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ABSTRACT Genotype-by-environment interaction (GxE) has been widely reported in dairy cattle. One way

to analyze GxE is to apply reaction norm models. The first derivative of a reaction norm is the environmental

sensitivity (ES). In the present study we conducted a large-scale, genome-wide association analysis to

identify single-nucleotide polymorphisms (SNPs) that affect general production (GP) and ES of milk traits in

the German Holstein population. Sire estimates for GP and for ES were calculated from approximately 13

million daughter records by the use of linear reaction norm models. The daughters were offspring from

2297 sires. Sires were genotyped for 54k SNPs. The environment was defined as the average milk energy

yield performance of the herds at the time during which the daughter observations were recorded. The sire

estimates were used as observations in a genome-wide association analysis, using 1797 sires. Significant

SNPs were confirmed in an independent validation set (500 sires of the same population). To separate GxE

scaling and other GxE effects, the observations were log-transformed in some analyses. Results from the

reaction norm model revealed GxE effects. Numerous significant SNPs were validated for both GP and ES.

Many SNPs that affect GP also affect ES. We showed that ES of milk traits is a typical quantitative trait,

genetically controlled by many genes with small effects and few genes with larger effect. A log-transformation

of the observation resulted in a reduced number of validated SNPs for ES, pointing to genes that not only

caused scaling GxE effects. The results will have implications for breeding for robustness in dairy cattle.
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Breeding cattle for milking traits relies on the use of daughter records
for an estimation of breeding values of their sires. Because sires are
used widely through artificial insemination, their breeding values are
estimable with a high accuracy, which has resulted in a substantial
genetic gain for milking traits during the last decades (Dekkers and
Hospital 2002). It is expected that this gain will be even further

accelerated with the introduction of genomic selection methods (Meu-
wissen et al. 2001; Goddard and Hayes 2009). Often, frequently used
sires have daughters that are milked in a wide range of environments,
which questions the importance of genotype-by-environment interac-
tion (GxE). GxE refers to a variable response of genotypes to changes
in the environment. Many studies have been conducted to quantify
putative GxE effects in dairy cattle (e.g., Kolmodin et al. 2002; König
et al. 2005; Strandberg et al. 2009 and references therein). The use of
reaction norms is a powerful approach to study GxE effects if the
environment can be described as a continuous variable. The slope of
a reaction norm, i.e., the first derivative, is the environmental sensi-
tivity (ES), and genetic variation of ES can be interpreted as the
existence of GxE (de Jong 1995; Lynch and Walsh 1998; James 2009).

A frequently used environmental descriptor is the mean perfor-
mance of all individuals in the environment (James 2009). It is as-
sumed that various, unknown, or unobservable environmental forces
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affect the mean performance. Mean performance is therefore a de-
scriptor that captures these effects and weights them in a “natural”
way, i.e., by their effects on the performance. In dairy cattle, reaction
norm models that include the average herd production level as a con-
tinuous environmental descriptor are widely used to study GxE (Calus
et al. 2002; Kolmodin et al. 2002; Fikse et al. 2003; Hayes et al. 2003;
Strandberg et al. 2009; Lillehammer et al. 2009a; Streit et al. 2012).
Reaction norms frequently are fitted with the use of random regres-
sion sire models. The daughter’s observations are regressed on the
corresponding herd solution. The regression is nested within sires,
yielding a random sire estimate for the slope and for the intercept.
The correlation between intercept and slope depends on where the
intersection point of the reaction norm model is placed; it is recom-
mended that it be placed in the average environment (van Tienderen
and Koelewijn 1994; Kolmodin and Bijma 2004). In this case the
intercept estimate can be interpreted as an estimate for average or
general production (GP) and the slope as an estimate for ES for in-
dividual sires. A positive correlation between intercept and slope un-
der this conditions frequently has been reported (e.g., Kolmodin et al.

2002, Lillehammer et al. 2009b).
It might be worthwhile to consider ES in livestock breeding

schemes (de Jong and Bijma 2002, Knap 2005, Veerkamp et al. 2009).
Breeding for high yielding and sensitive individuals might be benefi-
cial in high-producing and nonfluctuating environments because
sensitive individuals are able to benefit from these environmental
conditions. In poor, fluctuating, or unforeseeable environments, ro-
bust individuals are desired, if the robustness does not come at the
expense of a decrease in fitness and increase in health problems. One
way to breed simultaneously for robustness and GP is to find genes
that affect GP and ES of one trait in opposite directions and to apply
marker-assisted selection using these genes (Lillehammer et al.

