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Great progress has been made in decomposing psy-
chological functions into their composite neurological
and cognitive subfunctions.The methods of experimental
psychologyand clinical neuropsychologyhave succeeded
in identifyinga large and growing number of well-defined
variables that play a functional role in cognition. Under-
standing how these variables may interact is one problem
that poses great difficulty for psychology. In this paper,
we introduce the use of genetic programming (GP) to
evolve equations that can combine a large number of vari-
ables in order to predict a single measure of interest. This
technique has wide applicability, but in this paper we
focus on two domains: psycholinguistics (predicting re-
action times [RTs] in lexical access) and psychometrics
(predicting full-scale validation scores from subsets of
test questions). GP has several advantages over more tra-
ditional techniques for studying the relation of many pre-
dictor variables to a single target variable. We highlight
some of the more general methodological issues involved
in using GP to compute estimator equations across many
variables in any domain and, in the conclusion, address
some criticisms that may be leveled against its use.

It is not our intention to suggest that GP is itself a
model of psychological processes or that it may in itself
stand as a theoretical entity. Our aims in this paper are
methodological. We will demonstrate how GP may be
used as a useful computational tool for discovering and
describing complex relations in data that may otherwise
be missed. We will begin by describing GP and compar-
ing it with two other tools that have also been used to de-
scribe relations in data.

Three Traditional Approaches to
Multivariate Analysis

Much of the progress that has been made in identifying
variables relevant to psychological functioning has been
conducted using factorial designs that simplify the prob-
lem under study by treating a small number of continuous
variables of interest as factors. Other variables are usually
either blocked to a narrow range or left unassessed, with
the assumption being that they are randomly distributed.

The parametric statistics that are usually used to ana-
lyze factorially designed experiments make two assump-
tions. One assumption is that the factors under consider-
ation are normally distributed. In cases in which this is
known to be untrue and the nature of the departure from
normalcy is understood, adjustments may be made. The
second assumption is more important because it cannot
always be easily tested or controlled. This is the assump-
tion that the factors under examination are free to vary
independently. Conclusions from experiments are com-
promised whenever one may have reason to doubt either
the distributional or the independence assumption.

Another problem with drawing conclusions from fac-
torial manipulations is that they are often limited in their
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ability to test the full range of a measure. They tend,
rather, to test only effects drawn from the extremes. In
cases in which the effect of an independent variable on a
dependent variable is not linear, testing a narrow range
of values must necessarily give an incomplete and even
misleading understanding of the nature of the phenome-
non under study.

A second technique for analyzing how multiple vari-
ables impact on a single variable is multiple regression
analysis. This technique makes it possible for investiga-
tors to quantify the sensitivity of a target variable to a
range of variables (e.g., Balota, Cortese, & Pilotti, 1999;
Treiman, Mullennix,Bijeljac-Babic,& Richmond-Welty,
1995). Multiple regression analysis makes the assump-
tion (not necessary in theory, but almost always assumed
in practice) that any relationships that do exist between
the variables are linear. Assuming linearity is usually
necessary, since the alternative is underspecified. If vari-
ables are related in a nonlinear manner, the function that
relates them needs to be specified before the regression
analysis can be carried out. Unfortunately, there is usu-
ally no principled way to make such specification. Mul-
tiple regression also places restrictions on the number of
independent variables that can be examined at one time.

A more recent approach to studyinghow many variables
interact has been to develop connectionist models, which
are capable of combininga large number of variableswith-
out making assumptionsabout linearity. These models can
be tested against human performance, using the traditional
analyses of multiple regression or factorial designs.

Neural networks produce nonlinear solutions to prob-
lems of variable combination that are often much better
than the best linear solution. The problem with neural
networks is that one is not sure what the solution is, be-
cause the model represents it in an opaque manner. One
must expend a great deal of effort to re-represent it, an-
alyzing the weights and, thereby, translating them into a
human-comprehensible expression. In contrast, GP, as
we shall see, provides an explicit equation that is already
much closer to being humanly comprehensible.

A problem that is common to both regression models
and some connectionist models, as well as to many other
methods for predicting one value from a set of other vari-
ables, is that they suffer from a muddying of two sources
of variation. One source of variation is that which is spe-
cific to the data set on which the model was built. Such
variance is, by definition, an accident of the particular
choice of stimuli that make up the set. As such, it would
not be replicated in a different set. The other, more scien-
tifically interesting, source of variation is that which is
systematically related to the phenomenon being studied.
This source of variance is, by definition, likely to be found
in any data set, irrespective of its particular composition.
Both connectionist and regression models can get around
this by implementing cross-validation techniques, dis-
cussed below, but these are not always applied. Without
their application, the structure of the problem allows ei-
ther model to include the variance that is specific to that
data set, with its idiosyncratic relations. As a result of

being allowed to use this source of variation in their cal-
culations these techniques are likely to systematically
overestimate how much variation they have accounted for
in the phenomenon that one wishes to explain. However,
these techniques cannot offer any means of determining
how much of the variation they have overestimated, since
that is a function of each particular data set.

This problem is particularly vexing because systematic
overestimation on a single data set must lead to system-
atic underestimation in generalizing to other data sets.
Any estimator process that accounts for data set specific
variance in its estimation will have that variance as an
error term in a new data set, since, by definition, that data
set specific variance does not apply to the new data set.

It is desirable to capture the nature of multiple-predictor
interactions without being subject to the limitations dis-
cussed above. To do so, one needs a technique for com-
bining variables that is free from limiting assumptions
about the nature of the combinations and that produces
algorithmically well-defined predictions that can be di-
rectly tested and measured on new data sets, thereby min-
imizing the error due to the inclusion of data-set–specific
error. GP is a technique that can fulfill these desiderata.

Genetic Programming
GP (Koza, 1992) uses natural selection to evolve com-

putational functions. The principle by which it works is
simple. One begins with a problem that is defined in
such a way as to allow for rank ordering of possible so-
lutions. It is important to stress that this does not require
that one know anything at all about the form or content
of the desired solution. It only requires that one be able
to algorithmically decide whether one solution is incre-
mentally better than another. The goodness value as-
signed to any solution is called its fitness value. The
function that assigns the fitness value to each proposed
solution is known as the fitness function.

To begin the evolutionary process, many purely ran-
dom mathematical guesses at the solution to the problem
are generated through simple concatenation of legal op-
erators and operands in a tree structure (see Figure 1).
Any mathematical or logical function can be easily rep-
resented in this form. The randomly generated guesses
are subsequently rank-ordered using the fitness function.
The best among them are mated to produce the next gen-
eration of problem-solving functions. The mating proce-
dure in GP is illustrated in Figure 1. It consists simply of
random subtree swapping of the parent problem-solving
functions.The random tree-swapping amounts to reusing
sections of the calculations that have possible utility for
solving the problem at hand. By repeating this process of
ranking, selection, and mating of problem-solving func-
tions across many generations, GP is able to sharpen the
initial guesses to converge on increasinglyhigher ranked
solutions to the problem. Across many generations of se-
lective breeding, average and best fitness increase. Since
fitness is determined here by utility for solving the prob-
lem, increases in fitness indicate better solutions to the
problem of interest. The process is closely analogous to
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selective breeding in biology, where the breeder decides
which animal is good enough to be allowed to breed. Fol-
lowing repeated breeding sessions, we select the best so-
lution that has evolved (for formal analyses, see Koza,
1992; see Holland, 1992, for a closely related analysis).
We used a modified version of code written and patented
by Koza (his original unmodified code is downloadable
from ftp://ftp.aic.nrl.navy.mil/pub/galist/src/koza.gp.txt).
With minimal familiarity with the Common Lisp pro-
gramming language and access to Koza’s book, it is easy
to adapt that code to evolve solutions to problems such
as the ones we will consider below.

