.00 |
| 90 | 129 | 4 | 35 | 34 | 97.14 |
| 100 | 129 | 4 | 35 | 34 | 97.14 |
| 50 | 160 | 5 | 35 | 35 | 100.00 |
| 60 | 124 | 5 | 35 | 35 | 100.00 |
| 70 | 118 | 5 | 35 | 35 | 100.00 |
| 80 | 154 | 5 | 35 | 35 | 100.00 |
| 90 | 97 | 5 | 35 | 34 | 97.14 |
| 100 | 69 | 5 | 35 | 33 | 94.29 |

Table 4: Clique Size $=35$ in Initial Graph $G$

| total vertices | best generation | seed | clique size <br> in initial $G$ | clique size in result | performance guarantee |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | 175 | 1 | 40 | 40 | 100.00 |
| 60 | 92 | 1 | 40 | 40 | 100.00 |
| 70 | 105 | 1 | 40 | 39 | 97.50 |
| 80 | 124 | 1 | 40 | 38 | 95.00 |
| 90 | 144 | 1 | 40 | 37 | 92.50 |
| 100 | 106 | 1 | 40 | 37 | 92.50 |
| 50 | 78 | 2 | 40 | 40 | 100.00 |
| 60 | 181 | 2 | 40 | 40 | 100.00 |
| 70 | 139 | 2 | 40 | 39 | 97.50 |
| 80 | 107 | 2 | 40 | 39 | 97.50 |
| 90 | 73 | 2 | 40 | 37 | 92.50 |
| 100 | 190 | 2 | 40 | 39 | 97.50 |
| 50 | 102 | 3 | 40 | 39 | 97.50 |
| 60 | 126 | 3 | 40 | 39 | 97.50 |
| 70 | 159 | 3 | 40 | 39 | 97.50 |
| 80 | 106 | 3 | 40 | 39 | 97.50 |
| 90 | 98 | 3 | 40 | 37 | 92.50 |
| 100 | 154 | 3 | 40 | 39 | 100.00 |
| 50 | 89 | 4 | 40 | 39 | 97.50 |
| 60 | 153 | 4 | 40 | 40 | 100.00 |
| 70 | 80 | 4 | 40 | 39 | 97.50 |
| 80 | 91 | 4 | 40 | 39 | 97.50 |
| 90 | 97 | 4 | 40 | 38 | 95.00 |
| 100 | 140 | 4 | 40 | 39 | 97.50 |
| 50 | 143 | 5 | 40 | 40 | 100.00 |
| 60 | 149 | 5 | 40 | 40 | 100.00 |
| 70 | 156 | 5 | 40 | 39 | 97.50 |
| 80 | 156 | 5 | 40 | 39 | 97.50 |
| 90 | 96 | 5 | 40 | 38 | 95.00 |
| 100 | 180 | 5 | 40 | 39 | 97.50 |

Table 5: Clique Size $=40$ in Initial Graph $G$


Figure 5: The Best Results of Generations (Clique Size $=\mathbf{2 0}$ )
population size $=80$, maximum generation $=200$, crossover probability $=0.5$, mutation probability $=0.01$, seed $=1$, vertices number $=80$, clique size in initial graph $=$ 20. best generation $=99$. best fitness $=20 \times(20-1) / 2=190$, that is, clique size founded $=20$.


Figure 6: The Best Results of Generations (Clique Size $=\mathbf{2 5}$ ) population size $=80$, maximum generation $=200$, crossover probability $=0.5$, mutation probability $=0.01$, seed $=2$, vertices number $=80$, clique size in initial graph $=$ 25. best generation $=78$. best fitness $=25 \times(25-1) / 2=300$, that is, clique size founded $=25$.
fitness


Figure 7: The Best Results of Generations (Clique Size $=30$ )
population size $=80$, maximum generation $=200$, crossover probability $=0.5$, mutation probability $=0.01$, seed $=3$, vertices number $=80$, clique size in initial graph $=$ 30. best generation $=129$. best fitness $=30 \times(30-1) / 2=435$, that is, clique size founded $=30$.
fitness


Figure 8: The Best Results of Generations (Clique Size $=\mathbf{3 5}$ )
population size $=80$, maximum generation $=200$, crossover probability $=0.5$, mutation probability $=0.01$, seed $=5$, vertices number $=80$, clique size in initial graph $=$ 35. best generation $=154$. best fitness $=35 \times(35-1) / 2=595$, that is, clique size founded $=35$.


Figure 9: The Best Results of Generations (Clique Size $=40$ )
population size $=80$, maximum generation $=200$, crossover probability $=0.5$, mutation probability $=0.01$, seed $=6$, vertices number $=80$, clique size in initial graph $=$ 40. best generation $=121$. best fitness $=40 \times(40-1) / 2=780$, that is, clique size founded $=40$.


Figure 10: Input Graph for the Example

### 3.1.5 An Example

Suppose the input graph is Figure 10. The Matrix representation is

$$
M=\left(\begin{array}{llllllllllllllll}
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The output should be a clique with maximum size.
Using population size $=30$, string length $=16$, crossover probability $=0.5$, mu-
tation probability $=0.01$, random seed $=2$, and clique size $=6$, the initial population strings, their fitnesses and reproduction strings for the next generation are shown in Table 6. The strings with higher fitness value contribute more copies in the next generation, while the strings with fitness value 0 cannot survive in the next generation.

After reproduction, the operations of crossover and mutation are performed. Tables $7,8,9$ show the results of generation $1,7,25$ respectively. Based on the mechanics of natural selection and natural genetics, genetic algorithms get better and better results for the problem.

The best generation for this example is 25 . The best fitness is 15 . The representation of the best string is 0011100010101000 , i.e. vertices $v_{3}, v_{4}, v_{5}, v_{9}, v_{11}$, and $v_{13}$ consist of a clique with size 6 .

### 3.2 Genetic Algorithm for the Vertex Cover Problem

### 3.2.1 Vertex Cover Problem

The Vertex Cover problem can be stated as follows [GJ79]:
INSTANCE: A graph $G=(V, E)$ and a positive integer $K \leq|V|$, where $V$ is a set of vertices, and $E$ is a set of edges.

QUESTION: Is there a vertex cover of size $K$ or less for $G$, that is, a subset $V^{\prime} \subseteq V$ such that $\left|V^{\prime}\right| \leq K$ and, for each edge $\{u, v\} \in E$, at least one of $u$ and $v$ belongs to $V^{\prime}$ ?

The Vertex Cover problem is a very practical problem. For example, when moni-

| No. | string | fitness | R-No. | reproduction string |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0000000000000000 | 0 | 7 | 0000000010011000 |
| 2 | 0000000100000000 | 0 | 7 | 0000000010011000 |
| 3 | 0010000100000000 | 0 | 7 | 0000000010011000 |
| 4 | 0000000000000000 | 0 | 7 | 0000000010011000 |
| 5 | 0000010000000000 | 0 | 7 | 0000000010011000 |
| 6 | 0000000000000000 | 0 | 7 | 0000000010011000 |
| 7 | 0000000010011000 | 2 | 7 | 0000000010011000 |
| 8 | 0000000000000000 | 0 | 7 | 0000000010011000 |
| 9 | 0000010000000000 | 0 | 7 | 0000000010011000 |
| 10 | 0000000000000000 | 0 | 7 | 0000000010011000 |
| 11 | 0000100000000000 | 0 | 7 | 0000000010011000 |
| 12 | 0000000000000000 | 0 | 7 | 0000000010011000 |
| 13 | 0000000000000100 | 0 | 7 | 0000000010011000 |
| 14 | 0001000000000000 | 0 | 7 | 0000000010011000 |
| 15 | 0100000000000000 | 0 | 7 | 0000000010011000 |
| 16 | 0000001000001000 | 1 | 16 | 0000001000001000 |
| 17 | 0000000000000000 | 0 | 16 | 0000001000001000 |
| 18 | 0000000000000000 | 0 | 16 | 0000001000001000 |
| 19 | 0000000000000000 | 0 | 16 | 0000001000001000 |
| 20 | 0000010000000000 | 0 | 16 | 0000001000001000 |
| 21 | 0000000000000000 | 0 | 16 | 0000001000001000 |
| 22 | 0000000000001000 | 0 | 16 | 0000001000001000 |
| 23 | 0000000000000000 | 0 | 16 | 0000001000001000 |
| 24 | 0000000000000000 | 0 | 26 | 0000100000010000 |
| 25 | 0000000000000000 | 0 | 26 | 0000100000010000 |
| 26 | 0000100000010000 | 1 | 26 | 0000100000010000 |
| 27 | 0000001000000000 | 0 | 26 | 0000100000010000 |
| 28 | 0000000000000000 | 0 | 26 | 0000100000010000 |
| 29 | 0000000000001000 | 0 | 26 | 0000100000010000 |
| 30 | 0000000000000000 | 0 | 26 | 0000100000010000 |
|  | maximum fitness $=1$ |  |  | average fitness $=0.13$ |
|  |  |  |  |  |