2009b). Lillehammer et al. (2009b) applied association analysis by
using approximately 10,000 single-nucleotide polymorphisms (SNPs)
in the Australian dairy cattle population to find significant SNPs
affecting GP and ES. Several SNPs were significant, and approximately
one-third affected GP and ES in opposite directions; these SNPs are of
special interest with regards to breeding for robustness.

The genetic architecture of dairy cattle milk traits been has
analyzed frequently(e.g., Cole et al. 2009, Hayes et al. 2010, Wellmann
and Bennewitz 2011). However, it is unknown how many genes affect
ES, what the sizes and distributions of the effects are, and where they
are located on the genome. In a recent study, we applied higher-order
reaction norm random regression sire models to investigate GxE
effects in German Holsteins (Streit et al. 2012). Herd test day solutions
for production were used as environmental descriptors. We found
highly significant GxE for milk traits, which resulted in substantial
scaling and few re-ranking effects. For a deeper understanding of the
nature of GxE effects, a partitioning of GxE effects into that due to
scaling and due to changes in the rank of individuals across environ-
ments is desirable (e.g., Muir et al. 1992, Dutilleul and Potvin 1995,
James 2009). An obvious method to reduce or eliminate scaling effects
is to apply a data transformation (James 2009), which would allow
partitioning of removable by data transformation and nonremovable
interaction.

The aim of the present study was to conduct a validated genome-
wide association analysis to identify SNPs that affect GP and ES, and
based on the results, to infer some knowledge of the genetic
architecture of GP and ES. We were especially interested in the
number of validated SNPs and the size and the sign of the effects on
GP and ES. We applied a three-step procedure. In the first step, sire
estimates for GP and for ES were calculated by the use of first-order

random regression sire models. These estimates were used in a second
step as observations in an association analysis. In the third step,
significant SNP associations were confirmed in an independent
validation set of the same population. To remove GxE causing scaling
effects, the observations were log-transformed in some analyses.

MATERIALS AND METHODS

Data and data editing

In total 2356 progeny-tested German Holstein sires were genotyped
with the Illumina BovineSNP50 BeadChip, which contains a total of
54,001 SNPs (Illumina, San Diego, CA; Matukumalli et al. 2009). The
sires were born between 1983 and 2003 and reflect a representative
sample of the population (Qanbari et al. 2010). Individuals with more
than 10% missing marker genotypes were removed, resulting in 2297
sires. An SNP was excluded if it had a minor allele frequency less than
3%, a call rate less than 90%, a significant deviation from the Hardy-
Weinberg-equilibrium (P , 0.001), or if the position on the genome
was unknown. SNPs on the sex chromosome also were excluded. This
data filtering was performed with PLINK (Purcell et al. 2007). A total
of 41,349 SNPs remained in the data set. Sporadic missing genotypes
were imputed using fastPHASE (Scheet and Stephens 2006). The
linkage disequilibrium (LD) structure in this population was investi-
gated by Qanbari et al. (2010).

Approximately 13 million first lactation test day records for
protein yield, fat yield, and milk yield from daughters of the sires
were used. The number of daughters per bull ranged from 50 to
74,842 and totaled approximately 1.3 million. Test day records were
corrected for the fixed effects herd test day, days in milk, age at
calving, calving season, and the random permanent environment
effect. These correction factors were obtained from the routine animal
genetic evaluation, which is an animal test day model. After this
adjustment, the trait population mean was added to the observations
to obtain predicted trait values.

The environment was described by the mean herd test day
performance for milk energy yield. It was calculated as a linear
combination of milk yield, fat yield and protein yield, i.e., energy yield =
0.802 x milk yield + 38.4 x fat yield + 23.6 x protein yield, where the
yields are measured in kilograms (Nostitz and Mielke 1995). We pre-
ferred this single parameter to describe the environment because it
combined the highly correlated herd test day performances for the
three milk yield traits (see Streit et al. 2012 for further details). It is
assumed that this parameter captures important unobservable and un-
known environmental effects. The environmental descriptor was
rescaled to have a mean equal to 0 and SD of 1. Hence, superior
(inferior) environments show positive (negative) values for the envi-
ronmental descriptor, and the “average” environment shows a value
close to zero. The distribution of the environmental descriptor is

n Table 1 Sire variance components of the random regression
analyses

Trait s
2
S0

s
2
S1

rS0S1

Protein yield, g 2379.37 (87.48) 17.02 (0.98) 0.79
Fat yield, g 7883.41 (257.12) 46.76 (2.43) 0.93
Milk yield, kg 1.30 (0.04) 0.02 (, 0.01) 0.72
ln(protein yield)a 9.50 (, 0.01) 0.11 (, 0.01) 0.61
ln(fat yield)a 12.70 (, 0.01) 0.13 (, 0.01) 0.73
ln(milk yield)a 10.55 (, 0.01) 0.14 (, 0.01) 0.68