Estimation problems, such as the ones we consider in
this paper, have a natural fitness function. Good solu-
tions may be defined as those with a high absolute cor-
relation of the estimate with the data to be estimated. Be-
cause correlations are well defined and continuousacross
the range of 21 to 1, it is possible to compare the output
of any two estimator equations and unambiguously de-
cide which one is better—the one with the larger ab-
solute correlation with the data.

As a technique for modeling relations between vari-
ables, GP is completely general. It does not require any
a priori assumptions about variable distribution or about
the nature of the relationships between variables. Impor-

tantly, it can capture and combine both linear and non-
linear relations of predictor variables to the target vari-
able. Those relations can be radically nonlinear—that is,
they can include discontinuities that are defined by log-
ical relations. For example, we may encounter situations
in which Variable A acts in one way within a certain range
of Variable B, but in an entirely different way outside of
that range. An equation can describe such behaviors eas-
ily if it has if/then/else operators, by simply specifying
the following: If the value of B is within a specified
range, use Equation 1 to describe A’s behavior; else, use
Equation 2. GP can use logical operators as naturally as
it uses any other formally specifiable operator.

The problem of including data-set–specific variance
may be restated, in ecological terms suited to GP, by say-
ing that equations evolved on a single data set are too
well adapted to their evolutionary niche (the initial data
set) and utterly unable to “prosper” in the slightly differ-
ent niche offered by data sets outside that niche. This is
the problem of overfitting, discussed in more detail in
the General Discussion section at the end of this paper.
The general solution to the problem of overfitting is cross-
validation—insisting that any solutions put forth be ap-
plicable not only to the original data set, but also to new
data sets. In order to address the problem when GP is
used, we developed a technique called averaged multi-
test fitness that builds cross-validation into the fitness
function. In its repeated application during evolution,
this technique is analogous to the k-fold cross-validation
technique (Stone, 1974) that is now often used in training
neural networks. K-fold cross-validation cross-validates
a predictor function by deriving it k times on k different
subsets of the data set of a size that is (k 2 1)/k of the
total data set. Error feedback is obtainedfrom the withheld
1/k th of data. Averaged multitest fitness implements an
analogouscross-validation techniqueby defining a fitness
function that directly rewards (by selecting for) the ability
of an evolved equation to generalize to a different corpus.
Instead of testing the ability of each predictor equation to
estimate a value from one data set, one tests every equa-
tion’s ability to estimate the value for 10 randomly selected
subsets of that data set. The fitness value of that equation
is then calculated as the average correlation of the esti-
mator function output with the value to be estimated over
all 10 of these runs. By requiring an equation to perform
well at estimatinga value for 10 randomly selected subsets
of a data set, instead of for the entire data set, the aver-
aged multitest fitness confers a higher replication prob-
ability upon those equations that perform well in varying
adaptive environments—that is, data sets. It thereby min-
imizes the possibilityof developingoverspecializedadap-
tations to a single data set.

Like many computational models, GP output is gen-
erated by a heuristic and, thus, offers solutions that are
neither determinate nor unique. Different runs lead to
different outcomes. However, since evolved functions
are explicit in their mathematical specification of how
the variables under study combine, they can be used as
predictions that can be directly tested on a novel corpus,

Figure 1. Any mathematical equation can be expressed as a
tree. For example, the tree at the top left expresses the equation
w + [(y * z) / x]. The one beside it expresses the equation (a / b) *
log(w). We can mate any two equations by randomly swapping
subtrees that compose them to produce children—equations that
have the same elements as their parents. The two trees at the bot-
tom are children of the two at the top. This is an illustrative ex-
ample only, since the same two parents might equally well pro-
duce a large number of other offspring.
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where the amount of variance for which they account can
be quantified. As well as being amenable to formal
analysis, such functions can be easily represented in a
graphic form. This makes it easy to point to possible re-
lationships in the data and to analyze the variability be-
tween different evolved solutions in order to gain insight
into the reliabilityof those relationships.Thus, in addition
to providing solutions to complex problems, these tech-
niques enable us to quantify our confidence in the solu-
tions and, consequently, gain insight into their utility.

Our purpose in the remainder of this paper is not to
present novel scientific results. The data we consider are
either described in detail elsewhere or relate to toy prob-
lems of trivial scientific interest. Our goal in this paper
is only to illustrate how GP may be used to gain insight
into a diverse set of problems. We will briefly outline
four different problems to which we have applied the
technique and will present evidence, in each case, of the
utility of the evolved solution.

EXAMPLE 1
The Effect of Orthographic Neighborhood

on Lexical Word Access

In order to explicitly test the ability of GP to uncover
testable relations, we chose to have it discover an inter-
action that had already been studied extensivelyand, there-
fore, was relatively well understood: the effect on lexical
decision RTs of orthographic frequency and orthographic
neighborhood (ON) size (Coltheart’s N, first defined in
Coltheart, Davelaar, Jonasson, & Besner, 1977). Lexical
decision is a widely used task in which subjects are asked
to decide as quickly as possible whether a presented letter
string is a legal word or a nonword (e.g., frip). Ortho-
graphic frequency is the frequency with which a word is
encountered in written text, expressed as the number of en-
counters per million words (e.g., the word good has a fre-
quency of 911 occurrences per million, whereas the word
husk has a frequency of 2 occurrences per million). ON
size is defined as the number of different words that can be
created by changingone letter of a word while maintaining
letter positions (e.g., the neighborhoodof the word man in-
cludes the words ban, mad, mat, etc.).

English lexical decision studies of ON typically pro-
duce a frequency-modulated facilitatory neighborhood
size effect. Low-frequency words with large ONs are re-
sponded to more rapidly than low-frequency words with
small ONs (see Andrews, 1997, for a review). This fa-
cilitatory effect disappears with high-frequency words
(Andrews, 1992; Sears, Hino, & Lupker, 1995).

In this initial example, we investigatewhether GP could
evolve an equation that captured and extended our under-
standing of this well-documented frequency-modulated
ON effect.

Method
Subjects. We asked 120 University of Alberta 1st-year under-

graduate psychology students to perform lexical decisions for aca-

demic credit. Each subject was randomly assigned to one of four ex-
perimental conditions.

Stimuli. The subjects were asked to make lexical decisions on
600 randomly selected four-letter words. These were divided into
four sets of 150 words each, with each subject seeing only 150 of
those words. The same set of 150 four-letter pronounceable nonwords
(e.g., frip) was used in each of the four between-subjects conditions.

Procedure. The subjects were instructed to decide as quickly
and accurately as possible whether randomly presented single items
were real English words. They responded with keypresses to the
computer keyboard, using the dominant hand for yes responses and
the nondominant hand for no responses (using the “z” and “?” keys).
In every trial, a 50-msec blank screen was followed by a 250-msec
fixation cross that appeared at the center of the computer display.
Following the fixation, the item appeared and remained on the
screen until the subject entered a response, using the designated
keys. We discarded erroneous responses and responses with RTs
less than 250 msec or greater than 2,500 msec. The remaining RTs
were averaged together to get an average lexical decision time for
each of the 600 words.