Table 6: Report of Initial Generation for the Example

| No. | parents | pts | string | fitness | R-No. | reproduction string |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $(3,15)$ | 16 | 0000000011011000 | 2 | 1 | 0000000011011000 |
| 2 | $(3,15)$ | 16 | 0000000010011000 | 2 | 2 | 0000000010011000 |
| 3 | $(16,10)$ | 16 | 0000001000001000 | 1 | 3 | 0000001000001000 |
| 4 | $(16,10)$ | 16 | 0000000010011000 | 2 | 4 | 0000000010011000 |
| 5 | $(19,24)$ | 5 | 0000000000010000 | 0 | 6 | 0000101000001000 |
| 6 | $(19,24)$ | 5 | 0000101000001000 | 3 | 6 | 0000101000001000 |
| 7 | $(17,6)$ | 16 | 0001001000001000 | 3 | 7 | 0001001000001000 |
| 8 | $(17,6)$ | 16 | 0000010010011000 | 2 | 7 | 0001001000001000 |
| 9 | $(27,29)$ | 16 | 0000100000010000 | 1 | 8 | 0000010010011000 |
| 10 | $(27,29)$ | 16 | 0000100000010000 | 1 | 9 | 0000100000010000 |
| 11 | $(26,25)$ | 16 | 0000100000010000 | 1 | 11 | 0000100000010000 |
| 12 | $(26,25)$ | 16 | 0000100000010000 | 1 | 12 | 0000100000010000 |
| 13 | $(22,28)$ | 16 | 0000001000001000 | 1 | 14 | 0000100000010000 |
| 14 | $(22,28)$ | 16 | 0000100000010000 | 1 | 16 | 0000011000001000 |
| 15 | $(18,20)$ | 10 | 0000001000001000 | 1 | 16 | 0000011000001000 |
| 16 | $(18,20)$ | 10 | 0000011000001000 | 2 | 17 | 0000000010011000 |
| 17 | $(7,21)$ | 13 | 0000000010011000 | 2 | 18 | 0000001000001000 |
| 18 | $(7,21)$ | 13 | 0000001000001000 | 1 | 21 | 0000000010011000 |
| 19 | $(23,30)$ | 16 | 0000001000001000 | 1 | 22 | 0000000010011000 |
| 20 | $(23,30)$ | 16 | 0000100000000000 | 0 | 22 | 0000000010011000 |
| 21 | $(4,1)$ | 16 | 0000000010011000 | 2 | 23 | 0000000110011000 |
| 22 | $(4,1)$ | 16 | 0000000010011000 | 2 | 24 | 0000000010011000 |
| 23 | $(2,5)$ | 4 | 0000000110011000 | 2 | 25 | 0000000010011000 |
| 24 | $(2,5)$ | 4 | 0000000010011000 | 2 | 26 | 0000000010011000 |
| 25 | $(8,9)$ | 16 | 0000000010011000 | 2 | 26 | 0000000010011000 |
| 26 | $(8,9)$ | 16 | 0000000010011000 | 2 | 27 | 0000000010011000 |
| 27 | $(12,11)$ | 16 | 0000000010011000 | 2 | 28 | 0000000010011000 |
| 28 | $(12,11)$ | 16 | 0000000010011000 | 2 | 29 | 0000000010011000 |
| 29 | $(13,14)$ | 15 | 0000000010011000 | 2 | 30 | 0000000010011000 |
| 30 | $(13,14)$ | 15 | 0000000010011000 | 2 | 30 | 0000000010011000 |
|  |  |  | max fitness $=3$ |  |  | avg fitness $=1.60$ |
|  |  |  |  |  |  |  |

Table 7: Report of Generation 1 for the Example

| No. | parents | pts | string | fitness | R-No. | reproduction string |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $(11,28)$ | 8 | 0000100010011000 | 5 | 1 | 0000100010011000 |
| 2 | $(11,28)$ | 8 | 0000000010001000 | 1 | 3 | 0001001010001000 |
| 3 | $(1,15)$ | 1 | 0001001010001000 | 5 | 4 | 0000101010011000 |
| 4 | $(1,15)$ | 1 | 0000101010011000 | 6 | 5 | 0001001000101000 |
| 5 | $(20,29)$ | 16 | 0001001000101000 | 5 | 6 | 0000100010011000 |
| 6 | $(20,29)$ | 16 | 0000100010011000 | 5 | 7 | 0001001000011000 |
| 7 | $(14,8)$ | 11 | 0001001000011000 | 6 | 8 | 0001000010001000 |
| 8 | $(14,8)$ | 11 | 0001000010001000 | 3 | 9 | 0010100010011000 |
| 9 | $(25,17)$ | 5 | 0010100010011000 | 6 | 10 | 0010100010011000 |
| 10 | $(25,17)$ | 5 | 0010100010011000 | 6 | 11 | 0000101010011000 |
| 11 | $(18,19)$ | 16 | 0000101010011000 | 6 | 12 | 0000000010011000 |
| 12 | $(18,19)$ | 16 | 0000000010011000 | 2 | 13 | 0000100010011000 |
| 13 | $(21,5)$ | 4 | 0000100010011000 | 5 | 14 | 0010101010001000 |
| 14 | $(21,5)$ | 4 | 0010101010001000 | 9 | 15 | 0010101000101000 |
| 15 | $(9,2)$ | 16 | 0010101000101000 | 9 | 15 | 0010101000101000 |
| 16 | $(9,2)$ | 16 | 0000101010011000 | 6 | 16 | 0000101010011000 |
| 17 | $(10,16)$ | 12 | 0010101000101000 | 9 | 17 | 0010101000101000 |
| 18 | $(10,16)$ | 12 | 0010100010011000 | 6 | 17 | 0010101000101000 |
| 19 | $(12,6)$ | 16 | 0001001000101000 | 5 | 18 | 0010100010011000 |
| 20 | $(12,6)$ | 16 | 0000100010001000 | 3 | 19 | 0001001000101000 |
| 21 | $(3,13)$ | 9 | 0000101010001000 | 5 | 20 | 0000100010001000 |
| 22 | $(3,13)$ | 9 | 0001001010001000 | 5 | 21 | 0000101010001000 |
| 23 | $(27,22)$ | 6 | 0000101010011000 | 6 | 23 | 0000101010011000 |
| 24 | $(27,22)$ | 6 | 0000101010001000 | 5 | 23 | 0000101010011000 |
| 25 | $(23,24)$ | 4 | 0000100010011000 | 5 | 24 | 0000101010001000 |
| 26 | $(23,24)$ | 4 | 0010101010011000 | 6 | 25 | 0000100010011000 |
| 27 | $(26,4)$ | 16 | 0001001010011000 | 6 | 26 | 0010101010011000 |
| 28 | $(26,4)$ | 16 | 0000101000001000 | 3 | 27 | 0001001010011000 |
| 29 | $(30,7)$ | 14 | 0000100010011000 | 5 | 29 | 00001000100110000 |
| 30 | $(30,7)$ | 14 | 0001000010011000 | 5 | 30 | 0001000010011000 |
|  |  |  | $m a x \operatorname{fitness}=6$ |  |  | avg fitness $=5.30$ |

Table 8: Report of Generation 7 for the Example

| No. | parents | pts | string | fitness |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $(19,13)$ | 16 | 0011101010101000 | 17 |
| 2 | $(19,13)$ | 16 | 0011101010101000 | 17 |
| 3 | $(8,9)$ | 8 | 0011101010101000 | 17 |
| 4 | $(8,9)$ | 8 | 0011101010101000 | 17 |
| 5 | $(3,11)$ | 16 | 0011001010101001 | 0 |
| 6 | $(3,11)$ | 16 | 0010101000101000 | 9 |
| 7 | $(4,6)$ | 6 | 0010101010101000 | 11 |
| 8 | $(4,6)$ | 6 | 0011101010101000 | 17 |
| 9 | $(27,25)$ | 16 | 0010101001101000 | 11 |
| 10 | $(27,25)$ | 16 | 0011101010001000 | 14 |
| 11 | $(12,30)$ | 11 | 0010101010101000 | 11 |
| 12 | $(12,30)$ | 11 | 0011101010101000 | 17 |
| 13 | $(26,21)$ | 16 | 0011100010101000 | 15 |
| 14 | $(26,21)$ | 16 | 0011101010101000 | 17 |
| 15 | $(7,17)$ | 16 | 0011101010101000 | 17 |
| 16 | $(7,17)$ | 16 | 1011101010101000 | 0 |
| 17 | $(10,14)$ | 14 | 0011101010101000 | 17 |
| 18 | $(10,14)$ | 14 | 0010101000101000 | 9 |
| 19 | $(1,5)$ | 16 | 0011101010101000 | 17 |
| 20 | $(1,5)$ | 16 | 0011101010101000 | 17 |
| 21 | $(15,18)$ | 10 | 0010101001101000 | 11 |
| 22 | $(15,18)$ | 10 | 0011101010101000 | 17 |
| 23 | $(28,2)$ | 16 | 0010101010100001 | 0 |
| 24 | $(28,2)$ | 16 | 0011101010101000 | 17 |
| 25 | $(29,20)$ | 16 | 0011101010101000 | 17 |
| 26 | $(29,20)$ | 16 | 0011101010101000 | 17 |
| 27 | $(16,22)$ | 16 | 0011101010101000 | 17 |
| 28 | $(16,22)$ | 16 | 0011101010101000 | 17 |
| 29 | $(24,23)$ | 16 | 0011101010101000 | 17 |
| 30 | $(24,23)$ | 16 | 0011101010101000 | 17 |
|  | max fitness $=15$ |  | avg fitness $=13.80$ |  |

Table 9: Report of Generation 25 for the Example
toring the operation of a large network, one wants to monitor as few nodes as possible.
The Vertex Cover problem is also one of the basic NP-Complete problems. The optimization problem for the Vertex Cover problem is to find the minimum $K$ in a graph $G$ that satisfies all the constraints.

### 3.2.2 Representation and Evaluation Function

First, the Vertex Cover problem is encoded as a string. In a graph $G=(V, E)$, the vertices are numbered from 1 to $n$, where $n$ is the total number of the vertices in a graph $G$. The Vertex Cover problem can be represented by an $n$-bit string $c_{1} c_{2} \ldots c_{n}$, where $c_{i}=0$ or $1, i=1,2, \ldots, n$. Each bit position corresponds to the numbered vertex. $c_{i}=1$ means vertex $v_{i} \in V^{\prime}$, i.e. $v_{i}$ is in the Vertex Cover.

Second, the penalty method is used to define the evaluation function as follows [RPLH89]:
evaluation function $=$ the total number of vertices - the number of 1 's in a string - penalty
penalty $=\left(\text { the number of uncovered edges by } V^{\prime}\right)^{2}$
When the number of uncovered edges by $V^{\prime}$ is small, the penalty is small. The string corresponding to the evaluation function still has the opportunity to survive in the next generation. When the number of uncovered edges by $V^{\prime}$ is bigger, the penalty increases dramatically due to the square function. The fitness of this string will be much smaller. The strings with higher fitness are expected to contribute more copies to the next generation.

When the value of the evaluation function is smaller than 0 , the function returns 0.

If a subset $V^{\prime} \subseteq V$ is a vertex cover, then penalty $=0$.

### 3.2.3 Generating Input Graph at Random

For testing purposes, the input graph $G$ is initialized by the following method:
Given the total number of vertices, $n$, in a graph $G$ as input parameter and use matrix $M$ to represent the graph.

$$
M=\left(\begin{array}{cccccc}
0 & a_{12} & a_{13} & a_{14} & \cdots & a_{1 n} \\
0 & 0 & a_{23} & a_{24} & \cdots & a_{2 n} \\
0 & 0 & 0 & a_{34} & \cdots & a_{3 n} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & 0 & \cdots & a_{n-1 n} \\
0 & 0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

where $a_{i j}=1$ or $0 . a_{i j}=1$ means that there is an edge between vertex $v_{i}$ and vertex $v_{j}$, with the same convention as used in representing a graph for the clique problem.