Standard errors are shown in parentheses. s2
S0

(s2
S1
) denotes the intercept (slope)

sire variance, with correlationrS0S1.a
Values are multiplied by 10,000.
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shown in the Supporting Information, Figure S1. It is approximately
normally distributed. Mean herd test day performances of milk yield,
protein yield, and fat yield were obtained from the routine animal
genetic evaluation, see Vereinigte Informationssysteme Tierhaltung
(2013) for a detailed description. For additional information please
see File S2, File S3, and File S4.

Statistical analysis

In a previous study we applied a second-order sire model, which gave
an improved fit compared with a first-order model. However, a first-
order sire effect explained most of the variation of ES (Streit et al.
2012). Therefore, we decided to apply a fist-order sire model in the
present study. The following random regression model was applied in
the first step for all three milk yield traits:

cyijk ¼mþ b � htdsmek þ
X

1

m¼0

sjm
� htdsmemk

þ

X

1

m¼0

dijm
� htdsmemk þ eijk; (1)

where cyijk is the corrected yield of daughter i of sire j at herd test
day k, m is the overall mean, htdsmek is the herd test day solution for
milk energy yield at herd test day k with the fixed regression co-
efficient b, sjm is the random sire effect of sire j of order m, dijm the
random daughter effect of daughter i of sire j of order m, and e is the
random residual. The covariance structure of the sire regression

effects is Var

�

s0
s1

�

¼ I5

�

s
2
s0

ss0s1

ss0s1

s
2
s1

�

, and that of the daughter effects

is Var

�

d0
d1

�

¼ I5

�

s
2
d0

sd0d1

sd0d1

s
2
d1

�

, with I being the identity matrix. The

estimated sire effects were used as observations in an association
analysis [see model (2)]. In contrast to classical sire models, the
relationship among sires was ignored, which could be done because
there was much progeny information available for each sire, and
hence, the sire estimates were largely influenced by the progeny
records and only very little by the pedigree. Indeed, preliminary
results showed that the correlation between sire estimates with
and without considering the pedigree in model (1) was .0.98 (not
shown).

To model heterogeneous residual variance across the environ-
ments, the observations were ordered according to the environmental
descriptor and grouped into 10 classes of equal size based on the
environmental values. Residual variances were estimated for each
class, assuming the residual covariance to be zero. The uncorrelated
daughter effects reduce the heterogeneity of residual variance if GxE
effects are present (Lillehammer et al. 2009a). The models were fitted

using ASReml 3.0 (Gilmour et al. 2009). Because the mean of the
environmental descriptor was zero, the intercept solutions of the sire
regression coefficients were used as sire estimates for GP, i.e., pro-
duction level in the average environment. Furthermore, the slope
solutions were used as estimates for ES.

The whole data set was randomly split into a discovery data set
(n = 1797 bulls) and a validation data set (n = 500 bulls). In the second
step of the statistical analysis, we performed genome-wide association
analyses using the discovery data set. To do so, we applied the fol-
lowing mixed linear model:

ŝjm ¼ mm þ sirejm þ bkm
� xjk þ ejm; (2)

where ŝjm is the estimated random sire effect for GP (m = 0) and ES
(m = 1). These estimates were taken from the results of model (1).
The model was applied for the two traits (m = 0 for GP and m = 1
for ES) separately. The effect of the SNP k was modeled as a regres-
sion on the number of copies of the allele with the greater frequency
(x = 0, 1, or 2), with bkm being the regression coefficient. To control
for the population structure, we fitted a random sire effect with the
covariance structureAs2

sm, where A is the numerator relationship
matrix calculated from high-quality pedigree information and s

2
sm

a variance attributable to the sires. This model was applied for each
SNP k in turn, resulting in 41,349 association tests per trait. We
declared each SNP with a pointwise error probability of P , 0.001
as significant. To judge how many false-positive results were among
the significant associations we applied the false-discovery rate (FDR)
technique. We calculated for each association test an FDR q-value by
using the software QVALUE (Storey and Tibshirani 2003). The FDR
q-value of the significant SNP with the lowest test statistic (P �

0.001) provided an estimate of the proportion of false-positive
results among the significant associations.