As an additional cross-validity check, we used a cross-validation
technique known as the hold-out method. We divided the data set
into two subfiles. One file, containing 450 randomly selected words,
was the development set, which was used to derive the regression
equation and evolve the predictor equation. The remaining 150
words were set aside as the test set, used to test the ability of linear
regression and GP-evolved equations to predict validation scale
scores on a new data set.

GP. We included frequency and ON measures in the input file
for the GP, forcing it to maximize the function that related these two
variables to RT.

The initial 2,500 equations at generation 0 were randomly gen-
erated Lisp functions trees that used the available variables (as well
as randomly generated real numbers) as leaves and 10 one-, two-,
or three-argument functions (listed in Table 1) as internal nodes.
From these, the GP program selected the individual equations to be
used for breeding at the next generation. We used a breeding
scheme called fitness-proportionate selection with greedy over se-
lection (Koza, 1992). Under this scheme, the fitness scores of each
evolved equation is divided by the total summed fitness of its gen-
eration. The equations that account for the top 16% of the total fit-
ness are selected for reproduction with an 80% probability, whereas
the equations accounting for the bottom 84% of the total fitness are
chosen with a 20% probability. The GP was allowed to calculate 75
generations per run, after which it began again with a new random
set of 2,500 equations. At each generation, all 2,500 predictor equa-
tions were allowed to estimate RTs for 10 randomly chosen 30-word
subsets of the 450 words in the fitness corpus. They were ranked by
the fitness function according to how well their average estimate of
the RTs of those 10 subsets correlated with the actual RTs.

We adopted a convention of running eight runs of 75 generations,
selecting the equation whose output was maximally correlated with
the RTs as the best predictor. The value of this parameter, as well as
the population size and subset size, was chosen arbitrarily. The pop-
ulation size and run length are very generous by the standards set
out in Koza (1992). Koza often solved complex problems with
much smaller population sizes and shorter runs.

Results
Two estimator functions from the eight 75-generation

runs were about equally good predictors of the RTs. Their
output correlated with RTs at .47 and .48 ( p < .01). The
functions they produced are graphed across a range of
variation in Figure 2, and the predicted RTs are graphed
against the actual RTs in Figure 3. One of the two func-
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tions shown in Figure 2 (Equation 2) collapsed all ONs
greater than two into the same values across the range of
frequency. The other equation (Equation 1) differentiated
between ONs at every level over which they were defined.

These two independent estimates were almost identical
to each other, correlating at .98. When the predictor equa-
tions were tested against the 150 RTs from words that were
not in the original input set, their estimates correlated with
those new RTs at .61 and .60 ( p < .01). The two estimate
sets of these new data points correlated with each at .99.

For the purposes of comparison, we also ran a multi-
ple regression on the 450 word input set, using ON and
frequency as predictors of the RTs. The model produced
estimates that correlated at .22 ( p < .01) with the RTs.
When we applied the regression equation to the 150 words
that had been kept aside, the correlation was .20 ( p <
.01). The GP model therefore accounted for over four
times more variance in original input set (23.2% vs.

4.8%) and (more important) over nine times more vari-
ance in the unseen data set (36.5% vs. 4.0%) than the lin-
ear regression equation did.

Discussion
Other than the aforementioned collapsing of ONs

greater than two, the two equations graphed in Figure 2
describe an extremely similar relation between ON, fre-
quency, and RT, as their correlation at near-identity lev-
els indicates. They both clearly capture two known char-
acteristics of the relationship between these three
variables. The first is the frequency-modulated facilita-
tory neighborhood size effect. The effect of ON is clear
when frequency is low and disappears when frequency is
high. The second is the declining effect of frequency (in-
dependent of ON) on RT. When frequency is low, rela-
tively small increases have a relatively large facilitatory
effect on RT. However, the flattening of the curve as fre-

Table 1
The 10 Functions Available for Use in Evolved Functions

Single-argument functions
Protected square root Square root of absolute value of argument
Protected log Natural log of absolute value of argument, or 0 if argument is 0

Two-argument functions
+ Adds Arg1 to Arg2
* Multiplies Arg1 by Arg2
2 Subtracts Arg2 from Arg1
Protected / Arg1/Arg2 with error protection: division by 0 returns 0
Equal Returns 1 if Arg1 = Arg2; else returns 0
< If Arg1 < Arg2, returns 1, else 0.
> If Arg1 > Arg2, returns 1, else 0.

Three-argument function
If If Arg1 is 0 returns Arg2; else returns Arg3

Equation 1; ON = 2
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Figure 2. Graph across a range of variation of the two best-evolved functions relating ortho-
graphic neighborhood (ON) to frequency. Equation 1 was sensitive to changes across the range of
ON; Equation 2 distinguished only between ON £2 and ON > 2.
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quency increases shows that even large changes in fre-
quency have little effect on RT when frequency is high.

This graphical display of the function allows for the
formulation and testing of new hypotheses about the
shape of the function relating ON and frequency that
would be difficult or impossible to formulate using only
factorially designed experiments. To illustrate this, we
use Equation 1, which was sensitive across the range of
ON, as our measure.

One hypothesis that is suggested by an inspection of
Figure 2 is that the effect of ON disappears, on average,
somewhere between a frequency of 8 and 16 occurrences
per million, since it is in this frequency range that the
lines from the different ON sizes merge indistinguish-
ably. To test this, we divided the 450 word corpus into
three ON bands: 0–7, 8–16, and >16. We then conducted
an analysis of variance on the RTs with log(OFREQ +1)
covaried out ( p £.001). There was a significant differ-
ence in RTs between the three frequency-controlled ON
groups [F(2,446) = 4.2, p < .02]. The average adjusted
RTs, in order of increasing ON band, were 671 msec
(SD = 10 msec) with an ON of 0–7, 637 msec (SD =
10 msec) with an ON of 8–16, and 628 msec (SD =
8 msec) with an ON greater than 16. A post hoc Tukey’s
test confirmed what was clear from the inspection of
these values: The significant effect was due to differ-
ences between the 0–7 band and the other two bands ( p <
.05 in both cases), with no significant difference be-
tween those two higher bands ( p > .5). With the effect of
frequency partialled out, there is no difference between

words with an ON of 8–16 and those with a higher ON.
As was hypothesized, this suggests that ON has a signif-
icant effect on word access RTs only for words with fre-
quencies below about eight occurrences per million. It
should be noted that this does not diminish the impor-
tance of ON as a variable, since the vast majority of En-
glish words fall into this frequency range: 80.4% of all
four-, five-, and six-letter words in the WordMine data-
base (Buchanan & Westbury, 2000) and an even higher
percentage of longer words.

The formula graphed in Figure 2 also allows for the
formulation of a hypothesis about the size of ON effects.
When the standardized estimates across all frequencies
of words with high ON (�18) and low ON (£2) are av-
eraged, the evolved formula estimates that there should
be a difference of about 0.3 standard scores between the
RTs for words in these groups. The actual difference in
standardized RTs for words in these high-ON (average =
646 msec) and low-ON (average = 665 msec) categories
is close to this estimate at 0.2 standard scores.