First, use function fip with 0.5 probability and different random seed to generate the matrix $M$. The function fip returns a value 1 or 0 according to the given probability parameter.

Second, generate $k$ different random numbers between 1 and $n$, where $k \leq n$, and $k$ is a input parameter. Then make the $k$ vertices a complete graph (which is called a clique) with size $k$.

Third, compute the complement $G_{c}$ of $G$ as the input graph, where $G_{c}=\left(V, E_{c}\right)$ with $E_{c}=\{\{u, v\}: u, v \in V$ and $\{u, v\} \notin E\}$.

By using this method to generate the input graph randomly, we know what the optimal result should be. The best size of a vertex cover is $|V|-k$ due to the following relationship between Clique and Vertex Cover problems:

For any graph $G=(V, E)$ and subset $V^{\prime} \subseteq V$ :
$V^{\prime}$ is a Clique with maximum size $K$ for $G$ if and only if $V-V^{\prime}$ is a Vertex Cover with minimum size $K^{\prime}=|V|-K$ in the complement $G_{c}$ of $G$.

Running the genetic algorithm, the number of uncovered edges by $V^{\prime}$ is computed as follows by using the matrix $M$ :
(1) count the number of 1 's in a string, put the corresponding position in a buffer;
(2) check whether every edge in $E$ has at least one endpoint in $V^{\prime}$ by using matrix $M$. If $a_{i j}=1$ and at least one of $i$ and $j$ belongs to $V^{\prime}$, set $a_{i j}=0$.
(3) count the number of $a_{i j}=1$ elements in matrix $M$. This is the number of uncovered edges by $V^{\prime}$.

The C code for computing the fitness of each string is the following:

```
evaluation_function (string)
int string[maxstring];
{
    int i, j, res, count = 0;
    int buffer[maxstring], a[maxstring][maxstring];
```

```
penalty \(=0\);
for ( \(\mathrm{i}=1 ; \mathrm{i}<=\) stringlength \(; \mathrm{i}++\) )
    if (string \([\mathrm{i}]==1\) )
    \{
        count++;
        buffer[count] \(=\mathrm{i}\);
        \}
for ( \(\mathrm{i}=1 ; \mathrm{i}<=\) stringlength \(; \mathrm{i}++\) )
    for \((\mathrm{j}=1 ; \mathrm{j}<=\) stringlength \(; \mathrm{j}++\) )
        \(\mathrm{a}[\mathrm{i}][\mathrm{j}]=\mathrm{m}[\mathrm{i}][\mathrm{j}] ;\)
for ( \(\mathrm{i}=1 ; \mathrm{i}<=\) count \(; \mathrm{i}++\) )
    for ( \(\mathrm{j}=\) buffer \([\mathrm{i}]+1 ; \mathrm{j}<=\) stringlength \(; \mathrm{j}++\) )
        if \((\mathrm{a}[\mathrm{buffer}[\mathrm{i}]][\mathrm{j}]==1)\)
        \(\mathrm{a}[\) buffer \([\mathrm{i}]][\mathrm{j}]=0\);
for ( \(\mathrm{i}=1 ; \mathrm{i}<=\) stringlength \(; \mathrm{i}++\) )
    for ( \(\mathrm{j}=1 ; \mathrm{j}<=\) count \(; \mathrm{j}++\) )
    if \((\mathrm{a}[\mathrm{i}][\mathrm{buffer}[\mathrm{j}]]==1)\)
        \(\mathrm{a}[\mathrm{i}][\) buffer \([\mathrm{j}]]=0\);
for ( \(\mathrm{i}=1 ; \mathrm{i}<\) stringlength \(; \mathrm{i}++\) )
    for ( \(\mathrm{j}=\mathrm{i}+1 ; \mathrm{j}<=\) stringlength \(; \mathrm{j}++\) )
        if \((\mathrm{a}[\mathrm{i}][\mathrm{j}]==1)\)
```

$$
\begin{aligned}
& \quad \text { penalty }++; \\
& \text { res }=\text { stringlength }- \text { count - penalty * penalty; } \\
& \text { if }(\text { res }>=0) \\
& \text { return }(\text { res }) ; \\
& \text { else } \\
& \text { return }(0) ;
\end{aligned}
$$

### 3.2.4 Empirical Results

In the experiment, the function fip with the probability 0.95 is used to generate the initial population for the Vertex Cover problem randomly. Using larger probabilities to generate the initial population obtains vertex covers with bigger size first, improves the result in later generations, and also avoids the loss of feasible solutions.

For the Clique problem, the function fip with the probability 0.05 is used to generate the initial population. The relationship between Vertex Cover and Clique is that Vertex Cover is a minimization problem, and Clique is a maximization problem. A larger probability for the Vertex Cover and a smaller probability for the Clique can avoid the loss of feasible solutions for both problems.

The reproduction function is also implemented by using Baker's sampling algorithm [Bak87].

In the experiment, population size $=80$, maximum generation $=200$, crossover
probability $=0.5$, mutation probability $=0.01$ are used, and graphs drawn at random with $50,60,70$, and 80 vertices are considered to test the algorithm.

Let us define the performance guarantee for the Vertex Cover problem as follows:

$$
\text { performance guarantee }=\frac{\text { the vertex cover size in the result }}{\text { the optimal vertex cover size }}-1.00
$$

The results show that $61 \%$ of the tests get optimal results (the performance guarantee $=0.00), 39 \%$ of the tests get near optimal results and the average performance guarantee is $2.65 \%$. These percentages come from the testings. Since the evaluation function of vertex cover differs from the evaluation function of clique, and the input data are also different for both problems, the results are different.

Some of the empirical results are reported in Tables $10-13$, where
best generation $=$ the generation for which we get the best result
seed $=$ the input parameter for generating graphs randomly
clique size $=$ the input parameter for generating the graph
best vertex cover size $=|V|-$ clique size
vertex cover size in result $=$ obtained vertex cover size by running the genetic algorithm performance guarantee $=$ defined performance guarantee

| best generation | seed | clique <br> size | best vertex cover size | vertex cover size in result | performance guarantee |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 84 | 1 | 30 | 20 | 21 | 0.050 |
| 115 | 1 | 25 | 25 | 25 | 0.000 |
| 82 | 1 | 20 | 30 | 30 | 0.000 |
| 68 | 1 | 15 | 35 | 35 | 0.000 |
| 21 | 1 | 10 | 40 | 40 | 0.000 |
| 156 | 2 | 30 | 20 | 20 | 0.000 |
| 99 | 2 | 25 | 25 | 25 | 0.000 |
| 52 | 2 | 20 | 30 | 30 | 0.000 |
| 48 | 2 | 15 | 35 | 35 | 0.000 |
| 86 | 2 | 10 | 40 | 42 | 0.050 |
| 148 | 3 | 30 | 20 | 21 | 0.050 |
| 102 | 3 | 25 | 25 | 25 | 0.000 |
| 74 | 3 | 20 | 30 | 30 | 0.000 |
| 70 | 3 | 15 | 35 | 35 | 0.000 |
| 176 | 3 | 10 | 40 | 40 | 0.000 |
| 148 | 4 | 30 | 20 | 20 | 0.000 |
| 104 | 4 | 25 | 25 | 25 | 0.000 |
| 74 | 4 | 20 | 30 | 30 | 0.000 |
| 82 | 4 | 15 | 35 | 35 | 0.000 |
| 62 | 4 | 10 | 40 | 42 | 0.050 |
| 117 | 5 | 30 | 20 | 20 | 0.000 |
| 116 | 5 | 25 | 25 | 25 | 0.000 |
| 77 | 5 | 20 | 30 | 30 | 0.000 |
| 51 | 5 | 15 | 35 | 35 | 0.000 |
| 41 | 5 | 10 | 40 | 40 | 0.000 |
| 145 | 6 | 30 | 20 | 20 | 0.000 |
| 121 | 6 | 25 | 25 | 25 | 0.000 |
| 86 | 6 | 20 | 30 | 30 | 0.000 |
| 49 | 6 | 15 | 35 | 35 | 0.000 |
| 26 | 6 | 10 | 40 | 41 | 0.025 |

Table 10: Total Vertices $=50$ in Initial Graph

| best generation | seed | clique size | best vertex cover size | vertex cover size in result | performance guarantee |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 156 | 1 | 40 | 20 | 23 | 0.150 |
| 109 | 1 | 35 | 25 | 25 | 0.000 |
| 144 | 1 | 30 | 30 | 30 | 0.000 |
| 96 | 1 | 25 | 35 | 35 | 0.000 |
| 86 | 1 | 20 | 40 | 40 | 0.000 |
| 84 | 2 | 40 | 20 | 23 | 0.150 |
| 139 | 2 | 35 | 25 | 26 | 0.040 |
| 130 | 2 | 30 | 30 | 30 | 0.000 |
| 95 | 2 | 25 | 35 | 35 | 0.000 |
| 87 | 2 | 20 | 40 | 40 | 0.000 |
| 164 | 3 | 40 | 20 | 21 | 0.050 |
| 196 | 3 | 35 | 25 | 25 | 0.000 |
| 110 | 3 | 30 | 30 | 30 | 0.000 |
| 118 | 3 | 25 | 35 | 35 | 0.000 |
| 62 | 3 | 20 | 40 | 40 | 0.000 |
| 188 | 4 | 40 | 20 | 23 | 0.150 |
| 124 | 4 | 35 | 25 | 27 | 0.080 |
| 129 | 4 | 30 | 30 | 31 | 0.033 |
| 117 | 4 | 25 | 35 | 35 | 0.000 |
| 88 | 4 | 20 | 40 | 40 | 0.000 |
| 123 | 5 | 40 | 20 | 22 | 0.100 |
| 142 | 5 | 35 | 25 | 26 | 0.040 |
| 111 | 5 | 30 | 30 | 30 | 0.000 |
| 122 | 5 | 25 | 35 | 35 | 0.000 |
| 105 | 5 | 20 | 40 | 40 | 0.000 |
| 114 | 6 | 40 | 20 | 24 | 0.200 |
| 171 | 6 | 35 | 25 | 27 | 0.080 |
| 149 | 6 | 30 | 30 | 30 | 0.000 |
| 190 | 6 | 25 | 35 | 35 | 0.000 |
| 46 | 6 | 20 | 40 | 40 | 0.000 |

Table 11: Total Vertices $=60$ in Initial Graph

| best generation | seed | clique size | best vertex cover size | vertex cover size in result | performance guarantee |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 158 | 1 | 40 | 30 | 32 | 0.067 |
| 158 | 1 | 35 | 35 | 36 | 0.029 |
| 111 | 1 | 30 | 40 | 42 | 0.050 |
| 162 | 1 | 25 | 45 | 45 | 0.000 |
| 111 | 1 | 20 | 50 | 50 | 0.000 |
| 97 | 2 | 40 | 30 | 33 | 0.100 |
| 161 | 2 | 35 | 35 | 35 | 0.000 |
| 136 | 2 | 30 | 40 | 41 | 0.025 |
| 163 | 2 | 25 | 45 | 45 | 0.000 |
| 93 | 2 | 20 | 50 | 50 | 0.000 |
| 122 | 3 | 40 | 30 | 32 | 0.067 |
| 171 | 3 | 35 | 35 | 37 | 0.057 |
| 193 | 3 | 30 | 40 | 40 | 0.000 |
| 113 | 3 | 25 | 45 | 45 | 0.000 |
| 85 | 3 | 20 | 50 | 50 | 0.000 |
| 151 | 4 | 40 | 30 | 32 | 0.067 |
| 168 | 4 | 35 | 35 | 36 | 0.029 |
| 108 | 4 | 30 | 40 | 41 | 0.025 |
| 101 | 4 | 25 | 45 | 45 | 0.000 |
| 86 | 4 | 20 | 50 | 50 | 0.000 |
| 139 | 5 | 40 | 30 | 31 | 0.333 |
| 139 | 5 | 35 | 35 | 35 | 0.000 |
| 162 | 5 | 30 | 40 | 40 | 0.000 |
| 177 | 5 | 25 | 45 | 45 | 0.000 |
| 92 | 5 | 20 | 50 | 50 | 0.000 |
| 141 | 6 | 40 | 30 | 33 | 0.100 |
| 187 | 6 | 35 | 35 | 37 | 0.057 |
| 123 | 6 | 30 | 40 | 40 | 0.000 |
| 126 | 6 | 25 | 45 | 45 | 0.000 |
| 69 | 6 | 20 | 50 | 50 | 0.000 |

Table 12: Total Vertices $=70$ in Initial Graph

| best generation | seed | clique size | best vertex cover size | vertex cover size in result | performance guarantee |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 171 | 1 | 40 | 40 | 43 | 0.075 |
| 73 | 1 | 35 | 45 | 47 | 0.044 |
| 147 | 1 | 30 | 50 | 51 | 0.020 |
| 112 | 1 | 25 | 55 | 56 | 0.018 |
| 89 | 1 | 20 | 60 | 60 | 0.000 |
| 107 | 2 | 40 | 40 | 43 | 0.075 |
| 119 | 2 | 35 | 45 | 47 | 0.044 |
| 141 | 2 | 30 | 50 | 50 | 0.000 |
| 126 | 2 | 25 | 55 | 55 | 0.000 |
| 126 | 2 | 20 | 60 | 60 | 0.000 |
| 177 | 3 | 40 | 40 | 43 | 0.075 |
| 177 | 3 | 35 | 45 | 47 | 0.044 |
| 78 | 3 | 30 | 50 | 51 | 0.020 |
| 198 | 3 | 25 | 55 | 55 | 0.000 |
| 112 | 3 | 20 | 60 | 60 | 0.000 |
| 145 | 4 | 40 | 40 | 43 | 0.075 |
| 106 | 4 | 35 | 45 | 48 | 0.067 |
| 175 | 4 | 30 | 50 | 50 | 0.000 |
| 141 | 4 | 25 | 55 | 55 | 0.000 |
| 83 | 4 | 20 | 60 | 60 | 0.000 |
| 168 | 5 | 40 | 40 | 43 | 0.075 |
| 190 | 5 | 35 | 45 | 46 | 0.022 |
| 105 | 5 | 30 | 50 | 51 | 0.020 |
| 154 | 5 | 25 | 55 | 55 | 0.000 |
| 92 | 5 | 20 | 60 | 60 | 0.000 |
| 145 | 6 | 40 | 40 | 44 | 0.100 |
| 190 | 6 | 35 | 45 | 45 | 0.000 |
| 155 | 6 | 30 | 50 | 51 | 0.020 |
| 168 | 6 | 25 | 55 | 56 | 0.082 |
| 141 | 6 | 20 | 60 | 60 | 0.000 |

Table 13: Total Vertices $=80$ in Initial Graph

### 3.3 Genetic Algorithm for the Max Cut Problem

### 3.3.1 Max Cut Problem

The Max Cut problem is also an NP-Complete problem which is very useful for network design.

The Max Cut Problem can be stated as follows [GJ79]:
INSTANCE: A graph $G=(V, E)$, weight $w(e) \in Z^{+}$for each $e \in E$, and a positive integer $K$, where $V$ is the set of vertices, and $E$ is the set of edges, and $Z^{+}$ is the set of all positive integers.

QUESTION: Is there a partition of $V$ into disjoint sets $V_{1}$ and $V_{2}$ such that the sum of the weights of the edges from $E$ that have one endpoint in $V_{1}$ and one endpoint in $V_{2}$ is at least $K$ ?

The optimization problem for $M a x C u t$ problem is to find the maximum $K$ that satisfies all the constraints.

### 3.3.2 Representation and Evaluation Function

The Max Cut problem can be represented by a string with length $|V|$, where $|V|$ is the total number of vertices in the graph $G$. The value of each bit in the string is 0 or 1 . The vertices in a graph $G$ are numbered from 1 to $n$, where $|V|=n$, and the bit position of the string corresponds to the numbered vertex. All the vertices which correspond to the bit value 1 's in a string belong to the set $V_{1}$. The other vertices belong to the disjoint set $V_{2}$. For example, we have a graph with 10 vertices, and a
string representation for this graph is 1001101101 . This means that the vertices $v_{1}, v_{4}, v_{5}, v_{7}, v_{8}$, and $v_{10}$ belong to set $V_{1}$, and vertices $v_{2}, v_{3}, v_{6}$, and $v_{9}$ belong to set $V_{2}$.

The evaluation function is defined as follows:
evaluation function $=$ the sum of the weights of the edges from $E$ that have one endpoint in $V_{1}$ and one endpoint in $V_{2}$.

The expected result is to get the maximum value of the evaluation function.

### 3.3.3 Implementation

A matrix is also used to represent the graph $G$. A seed is chosen to generate random numbers in range $[1,10]$ as the weights of the edges in the experiment. We provide a density probability which is the probability that the non-zero elements appear in the matrix as an input parameter. The density probability is a real number in $(0,1]$. When the density probability is very small, the matrix will be sparse.

The function fip with probability 0.4 is used to generate the initial population for the Max Cut problem randomly. Baker's sampling algorithm is used to implement the reproduction function [Bak87].

In the experiment, population size $=500$, maximum generation $=200$, crossover probability $=0.5$, mutation probability $=0.01$, and hundreds of graphs drawn at random are considered to test the algorithm.

### 3.3.4 Comparisons of Genetic Algorithm and Greedy Algorithm

The greedy algorithm for the Max Cut problem works as follows:

- Initially, $V_{1}$ and $V_{2}$ are empty, and the variable maxcut $=0$.
- Sort the edges by their weights in descending order.
- For each edge:
(1) If two endpoints of the edge are not in $V_{1}$ and $V_{2}$, put one endpoint in $V_{1}$ and another endpoint in $V_{2}$. Add the weight of the edge to maxcut.
(2) If one endpoint of the edge is in $V_{1}$ ( or $V_{2}$ ), another endpoint is not in $V_{2}$ ( or $V_{1}$ ), put the another endpoint in $V_{2}$ ( or $V_{1}$ ). Add the weight of the edge to maxcut.
(3) If one endpoint of the edge is in $V_{1}$, another endpoint is in $V_{2}$, add the weight of the edge to maxcut.
- The result is in maxcut.

The same input graphs are used to test the genetic algorithm and greedy algorithm for the Max Cut problem. The empirical results show that the genetic algorithm provides better solutions on average than the greedy algorithm. When the matrix of the graph is very sparse ( density probability $\leq 0.2$ ), the greedy algorithm works well in most of the cases. When the density probability is higher, the genetic algorithm works better than greedy algorithm.

The Tables $14-17$ show the comparisons of genetic algorithm and greedy algorithm for the Max Cut problem, where
best generation $=$ the generation for which we get the best result by the genetic algorithm
seed $=$ the input parameter for generating graphs randomly
density probability $=$ the input parameter which is the probability that the nonzero elements should appear in the matrix
genetic algorithm $=$ the results by running genetic algorithm
greedy algorithm $=$ the results by running greedy algorithm
performance ratio $=\frac{\text { genetic algorithm }}{\text { greedy } \text { algorithm }}$
If the performance ratio is bigger than 1 , the genetic algorithm is better than the greedy algorithm.

### 3.3.5 Comparisons of Genetic Algorithm Solutions and Optimal Solutions

For any weighted graph $G=(V, E)$, there is no polynomial deterministic algorithm for Max Cut problems. In order to compare optimal solutions with genetic algorithm solutions we have to use smaller input size, and calculate the optimal solutions by hand. With the same input to genetic algorithm programs, Table 18 shows the comparisons of genetic algorithm solutions and optimal solutions for the graph $G=$ $(V, E)$ where $|V|=10$. From table 18, we can see that the genetic algorithm solutions are identical to the optimal solutions calculated by hand for the random generated testing data.

### 3.4 Adapting Parameters

The research of adapting parameter settings is a branch of genetic algorithm theory. The parameter settings of a genetic algorithm have a significant impact on the performance of the genetic algorithm. Finding good parameter settings for a problem is a very hard task. Parameter settings involve population size, maximum generation, crossover probability, and mutation probability. We need to consider the limited resources for a problem when we set these parameters [Dav89, SCED89].