As a final simple check of the accuracy of the equation
graphed in Figure 2, it is possible to verify the intercept es-
timate. The equation suggests that the average RT to all
words in the frequency range between 8 and 32 should be
20.1 SDs from the mean RT. The actual standardized
mean RT in the fitness corpus to words in that range is very
close to this estimate at 20.04 SDs from the mean RT.

In summary, GP was able to deduce the known relation-
ship between ON and frequency. It captured substantially
more of the variance in RTs than did a linear regression

Figure 3. The most highly correlated evolved predictor equation in Example1: stan-
dardized predictions graphed against standardized reaction times (RTs; r = .48).
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equation. Moreover, its representation of that relationship
provides more details than does the series of factorial ex-
periments that originally uncovered that relationship. By
explicitlyshowing the shape of the curve describing the re-
lation, we can see at what frequency value the ON effect
disappears and can estimate the size of that effect across
the entire range of frequency. Without committing our-
selves to the stochastically produced GP model as truth,
these elements of the relationship may be considered as
testable hypotheses that can guide further research.

EXAMPLE 2
Orthographic and Phonological Neighborhood

Interactions in Lexical Decision

The second example we will briefly discuss is also
drawn from the lexical access field, illustratinghow non-
linear methods, such as GP, may be able to discern a re-
lationshipbetween predictors where linear methods must
necessarily fail.

Westbury and Buchanan (2001) presented the results
of an experiment that looked at the interaction between
ON, described above, and phonological neighborhood
(PN). PN is defined in an analogous manner to ON but
consists of the number of words that can be obtained by
substitution of one single phoneme. For example, the
word rough is in the PN, but not in the ON, of the word
rut. To look at the interaction, Westbury and Buchanan
manipulated the number of items that were common to
the two neighborhoods. That experiment found a signif-
icant interaction between ON and PN on lexical access
times: Lexical decision RTs were faster as the total num-
ber of unique items in the combined ONs and PNs in-
creased.

Method
After this result was obtained, we used GP in a manner analo-

gous to that described above, with the intention of generating an
idealized graph of the effect. We entered orthographic frequency,
ON, PN, and the number of elements they held in common as pre-
dictors, using a 489-word corpus with lexical decision RTs taken
from an on-line database (Spieler & Balota, 1997). Among these four
predictors, only frequency was signif icantly correlated with RTs
(r = 2.30, p < .01). The other three predictors correlated with the
RTs with |r| £.02. A stepwise linear multiple regression using the
same four variables produced a regression equation that used only
frequency and, therefore, did not correlate with the RTs better than
did frequency alone, at .30.

GP ran eight 75-generation runs on the 489-word corpus. The most
highly correlated evolved predictor function correlated with RTs at

.39 (p < .01), accounting for approximately 1.7 times as much vari-
ance (15.2% vs. 9%) in the data as the multiple regression equation.

Although this evolved equation was better than the linear regres-
sion, we were unconvinced that such a weak effect size could ex-
plain our robust experimental finding. We suspected that the effect
was not fully explained by the variables we had manipulated and
entered into the predictor equations. We therefore decided to add in
variables that might account for some of the missing variance, fo-
cusing on variables relating to the phonological and orthographic
frequency of the word beginnings and endings. We added the eight
variables listed in Table 2 and controlled for frequency by using
only words with frequencies £1 occurrence per million.

A stepwise linear regression using the new variable set was able
to add only a single variable, LASTTPFREQ, obtaining a multiple
r value of .26, accounting for just 6.7% of the variance.

We again ran GP for eight 75-generation runs. The most highly
correlated evolved predictor equation was a nonlinear equation that
contained eight variables and correlated with the RTs at .85 (see Fig-
ure 4). This equation accounted for over 10 times as much variance in
this data set as the multiple regression equation (72.2% vs. 6.7%).

Results
The evolved equation was complex. We simplified the

evolved equation by hand and obtained a human-
comprehensible equation containing only four variables
that correlated with RTs in the database, with r = .64, ac-
counting for about 41% of the variance. This equation
suggested that there was an interaction between PN, the
frequency of the beginning of the word, and the fre-
quency of the end of the word.

In order to verify this relation independently, we con-
ducted another lexical decision experiment that manipu-
lated exactly these variables—PN and the frequencies of
the first and last orthographic triplets. The method and
results are presented briefly here.

We used only five- and six-letterwords of mid-frequency
(between 10 and 70 occurrences per million). We selected
12 words in each of the first triplet frequency (probable/
improbable) 3 second triplet frequency (probable/
improbable) 3 whole word PN (large/small) conditions
for each subject, from as large a pool of words as we
could find in each category (between 12 and 112 words;
see Table 3). Each subject’s input file was constructed
and randomized independentlyand included 96 randomly
selected, orthographically legal nonwords matched to the
words on length.Forty subjects participated, undertaking
a lexical decision task identical to that described above.

Here we report only correct response RTs for words re-
sponded to between 400 and 1,500 msec after presen-
tation. There were main effects of the first triplet fre-
quency [F(1,39) = 27.2, p < .001], of the second triplet

Table 2
The Eight Variables Added as Predictors of the ON/PN Overlap Effect in Example 2

FIRSTTGN Occurrences in dictionary of first trigram in initial position in words of same length
FIRSTTGFREQ Average frequency of words in FIRSTTGN class
LASTTGN Occurrences in dictionary of last trigram in final position in words of same length
LASTTGFREQ Average frequency of words in LASTTGN class
FIRSTTPN Occurrences in dictionary of first triphone in initial position in words of same length
FIRSTTPFREQ Average frequency of words in FIRSTTPN class
LASTTPN Occurrences in dictionary of last triphone in final position in words of same length
LASTTPFREQ Average frequency of words in LASTTPN class
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frequency [F(1,39) = 21.8, p < .001], and of the PN
[F(1,39) = 11.2, p < .01]. Although there were no sig-
nificant two-way interactions, the three-way interaction
whose significance had been captured by the GP was in-
deed significant [F(1,39) = 5.4, p < .05; see Figure 5].

On the basis of these preliminary findings (the GP re-
sults and their subsequent experimental confirmation),
we are currently conducting a series of lexical decision
experiments that will enable us to understand this inter-
action more thoroughly.

Discussion
We have briefly discussed two sets of results that com-

pare GP with multiple regression, using two different

data sets. In the first case, GP was able to account for 1.7
times as much variance as the linear regression. In the
second case, it accounted for over 10 times as much vari-
ance as the regression equation.

However, more important, GP was able to uncover a
relation that had been previously unsuspected but that
has been subsequently confirmed by experiment and to
specify the nature of the relation in sufficient detail to
enable that experiment. It is important to emphasize here
that the relation described by the GP was radically non-
linear, by which we mean that it used logical connectors
that changed the predictor equation used on the basis of
the values of other predictor variables. Such equations
can never be captured by regression equations.

Figure 4. The most highly correlated evolved predictor equation in Example2: stan-
dardized predictions graphed against standardized reaction times (RTs; r = .85).

Table 3
Stimulus Characteristics From Verification Experiment in Example 2

Trigram Frequencies Trigram Frequencies

PN First Last N PN First Last OFREQ Length

High probable probable 69 16.51 432.38 518.35 30.84 5.14
High probable improbable 24 15.79 361.21 30.50 20.83 5.38
High improbable probable 112 16.44 28.32 687.18 20.22 5.35
High improbable improbable 29 16.00 25.34 30.79 15.41 5.10
Low probable probable 13 0.69 384.31 311.31 40.85 5.92
Low probable improbable 12 0.50 301.50 26.83 17.42 5.67
Low improbable probable 25 0.40 26.72 357.76 19.28 5.80
Low improbable improbable 67 0.30 27.55 27.55 19.04 5.64

Note—Columns 1–3 give factorial categories; columns 5–7 give the numeric values on the basis of which stim-
uli were entered into those categories. The trigram probabilities represent the average number of times one
would encounter that trigram in that position in reading 1 million words of text. First/Last, first or last position
of trigram. PN, phonologicalneighborhood;OFREQ, orthographic frequency.
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GP IN PSYCHOMETRICS

The final examples we wish to consider here use GP
to help in designing psychometric instruments. Two dif-
ficult problems facing designers of psychometric tests
are item selection and item weighting. A test designer
must select items for inclusion in the psychometric in-
strument from a larger pool of candidate items. After the
items are selected, the designer must decide whether any
subsets of items should be differentially weighted. We
have experimented with using evolutionary program-
ming techniques to automate these two steps.

We evolvedpredictor equationsacross item sets for two
psychometric instruments that were independentlydevel-
oped as a term assignment in a 4th-year undergraduate
course in test measurement and design at the University of
Alberta. Although these tests were never intended to be
used in real settings, they were judged to satisfy the basic
requirements for a psychometric instrument. They had
clear questions with good face value, they included vali-
dation scores, and they had a consistent method of scoring
that showed some variabilitywithin the populationand that
allowed summing of question scores as a predictor of the
validationscores. They were administeredto many subjects.

The validation scores in both cases were self-ratings
provided by subjects after they had answered the ques-
tions on the test. The values were treated as the “true”
value of the construct. Such validation scores may be
suspect, since subjects may not know or may not be will-
ing to share their “true score.” However, for the purposes
of the present, purely formal exercise, this makes no dif-
ference; one can think of the tests as predicting only self-
ratings, rather than true scores.

As with the ON 3 frequency example above, we split
each of the two data sets into two subsets: a larger de-
velopment set for deriving the regression equation and
evolving the predictor equation and a smaller test set to
test the ability of the equations to predict validationscale
scores on new data.

Test 1: Geekiness
The first test was designed to measure the construct of

geekiness, the extent to which a person is a geek. This
test was validated against self-rated geekiness on a Lik-
ert scale. The test consisted of 76 questions with Likert
scale responses. Cronbach’s alpha (a standard measure
of internal reliability) was .92, suggesting that the test
was highly reliable.

The validation set contained 59 subjects. The test set
contained 30 subjects.

We compared the ability of three techniques to esti-
mate the subjects’ self-ratings from the questionnaire an-
swers (Table 4). Each technique was first used on the de-
velopment set and then applied to the test set.

One techniquewas correlating the summed score with
the self-ratings. The questions were designed so that a
higher score would be higheron the construct, so summed
scores were expected by design to correlate with self-
ratings. In concrete terms, a self-professed geek would
have a high score. On the development set, the correlation
of summed scores was .54. On the test set, it was .59.

The second techniquewas multiple regression. We en-
tered the question scores as predictors for the self-rating
scores. A multiple regression equation correlated with
the self-ratings on the development set at .70 ( p < .01).
When the same regression equation was used to predict
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Figure 5. Reaction times (RTs; +SE ) for a three-way interaction between frequencies of
components of the word and its number of phonological neighbors (PNs). H, high; L, low.
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scores on the unseen test set, the correlation was a non-
significant .20 ( p > .05).

The question scores were entered into a GP program
to predict the self-rating scores. The best evolved equa-
tion produced values that correlated with the self-rating
scores at .89 ( p < .01). When that equation was used to
predict scores on the test set, its predictions correlated
with subjects’ self-ratings to a significant degree (r =
.56, p < .01). These results are particularly noteworthy in
light of the fact that the evolved equation used only 12 of
the 76 responses. GP managed to find a nonlinearweight-
ing scheme that used a small fraction of the responses to
achieve a predictive accuracy that was nearly identical to
the summed score around which it had been explicitly
designed. We now have at our disposal a fairly robust and
easy to administer 12-question test of geekiness.

Test 2: Test Anxiety
The second instrument was designed to measure the

construct of exam anxiety in students. This test was val-
idated against self-rated exam-related anxiety. After
elimination of bad questions, using item analysis tech-
niques, the test consisted of 17 questions with 4-point re-
sponses. Cronbach’s alpha was .81, suggesting a high de-
gree of reliability. The validation set contained 57
subjects. The test set contained 25 subjects.

We compared the ability of the same three techniques
to estimate the subjects’ self-ratings from the question-
naire answers (Table 4).

The summed score correlated with self-rated exam
anxiety at .77 ( p < .01) on the development set and at .54
( p < .01) on the test set.

A multiple regression equation correlated with the
self-ratings on the development set at .85 ( p < .01).
When the same regression equation was used to predict
scores on the shorter unseen test set, the correlation was
.47 ( p < .05).

A GP-evolved equation correlated at .93 with the de-
velopment set on which it was evolved. That equation
produced estimates that correlated at .49 ( p < .05) with
the test set self-ratings, using 9 of the 17 questions.

The results are similar to those seen on the first test.
In both cases, GP was able to account for more variation
in the development set than did the raw score around
which the test was designed or a multiple regression
equation. In both cases, it was able to predict about as

much variation in the test set as the summed raw scores,
while using a small subset of questions.

Both of these tests use toy data sets. However, by com-
bining the power of GP to evolve nonlinear predictor
equations with much larger preliminary question sets, it
may be possible to design more accurate psychometric
tests than we could without using GP. Moreover, a care-
ful analysis of the evolved predictor equation may pro-
vide insights into weighting of questions and into rela-
tions between questions and, thereby, into the formal
structure of the constructs one wishes to measure.

GENERAL DISCUSSION

In this paper, we have briefly considered four exam-
ples of the use of GP in psychological settings. The first
example provided an opportunity to test GP’s ability to
describe variance, by focusing on a situation in which the
relation between predictors and a dependent measure
was already known in rough outline from a long series of
factorial manipulations. We showed that the known rela-
tion was captured by two independently evolved equa-
tions. Those equations also allowed us to estimate the
values of relevant parameters in more detail than the fac-
torial experiments had. This detail motivated explicit and
testable hypotheses—for example, about the value of
word frequency at which ON effects disappear. In the
second example we showed how GP might be useful in a
situation in which the relevant parameters and their val-
ues were not known. We evolved an equation that de-
scribed a radically nonlinear relationship, using a small
number of variables chosen from a larger set. We then
designed a factorial experiment to test this relationship
independently and presented data from that experiment
in support of the hypothesized relationship. Finally, we
considered two toy problems in psychometrics, present-
ing evidence that GP was able to select and weight items
for inclusion in psychometric instruments for measuring
two different constructs.