Two useful strategies have been employed by researchers in the genetic algorithm field to find good parameter settings. One was contained in Kenneth De Jong's thesis work [DJ75]; the other was described by John Grefenstette [Gre86]. Some new techniques for setting operator probabilities are also developed [Dav89, SCED89].

A large number of experiments are performed to test the effects of the different parameter settings for the Clique problem. In general, increasing the maximum generation can improve the result, but will require more computing time. For a set of parameters, if the best generation is close to the maximum generation, we can try to increase the maximum generation to get a better result. Otherwise, we can increase the population size to reduce the stochastic effects and improve long-term performance at a larger cost per generation. A high crossover probability and a low mutation probability can yield good performance for the Clique problem. The experimental results of adapting parameters are reported in Table 19, where population size $=80$. crossover probability $=0.5$. mutation probability $=0.01$.

| total vertices | best generation | seed | genetic algorithm | greedy algorithm | performance ratio |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 80 | 43 | 6 | 3839 | 3569 | 1.076 |
| 80 | 121 | 7 | 4042 | 3961 | 1.020 |
| 80 | 156 | 8 | 3920 | 3734 | 1.050 |
| 80 | 106 | 9 | 3944 | 3735 | 1.056 |
| 80 | 33 | 10 | 3791 | 3715 | 1.020 |
| 80 | 195 | 11 | 3905 | 3644 | 1.072 |
| 80 | 131 | 12 | 3838 | 3688 | 1.041 |
| 80 | 134 | 13 | 3850 | 3666 | 1.050 |
| 80 | 77 | 14. | 3750 | 3664 | 1.023 |
| 80 | 137 | 15 | 3710 | 3636 | 1.020 |
| 60 | 46 | 6 | 2374 | 2277 | 1.043 |
| 60 | 109 | 7 | 2284 | 2110 | 1.082 |
| 60 | 155 | 8 | 2312 | 2163 | 1.069 |
| 60 | 178 | 9 | 2419 | 2276 | 1.063 |
| 60 | 43 | 10 | 2243 | 2040 | 1.100 |
| 60 | 72 | 11 | 2340 | 2216 | 1.056 |
| 60 | 64 | 12 | 2326 | 2261 | 1.029 |
| 60 | 53 | 13 | 2193 | 2110 | 1.039 |
| 60 | 158 | 14 | 2122 | 1955 | 1.085 |
| 60 | 55 | 15 | 2172 | 2036 | 1.067 |
| 50 | 48 | 6 | 1576 | 1431 | 1.101 |
| 50 | 37 | 7 | 1666 | 1638 | 1.017 |
| 50 | 141 | 8 | 1617 | 1600 | 1.011 |
| 50 | 137 | 9 | 1610 | 1460 | 1.103 |
| 50 | 17 | 10 | 1607 | 1425 | 1.128 |
| 50 | 56 | 11 | 1682 | 1668 | 1.008 |
| 50 | 112 | 12 | 1667 | 1568 | 1.063 |
| 50 | 51 | 13 | 1578 | 1514 | 1.042 |
| 50 | 173 | 14 | 1639 | 1551 | 1.057 |
| 50 | 120 | 15 | 1601 | 1453 | 1.102 |

Table 14: Density Probability $=0.4$ in Initial Graph

| total <br> vertices | best <br> generation | seed | genetic <br> algorithm | greedy <br> algorithm | performance <br> ratio |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 80 | 184 | 6 | 4791 | 4647 | 1.031 |
| 80 | 117 | 7 | 4998 | 4798 | 1.042 |
| 80 | 55 | 8 | 4856 | 4435 | 1.095 |
| 80 | 189 | 9 | 4790 | 4639 | 1.033 |
| 80 | 114 | 10 | 4790 | 4656 | 1.029 |
| 80 | 125 | 11 | 4875 | 4692 | 1.039 |
| 80 | 47 | 12 | 4671 | 4504 | 1.037 |
| 80 | 138 | 13 | 4842 | 4536 | 1.067 |
| 80 | 28 | 14 | 4549 | 4424 | 1.028 |
| 80 | 67 | 15 | 4505 | 4295 | 1.049 |
| 60 | 62 | 6 | 2956 | 2714 | 1.089 |
| 60 | 74 | 7 | 2798 | 2637 | 1.061 |
| 60 | 15 | 8 | 2782 | 2610 | 1.066 |
| 60 | 135 | 9 | 2880 | 2707 | 1.064 |
| 60 | 65 | 10 | 2749 | 2387 | 1.152 |
| 60 | 10 | 11 | 2763 | 2659 | 1.039 |
| 60 | 38 | 12 | 2816 | 2655 | 1.061 |
| 60 | 81 | 13 | 2720 | 2611 | 1.042 |
| 60 | 52 | 14 | 2626 | 2469 | 1.064 |
| 60 | 140 | 15 | 2727 | 2557 | 1.066 |
| 50 | 41 | 6 | 1968 | 1967 | 1.001 |
| 50 | 86 | 7 | 2054 | 1868 | 1.100 |
| 50 | 165 | 8 | 1944 | 1825 | 1.065 |
| 50 | 166 | 9 | 1945 | 1788 | 1.088 |
| 50 | 75 | 10 | 1980 | 1966 | 1.007 |
| 50 | 94 | 11 | 2095 | 1938 | 1.081 |
| 50 | 0 | 12 | 2013 | 1834 | 1.098 |
| 50 | 57 | 13 | 1897 | 1827 | 1.038 |
| 50 | 40 | 14 | 1958 | 1821 | 1.075 |
| 50 | 135 | 15 | 1987 | 1830 | 1.086 |

Table 15: Density Probability $=0.5$ in Initial Graph

| total <br> vertices | best <br> generation | seed | genetic <br> algorithm | greedy <br> algorithm | performance <br> ratio |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 80 | 181 | 6 | 5694 | 5280 | 1.078 |
| 80 | 198 | 7 | 5821 | 5710 | 1.019 |
| 80 | 109 | 8 | 5718 | 5333 | 1.072 |
| 80 | 149 | 9 | 5691 | 5469 | 1.041 |
| 80 | 7 | 10 | 5519 | 5264 | 1.048 |
| 80 | 109 | 11 | 5784 | 5350 | 1.081 |
| 80 | 104 | 12 | 5643 | 5448 | 1.036 |
| 80 | 128 | 13 | 5735 | 5488 | 1.045 |
| 80 | 145 | 14 | 5476 | 5285 | 1.036 |
| 80 | 86 | 15 | 5408 | 5316 | 1.017 |
| 60 | 35 | 6 | 3487 | 3255 | 1.071 |
| 60 | 46 | 7 | 3366 | 3247 | 1.037 |
| 60 | 107 | 8 | 3235 | 3119 | 1.037 |
| 60 | 118 | 9 | 3427 | 3047 | 1.125 |
| 60 | 181 | 10 | 3224 | 3042 | 1.060 |
| 60 | 160 | 11 | 3181 | 3068 | 1.037 |
| 60 | 118 | 12 | 3313 | 3167 | 1.046 |
| 60 | 109 | 13 | 3170 | 3021 | 1.049 |
| 60 | 3 | 14 | 3133 | 2986 | 1.049 |
| 60 | 50 | 15 | 3206 | 3078 | 1.042 |
| 50 | 36 | 6 | 2258 | 2271 | 0.994 |
| 50 | 146 | 7 | 2376 | 2257 | 1.053 |
| 50 | 55 | 8 | 2316 | 2169 | 1.068 |
| 50 | 196 | 9 | 2324 | 2231 | 1.042 |
| 50 | 155 | 10 | 2276 | 2147 | 1.060 |
| 50 | 117 | 11 | 2409 | 2317 | 1.040 |
| 50 | 155 | 12 | 2330 | 2287 | 1.019 |
| 50 | 62 | 13 | 2274 | 2139 | 1.063 |
| 50 | 87 | 14 | 2345 | 2148 | 1.092 |
| 50 | 18 | 15 | 2313 | 2181 | 1.061 |

Table 16: Density Probability $=0.6$ in Initial Graph

| total <br> vertices | best <br> generation | seed | genetic <br> algorithm | greedy <br> algorithm | performance <br> ratio |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 80 | 183 | 6 | 6595 | 6345 | 1.039 |
| 80 | 24 | 7 | 6734 | 6546 | 1.029 |
| 80 | 196 | 8 | 6702 | 6344 | 1.056 |
| 80 | 175 | 9 | 6558 | 6178 | 1.062 |
| 80 | 169 | 10 | 6463 | 6257 | 1.033 |
| 80 | 58 | 11 | 6618 | 6413 | 1.032 |
| 80 | 77 | 12 | 6610 | 6288 | 1.051 |
| 80 | 139 | 13 | 6600 | 6366 | 1.037 |
| 80 | 22 | 14 | 6373 | 5945 | 1.072 |
| 80 | 125 | 15 | 6313 | 6048 | 1.044 |
| 60 | 138 | 6 | 3890 | 3600 | 1.081 |
| 60 | 170 | 7 | 3843 | 3678 | 1.045 |
| 60 | 118 | 8 | 3776 | 3562 | 1.060 |
| 60 | 29 | 9 | 3919 | 3676 | 1.066 |
| 60 | 23 | 10 | 3784 | 3580 | 1.057 |
| 60 | 187 | 11 | 3741 | 3339 | 1.133 |
| 60 | 92 | 12 | 3780 | 3604 | 1.049 |
| 60 | 19 | 13 | 3659 | 3605 | 1.015 |
| 60 | 182 | 14 | 3663 | 3362 | 1.090 |
| 60 | 39 | 15 | 3724 | 3570 | 1.043 |
| 50 | 133 | 6 | 2604 | 2449 | 1.063 |
| 50 | 106 | 7 | 2721 | 2399 | 1.134 |
| 50 | 95 | 8 | 2662 | 2464 | 1.080 |
| 50 | 157 | 9 | 2635 | 2345 | 1.124 |
| 50 | 74 | 10 | 2642 | 2618 | 1.009 |
| 50 | 159 | 11 | 2727 | 2606 | 1.046 |
| 50 | 44 | 12 | 2643 | 2558 | 1.033 |
| 50 | 164 | 13 | 2619 | 2535 | 1.033 |
| 50 | 132 | 14 | 2650 | 2342 | 1.132 |
| 50 | 58 | 15 | 2674 | 2588 | 1.033 |