In all of these examples, we compared the achieve-
ments of the nonlinear approach of GP with standard lin-
ear multiple regression techniques. In every case, the
evolved equation was superior to the regression equa-
tion. No linear method could have found the complex re-
lation described in Example 2. More important, without
some a priori information regarding the nature of the

Table 4
Results From Using Multiple Regression and Genetic Programming (GP)

to Conduct Item Analyses in Psychometric Tests

Test 1 Test 2

Development Set Test Set Development Set Test Set

Summed score .54 .59 .77 .54
Multiple regression .70 .20 .85 .47
GP .89 .56 .93 .49
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variable interactions, it is unlikely that any human cal-
culation could have arrived at the complex but nonethe-
less informative equations.

The preceding point is the real strength of the GP
method and the point that we wish to emphasize in this
paper: the ability to systematically search the huge space
of equations that describe relations in a data set (the re-
lation space), in order to highlight regions of that space
that are worthy of human attention. The reason that one
sees nonlinear descriptions of human data relatively
rarely, as compared with linear descriptions, is that, by
relaxing the linearity requirement, one radically in-
creases the size of the relation space—that is, one in-
creases the number of potential functions that need to be
considered. Without GP, a tremendous amount of human
effort might be required to discover a good nonlinear
equation. With GP, simple computer programs do the
work and provide one with explicit comprehensible de-
scriptors of the effects of interacting variables on human
behavior.

Neural networks are also very good at finding solu-
tions to problems of variable relation, but those solutions
are represented in a way that makes them even more dif-
ficult for humans to understand than the (also often com-
plex) explicit mathematical representations of GP. The
explicit nature of the evolved solutions therefore gives
GP an advantage over the use of neural networks to search
relation space.

The Problem of Degrees of Freedom
This increase in the size of the relation space is the

main strength of methods that search relation space for
nonlinear variable relations but is also a common source
of criticism of those methods. The criticism that we have
seen most often raised against the use of GP in solving
problems of the kind we have considered in this paper is
that it has too many degrees of freedom or (equivalently)
is overfitting—that is, that it may find solutions that fit
to particularities in the input set but fail to find solutions
that are general.

Our application of two cross-validation techniques—
the repeated applicationof averaged multitest fitness and
the post hoc check using the hold-out method—is of
course intended to prevent overfitting, by requiring that
solutions that are judged good predict well on many dif-
ferent data sets. We have presented empirical evidence
above showing that solutions evolved with averaged
multitest fitness do cross-validate to new data sets.

However, even with this empirical evidence in hand, it
is worth examining the conceptual underpinnings of the
claim that GP has too many degrees of freedom. We will
first consider the status of operators as degrees of free-
dom and then address how GP deals with the degrees of
freedom in input parameters. Along the way, we will
consider the possibility that the significance value of any
evolved equation needs to be adjusted in some way to re-
flect the number of equations that were searched to find
it.

A degree of freedom is a parameter in a problem de-
scription or problem solution that is free to vary inde-
pendently of other parameters in the same description or
solution. This may seem clear enough, but what consti-
tutes a parameter, especially an independent parameter,
is not always as clear in any particular case as it seems
from this textbook definition. This is in part because de-
scriptions and solutions come in a bewildering variety of
representational forms. How a problem or solution is
represented can change our understanding of the appar-
ent degrees of freedom that the problem or solution has.

Degrees of freedom I: The role of operators. It may
seem obvious that an increase in the number of allow-
able operators that are accessible to any modeling system
must correspond to an increase in the degrees of the free-
dom that system has available. In fact, however, it is not
the case. The assumption that operators are degrees of
freedom stems from a failure to distinguish between the
concrete computational representation of any problem
and the abstract computational structure underlying a
particular representation. The computational operators
used in a computation, including the operators evolved
in GP, are not a countable property of that computation.
Operators are a representational choice, one among an
infinite number of ways of representing any particular
computational structure.

An easy way to see that this is so is to consider the ul-
timate reduction of computational operators. Turing
proved in 1936 that any computation that could be com-
puted by any computer could also be computed by the
simple machine that we now know as a Turing machine.
A Turing machine is an idealized computational device
that can read and write binary digits to an infinitely long
moveable tape. It has three operators. It can read from its
tape, it can write a binary digit or punctuation marker,
and it can move its tape. Since Turing proved that a Tur-
ing machine can compute anything that is computable, it
is a fact that any computationcan be expressed as a func-
tion of three operators—namely, the three operators of a
Turing machine.1

Although Turing machines are theoretical devices of
limited usefulness for real-world computation, the re-
ducibility of operators to lower level functions is of di-
rect practical importance in understanding many real
computational situations. The same kind of argument
that reduces all possible computational operators to a
few Turing machine operators also has bearing when one
is considering searching solution spaces, using methods
such as GP or neural networks. Since there is no sense in
which high-level operators are independent of each
other, they cannot be treated as degrees of freedom. One
cannot simply count up the number of function calls that
a computer program happens to make to obtain a useful
measure of the complexity of that computation.Function
calls are not a measure of computational complexity, be-
cause they have no necessary relation at all to the “real”
complexity of any computation. They are merely nota-
tional devices to allow a particular system to work in a
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way that is convenient for the hardware or software envi-
ronment on which it is running or for the person who is
going to read or write the program. This is as true for the
meta-function calls (multiple operators conjoined in an
equation) that one evolves in GP as it is for their compo-
nent operators. An operator is always a convenientfiction.

Meehl and MacCorquodale (1991), extending discus-
sions by Carnap (1936), Tolman (1938), and Hull (1943),
called these kinds of convenient fictions intervening
variables, in order to distinguish them from hypothetical
constructs, suggesting that “a failure to separate these
leads to fundamental confusions” (p. 262; see also the
discussion of the nomological net in Meehl, 1977, and
the extensive related discussion in Vaihinger, 1935). By
Meehl and MacCorquodale’s definition, intervening
variables have to be defined in terms that are reducible
to empirical events or properties. They thereby serve as
a summary of those empirical entities.

The summarizing role that is assigned by definition to
intervening variables guarantees that an intervening
variable may be called into question only by calling into
question some specified set of empirical facts. Given
that they are only selected representations or summaries
of facts, rather than facts themselves, intervening vari-
ables themselves cannot be denied or challenged, for no
ontological claims are ever made about their existence
and they are (by definition) not allowed to contain theo-
retical elements that are not grounded in empirically ver-
ifiable measures. As Meehl and MacCorquodale (1991)
noted, “the only consideration which can be raised with
respect to a given proposed interveningvariable . . . is the
question of convenience” (p. 260).

This distinguishes them from hypothetical constructs,
which contain what Reichenbach (1938) memorably re-
ferred to as surplus meaning—namely, a claim of exis-
tence. Setting aside the philosophical questions raised by
Reichenbach’s terminology (which are, however, dis-
cussed by Meehl & MacCorquodale, 1991), we can say
that hypothetical constructs make claims about what is.
Intervening variables make claims about how hypothet-
ical constructs relate.

When mathematical and logical operators are under-
stood to be interveningvariables, it becomes clearer why
some people believe that GP is cheating in a way that lin-
ear regression (they believe) is not. The relation space is
identical to the set of all possible intervening variables.
Both consist of the set of computable relations between
a set of predictors and a value to be predicted. GP differs
from regression equationsbecause GP is allowed to search
a (possibly extremely large) region of relation space,
whereas a regression equation is confined to a single
point in it. Recognition of this difference is why con-
cerns about degrees of freedom arise.

The notion that methods that are allowed to search re-
lation space are “cheating” stems from two facts. One is
that such methods have access to a subspace containing
a great many possible intervening variables. The second
is that the location and shape of that searched subspace

may be a function of which operators one gives the sys-
tem. Notwithstanding the discussion above of Turing
machine equivalence of computations, it is true that
some operators can never be used within any limited
computational system. For example, in the GP system,
there is no recursion or iteration operator, so a general
square root operator could never be evolved by natural
selection from addition, subtraction, multiplication, and
division, despite the fact that Newton proved it was pos-
sible to compute square roots using these four functions
with iteration. If one did not provide a square root oper-
ator, the system could not search the vast subspace of re-
lation space that cannot be accessed without a square
root operator. In this way, the adding of operators can (al-
though it need not always) increase the number of com-
putable solutions to any problem. This makes the adding
of operators seem closely analogous to the adding of in-
dependent input variables, which also increase the num-
ber of possible solutions and which do increase the de-
grees of freedom of the problem.

However, the idea that it is cheating to allow arbitrar-
ily directed searches of subspaces of relation space de-
rives from the confusion of intervening variables with
hypothetical constructs that Meehl and MacCorquodale
(1991) warned against. One has no right to repeatedly
search through hypothetical constructs until one finds
some that satisfy one’s criteria. This would be akin to
searching for an entity that happened to have the distri-
butional properties one needed to predict some depen-
dent measure and then adding that entity as a post hoc
addition to one’s theories of that measure.

However, if one is searching the space of intervening
variables, one is by definition making no ontological
claims, but only claims of representational convenience.
Therefore, one is free to search the space as thoroughly
as one likes. There can be no question of violating sta-
tistical or empirical assumptions by allowing ourself to
examine large numbers of intervening constructs, since
their properties are not ontological but are, rather, de-
fined entirely by the very utility one seeks to maximize
by searching through them. In anthropomorphic terms,
we might say that the intervening variables we call oper-
ators are computational products of the imagination,
imaginative suggestions about which region of relation
space to search. Those suggestions are informed by in-
formation one provided to the search system (GP or
neural network) about the kinds of solutions one would
most like to see, for reasons of aesthetics, representa-
tional convenience, or theoretical allegiance. One tells
the computer what kinds of solutions are acceptable by
defining the high-level operators with which it may com-
municate its findings and by defining some way of rec-
ognizing good solutions—error feedback in neural net-
works and a fitness function in GP.

It is illuminating to consider linear regression in terms
of a search of suggested subspaces of relation space. The
common practice of using linear regression in contem-
porary psychological research does not, of course, stem
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from that fact that the single well-defined point in rela-
tion space that is specified by a regression equation has
a guaranteed status as the best possible solution. There
clearly is no such guarantee. The practice stems from the
fact that regression equations are simple and well de-
fined.

Simplicityand well-definednessare scientific virtues to
which all scientists must aspire. However, oversimplicity
is not. As the examples in this paper demonstrate, if one
limits oneself to regression equations, one is very likely
to miss intervening variables that may be only a little
more computationally complex and only a little distance
off in relation space but that may be very much better for
the purposes at hand, however defined. Of course, this
claim is already trivially appreciated by all of us. Even
the most devoted proponent of linear regression will not
fail to take a nonlinear transformation of a highly skewed
variable (such as a logarithm of word frequency) before
it is entered into a regression equation.

In championing technologies such as GP and neural
networks, researchers are suggesting that we trade algo-
rithmic uniformity for explanatory elegance. We give up
the useful tool of a common language for describing re-
lations (regression equations) in return for the chance to
find another description that may be more suitable for a
specified purpose, such as (but not necessarily limited
to) accounting for variance in some dependent measure.

One way of thinkingof this trade is by making an anal-
ogy to Type I and Type II errors. Methods of describing
relationships that do not search relation space at all (such
as regression equations) make a very cursory test of the
claim that there is a significant relation between hypo-
thetical constructs and a dependent measure, because
they test only one possible relation between those con-
structs. They thereby run a high risk of making a Type II
error—incorrectly rejecting a relationship that actually
does exist. On the other hand, methods that are able to
search the relation space run an increased risk of making
the Type I error that amounts to overfitting the data—
that is, they risk incorrectly announcing evidence in
favor of a relationship that does not actually exist. Both
Type I and Type II errors mislead by misrepresenting
matters of empirical fact. However, it may be argued that
Type I errors are easier to correct than Type II errors, be-
cause the error is explicitlystated and, therefore, amenable
to obvious experimental disconfirmation (see the dis-
cussion of error tradeoffs in Hays, 1994, p. 284). In Ex-
ample 2 above, for example, we ran the risk of making a
Type I error. However, we may have some confidence that
we did not, because we explicitly conducted an indepen-
dent experimental test of the claim in a follow-up exper-
iment. Type II errors may be harder to detect and correct
than Type I errors, because a Type II error is a nonspe-
cific error of omission, rather than a specific error of
commission. Having concluded, on the basis of failing to
find a single specific relationship between variables, that
there is no relationship between those variables, one can-
not easily know what experiment to conduct to cross-

check that conclusion. The proper experiment might be
any one of the infinite number of experiments that test
the infinite number of other possible relations.

We are certainly not recommending that researchers
exhibit a cavalier disregard for Type II error. Nor do we
intend to claim that the point to which GP takes us must
necessarily be the best possible location in relation
space, anymore than anyone could reasonably claim op-
timality after conducting a regression. Perhaps if one had
added one more operator to our operator set, let the sys-
tem run for a few generations longer, or added one more
predictor, one might have found a location that was bet-
ter, because it was specified in a way that was computa-
tionally more compact, because it accounted for more
variance, because it was more closely tied to a theoreti-
cal network of ideas, or because it met some other prag-
matic criterion. One always risks committing an error
that might be called a Type III error—accepting a solu-
tion that, althoughcorrect as far as it goes, is nonetheless
nonoptimal.

We do claim—and provide the examples above to dem-
onstrate—that GP may guide one to places in relation
space that are worth exploring more closely. Because re-
lation space is infinitely large by definition (even a sin-
gle parameter can be transformed in an infinite number
of ways—e.g., by squaring it, taking its logarithm, di-
viding it by its own square, etc.), an automated advance
scout, such as GP, is useful to have.

Another criticism sometimes leveled against GP is that
it is “cheating” to hand-simplify an evolved solution.
When one understands that GP is nothing other than a tool
to help one find a convenientset of interveningvariables—
a convenient representation of a problem of interest—it
should be clear that there is nothing that rules out the
precedent, simultaneous, or subsequent use of other tools
that maximize representational convenience, including
hand-simplification of evolved solutions. One real limi-
tation of GP is that the evolved solutions are sometimes
extremely unwieldy and complex. They may even in-
clude junk DNA—subfunctions that demonstrably con-
tribute nothing to the solution but are passed along be-
cause they do no harm. For example, it is not uncommon
to find if–then–else statements that always evaluate to
true or to false and can, therefore, be replaced by their in-
evitable consequent. It is rare that an evolved equation will
be immediately comprehensible.The simplification of an
evolved equation amounts to a very fine-grained, slow,
and directed search through a region of relation space
that has been identified by GP as worthy of further explo-
ration. Such hand-guided search must be subject to the
same rigor as the automated search was, with an empha-
sis on cross-validation of any proposed representation.