Table 17: Density Probability $=0.7$ in Initial Graph

| seed | density <br> probability | optimal <br> solutions | genetic <br> algorithm | greedy <br> algorithm |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0.4 | 75 | 75 | 68 |
| 2 | 0.4 | 66 | 66 | 64 |
| 3 | 0.4 | 72 | 72 | 70 |
| 4 | 0.4 | 65 | 65 | 53 |
| 5 | 0.4 | 92 | 92 | 70 |
| 6 | 0.3 | 76 | 76 | 57 |
| 7 | 0.3 | 94 | 94 | 89 |
| 8 | 0.3 | 73 | 73 | 57 |
| 9 | 0.3 | 36 | 36 | 36 |
| 10 | 0.3 | 57 | 57 | 46 |
| 11 | 0.2 | 35 | 35 | 35 |
| 12 | 0.2 | 38 | 38 | 38 |
| 13 | 0.2 | 40 | 40 | 38 |
| 14 | 0.2 | 30 | 30 | 28 |
| 15 | 0.2 | 48 | 48 | 48 |

Table 18: Comparisons of Results for Max Cut

| total <br> vertices | maximum <br> generation | best <br> generation | seed | clique size <br> in initial $G$ | clique size <br> in result | performance <br> guarantee |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | 100 | 59 | 1 | 35 | 33 | 94.29 |
| 50 | 200 | 149 | 1 | 35 | 35 | 100 |
| 60 | 100 | 65 | 1 | 35 | 33 | 94.29 |
| 60 | 200 | 113 | 1 | 35 | 35 | 100 |
| 70 | 100 | 92 | 1 | 35 | 34 | 97.14 |
| 70 | 200 | 154 | 1 | 35 | 35 | 100 |
| 90 | 100 | 96 | 1 | 20 | 18 | 90.00 |
| 90 | 200 | 116 | 1 | 20 | 20 | 100.00 |
| 100 | 100 | 70 | 1 | 20 | 19 | 95.00 |
| 100 | 200 | 111 | 1 | 20 | 20 | 100.00 |
| 50 | 100 | 79 | 3 | 35 | 34 | 97.14 |
| 50 | 200 | 136 | 3 | 35 | 35 | 100 |
| 60 | 100 | 95 | 3 | 30 | 29 | 96.67 |
| 60 | 200 | 110 | 3 | 30 | 30 | 100 |
| 70 | 100 | 75 | 3 | 30 | 29 | 96.67 |
| 70 | 200 | 102 | 3 | 30 | 30 | 100 |
| 80 | 100 | 58 | 3 | 30 | 29 | 96.67 |
| 80 | 200 | 129 | 3 | 30 | 30 | 100 |
| 90 | 100 | 79 | 3 | 30 | 29 | 96.67 |
| 90 | 200 | 132 | 3 | 30 | 30 | 100 |
| 50 | 100 | 84 | 5 | 35 | 34 | 97.14 |
| 50 | 200 | 160 | 5 | 35 | 35 | 100 |
| 60 | 100 | 96 | 5 | 35 | 34 | 97.14 |
| 60 | 200 | 124 | 5 | 35 | 35 | 100 |
| 70 | 100 | 64 | 5 | 35 | 34 | 97.14 |
| 70 | 200 | 118 | 5 | 35 | 35 | 100 |
| 80 | 100 | 99 | 5 | 35 | 33 | 94.29 |
| 80 | 200 | 154 | 5 | 35 | 35 | 100 |
| 90 | 100 | 96 | 5 | 30 | 29 | 96.67 |
| 90 | 200 | 118 | 5 | 30 | 30 | 100 |

Table 19: Increasing the Maximum Generation to Improve the Results

## 4 Parallel Genetic Algorithms

An important open question in the study of genetic algorithms is the optimal size of a population. The problem centers around the tradeoff between the amount of genetic search that can be done and the amount of real time available. If the population size is too small, then the genetic algorithm will have a, possibly improperly, constrained search space because of an insufficient number of schemata in the population. If the population size is too large however, an inordinate amount of time will be required to perform all the evaluations [PLG87].

One method of overcoming the genetic search vs. real time problem is to develop parallel genetic algorithms.

Genetic algorithms are inherently parallel. The Connection Machine system [Hil85] makes parallel implementations of these inherently parallel algorithms possible. This section describes the Connection Machine system, the C* parallel programming language, and the implementation of a genetic algorithm on the Connection Machine.

### 4.1 Connection Machine System

The Connection Machine system is a data parallel computing system which associates one processor with each data element (SIMD machine). This computing style exploits the natural computational parallelism inherent in many data-intensive problems.

The Connection Machine is an integrated system of hardware and software.
The hardware elements of the system include front-end computers that provide
the development and execution environments for the system software, a parallel processing unit of 64 K processors that execute the data parallel operations, and a highperformance data parallel I/O system.

The front-end serves three primary functions in the Connection Machine system:

- It provides an applications development and debugging environment.
- It runs applications, transmitting instructions and data to the Connection Machine parallel processing unit.
- It provides maintenance and operations utilities for controlling the Connection Machine and diagnosing problems.

Each data processor has its own memory and an arithmetic-logic unit that can operate on variable-length operands. All processors have the same amount of memory, either 64 K bits or 256 K bits apiece. These processors not only can process the data stored in their memory, but also can be logically interconnected so that information can be exchanged among the processors. All these operations happen in parallel on all processors. Thus, the Connection Machine hardware directly supports the data parallel problem model.

The Connection Machine system implements data parallel programming constructs directly in hardware and microcode. Interprocessor communication is implemented by a special-purpose high speed network. Processors that hold interrelated data elements store pointers to one another. When data is needed, it is passed over
the network to the appropriate processors. The network supports completely general patterns of communication, but additional special hardware supports certain commonly used regular patterns of communication. Nearest-neighbor communication in a multidimensional rectangular grid is particularly efficient.

The system software is based upon the operating system or environment of the front-end computer. The visible software extensions are minimal. Users can program using familiar languages and programming constructs, with all the development tools provided by the front-end computer. Programs have normal sequential control flow; new synchronization structures are not needed. Thus, users can easily develop programs that exploit the power of the Connection Machine hardware.

### 4.2 C* Parallel Programming Language

The $\mathrm{C}^{*}$ language, developed by Thinking Machines is a data parallel extension of the $C$ programming language. $C^{*}$ programs are similar in style to $C$ programs; the extensions are easy to learn. Parallel code looks like serial code, but is executed in all parallel processors simultaneously. $\mathrm{C}^{*}$ features a single new data type, a synchronous execution model, and a minimal number of extensions to $C$ statement and expression syntax. $C^{*}$ relies on existing $C$ operators, applied to parallel data, to express such notations as broadcasting, reduction, and interprocessors communication in both regular and irregular patterns.

In $C^{*}$ a new keyword is introduced to specify parallel data which is called a
domain. All data in $\mathrm{C}^{*}$ is divided into two kinds, scalar and multiple, which are described by using two new keywords, mono and poly. Also C* introduces a member function of a domain to specify the parallel codes. A data declaration that appears within a domain declaration or within a member function of a domain will by default be poly. All other declarations are by default mono. In terms of the computational model, poly quantities are precisely those residing in the memories of the processor array, and mono quantities are precisely those residing in the memory of the front-end computer.

All code in $\mathrm{C}^{*}$ is also divided into two kinds: serial and parallel. Code that belongs to a domain is parallel, and may be executed by many data processors at once. All other code is serial, and is executed by the front-end as if it were ordinary sequential C code. The two types of code are distinguished by syntactic context: code may belong to a domain (and therefore be parallel) only as the body of a member function of the domain or as the substatement of a selection statement that selects the domain. The two types of code are written using the same syntax; all standard C expression operators and all standard C statement types may be used in parallel code in exactly the manner in which they are used in serial code.

### 4.3 Implementation of Parallel Genetic Algorithms

### 4.3.1 Parallel Data Structure

The primary parallel data structure in genetic algorithm is population. In a population, there are a lot of strings. Each string associates with a fitness and a penalty, and is stored in a processor. In the selection procedure, we need to generate the same number of string copies of the current generation in the next generation, and put the position of the string in a mating pool. In the crossover procedure, we need to generate the random crossover points. All of these operations can be done in parallel. The parallel data structure is described as the following:

```
domain population
{
    int x;
    int old_string[maxstring], new_string[maxstring];
    int old_fitness, new_fitness;
    int penalty, pool, jcross;
    int sum, tempix;
} pop_size[maxpopulation];
```


### 4.3.2 Evaluation Function

In each generation, the genetic algorithm uses strings as parameters to calculate the evaluation function. In serial code, if there are $n$ strings in a population, the
evaluation function will need to be calculated $n$ times. In a parallel algorithm, $n$ processors can do this work at the same time. For example, a member function for Clique problem is described as the following:

```
population :: evaluation_function(string)
int string[maxstring];
{
    mono int i, j;
    int res = 0, count = 0;
    int buffer[maxstring];
    penalty = 0;
    for (j=1; j<=stringlength; j++)
        if (string[j] == 1)
        {
            count++;
            buffer[count] = j;
        }
    res = count * (count - 1)/2;
    for (i=1; i<count; i++)
        for ( }\textrm{j}=\textrm{i}+1;\textrm{j}<==\mathrm{ count; j++)
        if (m[buffer[i]][buffer[j]]!= 1)
        penalty++;
```

```
    res - = penalty * penalty;
    if (res >=0)
    return (res);
    else
        return (0);
}
```

After calculating $n$ fitnesses parallelly, we can use another member function to select the largest among all the fitnesses. The parallel code to select the largest fitness is the following:

```
population :: max()
{
    mono int j, max1, position;
    int ix, buffer, tempix;
    buffer = 0;
    tempix = 0;
    if (penalty == 0)
        buffer = old_fitness;
    max1 = (>?=buffer);
    ix = this - pop_size;
    if (pop_size[ix].buffer == max1)
        tempix = ix;
```

```
    position = (>?=tempix);
    sumfitness = ( += old_fitness);
}
```


### 4.3.3 Reproduction

The reproduction procedure is implemented by using a biased roulette wheel method [Gol89]. First calculate $n$ sub-sums which are the sums of the fitness from the first string to the current string. Then generate $n$ random numbers in range between 1 and the sum of fitness over all strings parallelly. If the random number is less than or equal to a sub-sum which is the smallest that can be found, the string corresponding to the sub-sum is copied to the next generation. The strings with a higher fitness value have a higher probability of contributing one or more offspring in the next generation.