We have heard arguments that such searches through
relation space constitute a violation of statistical as-
sumptions, requiring that one divide one’s standard of
statistical significance by the number of relations con-
sidered, as if each relation were an independent t test.
Since GP searches hundreds of thousands of relations,
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this insistence would render it statistically useless if it
were correct. However, it is not. Searches through rela-
tion space are routinely conducted by scientists, without
applicationof any statistical correction for the number of
relations that are considered. When one sits down with a
pencil and paper to diagram one’s understanding of some
phenomenon in order to decide which experiments to
conduct, one is using one’s prior understanding and one’s
own imagination to search through relation space. No
one would argue that one should adjust the p values of
conducted experiments in proportion to the number of
experiments one imagined conducting but did not or in
proportion to the number of ways one imagined one
might graph the data. GP is a way of cloning one’s imag-
ination. By providing it with hypothetical constructs and
operators, one supplies the prior understanding that con-
strains the search for an appropriate representation of re-
lationships in the data. The fitness function instantiates
and provides a quantifiable measure of what constitutes
a solution worth imagining.

Equating a search through relation space to imagining
ways of representing a problem is not a rejection of the
role of theory or of the hypotheticodeductive method in
science. It is simply a recognition of the fact that theo-
retical claims and empirically based descriptions of the
relations between theoretical elements must be separate.
Theories can postulate which hypothetical constructs
may play a role in any particular phenomena and may
certainly attempt to specify the precise nature of that re-
lation. However, when it comes to questions of the real
nature of the relation between those constructs, theoret-
ical claims cannot trump empirical facts. If a systematic
relation between hypothetical constructs can be reliably
demonstrated, by any means, theory is not in a position
to rule this empirical finding in or out; it can only adapt
to the finding, as it must adapt to any other relevant em-
pirical evidence. For example, a theory might claim that
ON and frequency combine in a linear way in their effect
on RTs in lexical decision. However, if it can be shown
that lexical decision RTs may, in fact, be more reliably
predicted by using a nonlinear relationship, the theoret-
ical claim must be rejected or, at least, demoted to the
Type III error mentioned above—a suboptimal descrip-
tion that is, nevertheless, correct as far as it goes.

As representational methods become more sophisti-
cated, researchers may even find reason, as Landauer
and Dumais (1997) have, to “eschew the conventional
stance that the theory is primary and the simulation stud-
ies are tests of it” (p. 211). When reliable relations be-
tween theoretically motivated elements are discovered
that theory either predicts against or cannot explain,
those relations must be taken as a piece of evidence that
bears on the validity of the theory, on a par with any
other empirically grounded finding.

Degrees of freedom II: Variables. The second prob-
lem in addressing problems related to degrees of free-
dom concerns the matter of determining independence
of Meehl and MacCorquodale’s (1991) hypotheticalcon-
structs: the theoretically relevant terms that are known

or assumed to correspond to empirically measurable
properties that are given to GP as inputs. A fear is that if
one provides too many independent inputs to GP, it may
be able to overfit those inputs, evolving a solution that
maximizes the fitness function in some spurious way.

GP can avoid this problem in three ways.
The simplest way is to avoid giving the method inputs

that might have a spurious relation to the problem—that
is, to avoid using GP for wild fishing expeditions. In all
the examples considered in this paper, the problem of
spurious relations between the inputs was sidestepped in
just this way, simply by excluding inputs whose contribu-
tions were not of theoretical or practical interest. In the
lexical access Examples 1 and 2 above, we were specif-
ically interested in the relationshipbetween a small num-
ber of variables, and so we entered just those variables.
The problem of overdetermination from having too
many variables clearly does not arise in these cases. In
the psychometric Examples 3 and 4, we entered a great
number of variables, but we had pragmatic reasons for
being indifferent as to the theoretical reality of the
evolved solutions. We did not care how many variables,
or which ones, were used in the final equation. So long
as the set of questions proposed by GP predicted more
variance in the validation measure or used fewer ques-
tions than the summed score did, that solution was not
spurious by definition. All we were trying to do was im-
prove on the summed score. In all cases we have consid-
ered in this paper, the solution we had after GP was better
than the one we had before, by every relevant criterion
we had for evaluating a solution.

The second way that GP avoids spurious solutions is by
using repeated feedback of its own proposed solutions.
Recall that any equation offered by GP as the best of a set
of runs has been ranked against thousands of other solu-
tions, perhaps dozens of times. Spurious solutions are by
definition solutions that are not actually good at the task
for which they are being evolved but that are mistakenly
taken as being good solutions. Such solutions are by
their very definition highly unlikely to beat nonspurious
solutions in the rankings, especially repeatedly, since by
definition nonspurious solutions really are good solu-
tions. Although a solution offered by GP might surprise
one by showing that some variable set one had not imag-
ined as being predictive of some measure actually was
predictive, it would be odd and improbable to call any
solution spurious that had been ranked dozens of times
as the best solution among thousands of candidates. It
would be like denying that a person knew the rules of
chess after watching him win hundreds of games against
hundreds of skilled opponents. How could anything ap-
pear to be so good so often, if it were in fact not good?
This, of course, is the point behind the insistence on the
importance of cross-validation (Stone, 1974) and the
reason we have built cross-validation into our selection
mechanism.

If one does have specific criteria for evaluating what
constitutes a good or acceptable solution, one should use
those criteria. The third way that GP can avoid spurious
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solutions is to rule them out computationally by extend-
ing the fitness function. So long as one has an algorith-
mically specifiable means of recognizing solutions that
are unsatisfactory for any theoretical, statistical, or prag-
matic reason, one can breed them out, because any algo-
rithmically specifiable criterion of what specifies a bad
solution can be included in the fitness function. For ex-
ample, it would be very easy to write a fitness function
for a psychometric problem that gave fitness values of 0
to any solution with fewer than some specified number
N of questions in it and, thereby, to search only for a
good N-question solution. It would be equally easy to
specify, in the fitness function, some limits on the al-
lowable correlations between parameters in any evolved
solution (to encourage maximal independence of predic-
tors in cases in which the predictors were correlated) or on
the number of elements one would allow to appear in any
solution (to encourage simple solutions). Placing such
constraints on the fitness function reduces the size of re-
lation space. Such reduction may be a good or bad thing,
dependingon whether or not the excluded region may con-
tain any useful relations that are now beyond reach.

Conclusion
For many researchers, the simple linearity imposed on

us through our standard statistical techniques is dissatis-
fying. Van Orden, Holden, and Turvey (in press) have re-
cently referred to the insistence on searching for linear
solutionsto scientificproblems in psychologyas “linear im-
perialism.” Few would argue that the brain is a linear sys-
tem, and fewer still would argue that most behavior can
be linearly described. The attraction of linearity is that it
is a common tongue that is relatively simple to under-
stand. However, human behavior and functioning are not
simple to understand. We are complex beings with cog-
nitive processes that are numerous and ever-changing.
GP offers us, with limited costs, the power to manage
and explore some of that complexity.
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NOTE

1. In fact, even fewer operators are necessary. Wolfram (2002) has
proven, in a roundabout but rigorous fashion, that a particular one-
dimensional cellular automaton, which might be characterized as hav-
ing a single operator, since it is a finite state machine, is Turing com-
plete—that is, it can, in theory, compute anything that can be computed.
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