For example, the $n(n=8)$ fitnesses are $5,7,2,6,1,0,4,3$. The sub-sums are 5 , $12,14,20,21,21,25,28$. The algorithm is represented in the Figure 11.

The Figure 11 can be recursively represented in Figure 12. Therefore the parallel time of this algorithm is:

$$
\begin{gathered}
T(n)=T\left(\frac{n}{2}\right)+1 \\
T(n) \cong \log n
\end{gathered}
$$

We use bitwise operations to implement this algorithm. The parallel calculation of $n$ sub-sums is described as following member function.


Figure 11: Parallel Algorithm for Calculating Sub-sums


Figure 12: Recursive Representation for Calculating Sub-sums
population :: sum_sum(i)
int i ;
$\{$
int idx2, ix;
$i x=$ this - pop_size;
if $((i x \gg i) \& 1)$
\{

$$
\mathrm{idx} 2=(\mathrm{ix} \& \sim((1 \ll \mathrm{i})-1))-1
$$

$$
\text { pop_size[ix].sum }=\text { pop_size[ix].sum }+ \text { pop_size[idx2].sum; }
$$

\}

The above member function is invoked $\log n$ times, for $i=0,1,2, \ldots, \log n$, where $n$ is the population size.

The parallel selection procedure uses binary search to find the positions:

```
population :: select()
{
    int first, last, ind, found;
    x = int ((double) rand()/ range * sumfitness);
    first = 0;
    last = populationsize - 1;
    found = 0;
    while (first <= last && found == 0)
    {
    ind = (int) ((first + last) / 2 );
    if (ind ==0)
    {
        pool = 0;
        found = 1;
        }
        else
            if (pop_size[ind].sum > = x && pop_size[ind - 1].sum < x)
```

$$
\begin{aligned}
& \text { \{ } \\
& \text { pool }=\text { ind; } \\
& \text { found }=1 ; \\
& \text { else } \\
& \text { if (pop_size }[\text { ind }] . \text { sum }>=\mathrm{x} \text { ) } \\
& \text { last }=\text { ind }-1 ; \\
& \text { else } \\
& \text { first }=\text { ind }+1 ; \\
& \} \quad \text { if (found }==0) \\
& \text { pool }=0 ;
\end{aligned}
$$

### 4.3.4 Crossover

Parallel implementation of the crossover operator requires communication between processors. The even numbered processors are selected to communicate with the odd numbered processors (which is the even number minus 1). Within the code of a member function, the variable this is a parallel pointer to the currently executing domain instances. The member function for crossover is the following:
population :: crossover ( )
int $\mathrm{j}, \mathrm{ix}$;
$x=($ double $)$ rand ()$/$ range;
if ( $\mathrm{x}<=$ cross_prob)
jcross $=($ int $)(($ double $)$ rand ()$/$ range $*$ stringlength +1$) ;$
else
jcross $=$ stringlength;
ix $=$ this - pop_size;
if (ix \% 2)
$\{$

$$
\begin{aligned}
& \text { for }(\mathrm{j}=1 ; \mathrm{j}<=\text { pop_size[ix].jcross; } \mathrm{j}++ \text { ) } \\
& \{ \\
& \text { pop_size }[\mathrm{ix}-1] \text {.new_string }[\mathrm{j}]=\text { pop_size[ix-1].old_string }[\mathrm{j}] \text {; } \\
& \text { pop_size[ix].new_string[j] = pop_size[ix].old_string[j]; } \\
& \text { \} } \\
& \text { if (pop_size[ix].jcross }<\text { stringlength }) \\
& \text { for ( } \mathrm{j}=\text { pop_size }[\mathrm{ix}] . \mathrm{jcross}+1 ; \mathrm{j}<=\text { stringlength; } \mathrm{j}++ \text { ) } \\
& \{ \\
& \text { pop_size[ix-1].new_string[j] }=\text { pop_size[ix].old_string }[j] \text {; } \\
& \text { pop_size[ix].new_string[j] }=\text { pop_size[ix-1].old_string[j]; } \\
& \text { \} }
\end{aligned}
$$

```
    }
}
```


### 4.3.5 Mutation

The mutation operator can also be implemented parallelly. Each string is processed by one processor. The member function for mutation is the following:

```
population :: mutation()
\(\{\)
    int j , ix;
    ix \(=\) this - pop_size;
    for \((\mathrm{j}=1 ; \mathrm{j}<=\) stringlength \(; \mathrm{j}++\) )
        if ((double) rand ()/range \(<=\) mutation_prob)
        \(\{\)
            if (pop_size[ix].new_string \([\mathrm{j}]==1\) )
            pop_size[ix].new_string \([\mathrm{j}]=0\);
            else
                pop_size[ix].new_string \([\mathrm{j}]=1\);
        \}
\}
```


### 4.4 Analysis of the Parallel Genetic Algorithm

Suppose that each processor represents one string. The number of total processors used in the algorithm is the population size. We use $n$ to represent the number of processors. The analysis of parallel genetic algorithm for each phase is:

- The evaluation phase: $n$ processors calculate the fitness of the evaluation function at the same time by using $n$ strings as parameters. There is no communication between processors. Therefore the time complexity of this phase is not affected by the number of processors.
- Selecting the largest fitness phase: Each processor has one fitness value. We want to select the largest fitness value in all processors and to know which processor occupies this value. $\mathrm{C}^{*}$ programming language provides the operation of finding the maximum number in all processors by using the operator $>$ ? $=$. This operator requires $\mathrm{O}(\log n)$ parallel time.
- Reproduction phase: This phase consists of two parts. One is to calculate the sub-sum which is the sum from the fitness value of the first processor to the fitness value of the current processor. A parallel algorithm was developed to do this work in $\mathrm{O}(\log n)$ time. Another is the selection phase which is performed by generating the $n$ random numbers at the same time, and then using binary search in $n$ processors to get $n$ positions parallelly. The time complexity of this phase is $\mathrm{O}(\log n)$.
- Crossover phase: This phase needs communication between processors. The first processor communicates with the second; the third with the fourth; etc. All the communications can be done at the same time. It is not affected by the number of processors.
- Mutation phase: By using a member function, this phase can be done parallelly. It is also not affected by the number of processors.

When increasing the number of processors, the running time of the parallel genetic algorithm only has a little increase, and we can get better solutions. Some experimental results are shown in Tables $20-21$. maximum generation $=20$, crossover probability $=0.5$, mutation probability $=0.01$ are used in the experiments. The time is counted in seconds.

| seed | clique size <br> in initial $G$ | clique size in results | best generation | number of processors | CM time (seconds) | front end virtual time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | 4 | 16 | 100 | 14.53 | 19.70 |
| 2 | 5 | 4 | 10 | 100 | 14.59 | 19.92 |
| 3 | 5 | 4 | 3 | 100 | 14.63 | 19.67 |
| 4 | 5 | 4 | 13 | 100 | 14.85 | 19.71 |
| 5 | 5 | 4 | 18 | 100 | 14.60 | 19.54 |
| 1 | 5 | 5 | 15 | 1000 | 15.97 | 21.00 |
| 2 | 5 | 4 | 5 | 1000 | 16.07 | 21.03 |
| 3 | 5 | 5 | 14 | 1000 | 16.13 | 21.07 |
| 4 | 5 | 4 | 8 | 1000 | 16.04 | 21.08 |
| 5 | 5 | 4 | 0 | 1000 | 15.19 | 20.11 |
| 1 | 5 | 5 | 15 | 4000 | 18.89 | 23.05 |
| 2 | 5 | 4 | 3 | 4000 | 19.13 | 22.22 |
| 3 | 5 | 5 | 8 | 4000 | 19.78 | 22.30 |
| 4 | 5 | 5 | 4 | 4000 | 22.68 | 23.56 |
| 5 | 5 | 5 | 14 | 4000 | 19.16 | 23.61 |
| 1 | 6 | 4 | 16 | 100 | 16.73 | 20.26 |
| 2 | 6 | 5 | 13 | 100 | 14.77 | 19.84 |
| 3 | 6 | 5 | 13 | 100 | 19.49 | 20.81 |
| 4 | 6 | 5 | 18 | 100 | 22.00 | 21.11 |
| 5 | 6 | 4 | 3 | 100 | 18.66 | 21.08 |
| 1 | 6 | 6 | 19 | 1000 | 16.11 | 21.13 |
| 2 | 6 | 5 | 7 | 1000 | 16.09 | 20.89 |
| 3 | 6 | 5 | 7 | 1000 | 15.94 | 20.92 |
| 4 | 6 | 5 | 16 | 1000 | 16.17 | 21.23 |
| 5 | 6 | 5 | 8 | 1000 | 16.02 | 21.07 |
| 1 | 6 | 6 | 19 | 4000 | 16.88 | 22.08 |
| 2 | 6 | 5 | 7 | 4000 | 16.77 | 21.88 |
| 3 | 6 | 5 | 4 | 4000 | 16.76 | 21.83 |
| 4 | 6 | 6 | 10 | 4000 | 16.79 | 21.92 |
| 5 | 6 | 5 | 8 | 4000 | 16.75 | 21.95 |

Table 20: Total Vertices $=10$ in Initial Graph $G$

| seed | clique size <br> in initial $G$ | clique size in results | best generation | number of processors | CM time (seconds) | front end virtual time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 6 | 5 | 10 | 100 | 54.79 | 60.14 |
| 2 | 6 | 4 | 4 | 100 | 53.47 | 59.64 |
| 3 | 6 | 4 | 4 | 100 | 59.16 | 60.52 |
| 4 | 6 | 5 | 5 | 100 | 49.48 | 58.74 |
| 5 | 6 | 4 | 8 | 100 | 58.90 | 61.50 |
| 1 | 6 | 7 | 17 | 1000 | 50.50 | 60.69 |
| 2 | 6 | 5 | 10 | 1000 | 61.19 | 62.79 |
| 3 | 6 | 5 | 5 | 1000 | 55.57 | 61.78 |
| 4 | 6 | 6 | 19 | 1000 | 49.41 | 60.81 |
| 5 | 6 | 5 | 8 | 1000 | 52.32 | 61.42 |
| 1 | 6 | 7 | 17 | 4000 | 49.60 | 60.96 |
| 2 | 6 | 5 | 0 | 4000 | 50.32 | 61.20 |
| 3 | 6 | 5 | 1 | 4000 | 53.81 | 61.73 |
| 4 | 6 | 6 | 15 | 4000 | 65.02 | 63.26 |
| 5 | 6 | 5 | 3 | 4000 | 49.76 | 61.03 |
| 1 | 8 | 5 | 3 | 100 | 52.47 | 62.05 |
| 2 | 8 | 5 | 13 | 100 | 51.71 | 60.32 |
| 3 | 8 | 5 | 11 | 100 | 54.48 | 58.69 |
| 4 | 8 | 5 | 5 | 100 | 49.76 | 61.11 |
| 5 | 8 | 5 | 13 | 100 | 47.84 | 58.90 |
| 1 | 8 | 7 | 17 | 1000 | 66.82 | 68.92 |
| 2 | 8 | 5 | 6 | 1000 | 63.45 | 69.28 |
| 3 | 8 | 7 | 12 | 1000 | 51.89 | 66.14 |
| 4 | 8 | 6 | 13 | 1000 | 53.79 | 68.23 |
| 5 | 8 | 6 | 14 | 1000 | 48.64 | 60.10 |
| 1 | 8 | 7 | 17 | 4000 | 55.94 | 70.10 |
| 2 | 8 | 6 | 14 | 4000 | 56.85 | 67.39 |
| 3 | 8 | 7 | 12 | 4000 | 52.53 | 66.95 |
| 4 | 8 | 6 | 12 | 4000 | 60.94 | 69.12 |
| 5 | 8 | 6 | 4 | 4000 | 51.53 | 63.07 |

Table 21: Total Vertices $=20$ in Initial Graph $G$

## 5 Advanced Techniques

Based on mechanisms of natural selection and genetics, by simulating some features of biological evolution, genetic algorithms can be used to solve problems where traditional search and optimization methods are less effective [Dav91].

There are some encoding techniques for representing the problems. Bit string representation is the most common encoding technique used by genetic algorithm researchers. Bit string representation is theoretically tractable, and its simplicity makes it easy to prove theorems. Other encoding techniques are numerical representation and order-based representation. Numerical representation uses real numbers in a string. Order-based representation uses a random permutation to represent the problem.

There are also several algorithms for the selection procedure [Bak87].
The crossover techniques often used are one point crossover and two point crossover. Two point crossover is also a method for sharing information between two successful individual strings. Two point crossover can be implemented by selecting two random integer positions in the string and exchanging the segments from the first position to the second position with another string similarly partitioned.

Suppose that $A$ and $B$ are two parent strings selected randomly from the mating pool, and $i, j$ are two random integer positions.

$$
\begin{gathered}
A=a_{1} a_{2} \ldots a_{i-1} a_{i} a_{i+1} \ldots a_{j-1} a_{j} a_{j+1} \ldots a_{n} \\
B=b_{1} b_{2} \ldots b_{i-1} b_{i} b_{i+1} \ldots b_{j-1} b_{j} b_{j+1} \ldots b_{n}
\end{gathered}
$$

After crossover, the children are

$$
\begin{aligned}
& A=a_{1} a_{2} \ldots a_{i-1} b_{i} b_{i+1} \ldots b_{j-1} b_{j} a_{j+1} \ldots a_{n} \\
& B=b_{1} b_{2} \ldots b_{i-1} a_{i} a_{i+1} \ldots a_{j-1} a_{j} b_{j+1} \ldots b_{n}
\end{aligned}
$$

## 6 Conclusions

In this thesis a genetic approach to generating solutions for the Clique, Vertex Cover, and Max Cut problems is presented. All of these problems are NP-Complete problems. The techniques used are Baker's sampling algorithm, the biased roulette wheel method for the selection procedure, and one point crossover operator.

A series of experimental results are reported in this thesis. The experimental results show that $77.33 \%$ of tests get optimal solutions, the average performance guarantee is $98.80 \%$ for the clique problems; $61 \%$ of tests get optimal solutions, the average performance guarantee is $2.65 \%$ for the vertex cover problems; and when the density probability is higher, the genetic algorithm works better than the greedy algorithm for the max cut problems. For the smaller size random generated testing data, the genetic algorithm solutions are exactly identical to the optimal solutions for the max cut problems. Genetic algorithms can provide efficient search heuristics for solving combinatorial optimization problems.

Genetic algorithms are easy to code. All the operator functions and initial population, statistics and report functions can be used for other problems. Therefore, when solving a new problem, what we need to do is to encode the problem to a string representation, input the values of the problem and define the evaluation function properly.

The evaluation function must have a nonnegative value. In many problems, the objective is more naturally stated as the minimization problems, such as the Vertex

Cover problem. We need to map the natural objective function to an evaluation function. The following transformation is commonly used in genetic algorithms:

$$
\begin{aligned}
f^{\prime}(x) & =C_{\max }-f(x) & & \text { when } f(x)<C_{\max } \\
& =0 & & \text { otherwise }
\end{aligned}
$$

where $f(x)$ is the natural objective function, $f^{\prime}(x)$ is the evaluation function, $C_{\text {max }}$ is a coefficient. For the Vertex Cover problem, we use the total number of vertices as the coefficient which is the largest value of the objective function.

In a problem with one or more constraints, a cost or penalty with all constraint violations should be included in the evaluation function. The penalty method can be used to solve this kind of problem. We usually square the violations of the constraints.

Genetic algorithms are inherently parallel. Multi-processors make it possible to study genetic algorithms on larger domains. Because of the availability of larger population sizes, we can improve the results considerably by implementing the parallel genetic algorithms. In this thesis, a parallel genetic algorithm is implemented on the Connection Machine system.

## 7 Open Problems and Future Work

The field of genetic algorithms is growing rapidly. Some applications of genetic algorithms demonstrate commercial potential. We can divide genetic algorithms into three major categories:

- Genetic algorithm theory
- Optimization
- Machine learning

In those three major categories we can list the most interesting open problems and future work as follows:

- finding new representation techniques;
- defining evaluation function with vector fitness;
- developing new genetic operators;
- discovering more efficient parallel selection algorithms;
- changing genetic algorithm parameters dynamically;
- applying genetic algorithms to more application areas that traditional search lacks efficient algorithms;
- applying genetic algorithm techniques to the neural network computing architectures.

We believe that the scientists will have more understandings on the processes of biological evolutions and the behaviors of natural intelligence. Therefore the simulation of biological evolution processes and natural intelligence behaviors will be implemented by computer scientists more naturally and practically. We have no doubt that genetic algorithms will play very important role in the fields of AI (Artificial Intelligence) and NI (Natural Intelligence) for the next decade.

## References

[Ant89] Jim Antonisse. A new interpretation of schema notation that overturns the binary encoding constraint. In Proceedings of the Third International Conference on Genetic Algorithms, 1989.
[Aus90] Scott Austin. An introduction to genetic algorithms. AI Expert, March 1990.
[Bak87] James E. Baker. Reducing bias and inefficiency in the selection algorithm. In Proceedings of the Second International Conference on Genetic Algorithms, 1987.
[BG87] Clayton L. Bridgs and David E. Goldberg. An analysis of reproduction and crossover in a binary-coded genetic algorithm. In Proceedings of the Second International Conference on Genetic Algorithms, 1987.
[Dav85] Lawrence Davis. Job shop scheduling with genetic algorithms. In Proceedings of the First International Conference on Genetic Algorithms and Their Applications, 1985.
[Dav89] Lawrence Davis. Adaptive operator probabilities in genetic algorithms. In Proceedings of the Third International Conference on Genetic Algorithms, 1989.
[Dav91] Lawrence Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.
[DC87] Lawrence Davis and Susan Coombs. Genetic algorithms and communication link speed. In Proceedings of the Second International Conference on Genetic Algorithms, 1987.
[DJ75] Kenneth A. De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis, University of Michigen, 1975.
[DJS89] Kenneth A. De Jong and Willian M. Spears. Using genetic algorithms to solve np-complete problems. In Proceedings of the Third International Conference on Genetic Algorithms, 1989.
[DS87] Lawrence Davis and Martha Steenstrup. Genetic algorithms and simulated annealing: An overview. In Genetic Algorithms and Simulated Annealing, 1987.
[Eng85] Amold C. Englander. Machine learning of visual recognition using genetic algorithms. In Proceedings of the First International Conference on Genetic Algorithms and Their Applications, 1985.
[FW90] D'Ann Fuquay and Darrell Whitley. Genetic algorithm solutions for the traveling salesman problem. In ACM 28th Annual Southeast Regional Conference, 1990.
[GB89] John J. Grefenaatette and James E. Baker. How genetic algorithms works: A critical look at implicit parallelism. In Proceedings of the Third International Conference on Genetic Algorithms, 1989.
[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability A Guide to the Theary of NP-Completeness. Bell Telephone Laboratories, 1979.
[Gol89] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, 1989.
[Gre86] John J. Grefenstette. Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-16, No. 1, January/February 1986.
[Hil85] W. D. Hillis. The Connection Machine. MIT Press, 1985.
[Hol75] John H. Holland. Adaption in Natural and Artificial Systems. University of Michigen Press, 1975.
[LK89] C. B. Lucasins and G. Kateman. Application of genetic algorithms in chemometric. In Proceedings of the Third International Conference on Genetic Algorithms, 1989.
[PLG87] Chrisila B. Pettey, Michael R. Leuze, and John J. Grefenstette. A parallel genetic algorithm. In Proceedings of the Second International Conference on Genetic Algorithms, 1987.
[RPLH89] Jon T. Richardson, Mark R. Palmer, Gunar E. Liepins, and Mike Hilliard. Some guidelines for genetic algorithms with penalty functions. In Proceedings of the Third International Conference on Genetic Algorithms, 1989.
[SCED89] J. David Schaffer, Richart A. Caruana, Larry J. Eshelman, and Rajarshi Das. A study of control parameters affecting online performance of genetic algorithm for function optimization. In Proceedings of the Third International Conference on Genetic Algorithms, 1989.
[Sch85] J. David Schaffer. Multiple objective optimization with vector evaluated genetic algorithms. In Proceedings of the First International Conference on Genetic Algorithms and Their Applications, 1985.
[Wil87] Stewart W. Wilson. A genetic algorithm and biological development. In Proceedings of the Second International Conference on Genetic Algorithms, 1987.