In the third step, we confirmed significant SNP associations within
the same population in the validation set. The same statistical model
was applied but only to significant SNPs. We declared an SNP as
confirmed if the P-value in the validation set was P , 0.01 and the
signs of the effects were the same in both sets. This relaxed significance
criterion was used in the validation set because less multiple testing was
performed and a more stringent significance level would reduce the
power to validate SNPs. A similar protocol was used by Pryce et al.

(2010). For the interpretation of the effects, the estimates of the vali-
dation set were used, because it can be assumed that these suffer less
from the Beavis-effect and are less upwardly biased (Beavis 1994).

n Table 2 Number of discovered and validated SNPs for intercept
and slope for the traits on the observed scale

Trait
Discovery Dataset

(P # 0.001) FDR
Validation Dataset

(P # 0.01)

Intercept protein yield 450 0.07 69
Slope protein yield 351 0.09 44
Intercept fat yield 465 0.07 118
Slope fat yield 385 0.08 99
Intercept milk yield 415 0.08 104
Slope milk yield 416 0.08 98

The FDR q-values (FDR) of the significant SNP with the largest error probability
(P � 0.001) in the discovery dataset are shown. SNP, single-nucleotide poly-
morphism; FDR, false-discovery rate.

n Table 3 Number of discovered and validated SNPs for intercept
and slope for the traits on the log-scale

Trait
Discovery Dataset

(P # 0.001) FDR
Validation Dataset

(P # 0.01)

Intercept ln(protein
yield)

463 0.07 56

Slope ln(protein
yield)

313 0.11 64

Intercept ln(fat
yield)

469 0.07 118

Slope ln(fat yield) 320 0.11 80
Intercept ln(milk
yield)

419 0.08 87

Slope ln(milk yield) 386 0.09 68

The FDR q-values (FDR) of the significant SNP with the largest error probability
(p�0.001) in the discovery dataset are shown. SNP, single-nucleotide polymor-
phism; FDR, false-discovery rate.
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To identify SNPs that not only cause scaling effects within the
environmental range considered in our study, we also applied the
models to log-transformed observations (Hayes et al. 2003, Lilleham-
mer et al. 2009b). Preliminary results revealed convergence problems
of model (1) with log-transformed observations (not shown), which
was caused by the random regression of the daughter on the environ-
ment. Therefore, to ensure convergence, the random daughter effect
was fitted without regression on the environment. The residual vari-
ance was homogeneous, so only one residual variance component was
estimated. The sire solutions obtained from model (1) were used sub-
sequently in model (2).

RESULTS
The main results of the variance component estimation are shown in
Table 1. There is slope variance for all traits on both the observed and
the log-transformed scales, pointing to the presence of GxE effects.
These GxE effects were analyzed in details and also tested for signif-
icance in an earlier study (Streit et al. 2012). On the observed scale, the
correlation between intercept and slope was high and positive. The
log-transformation reduced this correlation. As expected, the daughter
variance was substantial and the residual variance was heterogeneous
across the environmental classes for traits on the observed scale (not
shown).

Figure 1 Test statistic profile of SNP
effects for protein yield intercept (top)
and protein yield slope (bottom) in the
discovery data set. The nominal signif-
icance level (P , 0.001) is indicated by
a solid line. Positions of validated SNPs
are indicated by a triangle.

Figure 2 Test statistic profile of SNP
effects for fat yield intercept (top) and
fat yield slope (bottom) in the discov-
ery data set. The nominal significance
level (P , 0.001) is indicated by a solid
line. Positions of validated SNPs are
indicated by a triangle.
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The results of the association analysis for the traits on the observed
scale are shown in Table 2. For all traits, 350 to 450 SNPs showed
a nominal significant association in the discovery data set; the FDR-
analysis revealed that approximately 7–9% of these are false-positive
results. For fat and protein yield, more trait-associated SNPs could be
found for intercept than for slope. The number of validated SNPs was
between 44 (protein slope) and 118 (fat intercept). The results for the
log-transformed data sets are shown in Table 3. For the intercepts,
almost the same number of significant SNPs was found as on the
observed scale, but fewer could be confirmed. For the slopes, the
number of significant SNPs was reduced. The FDR q-values of
the significant associations were similar or slightly greater.

The plots of the test statistic along the chromosomes are shown in
Figure 1, Figure 2, and Figure 3 for the traits on the observed scale.
Chromosomal positions of validated SNPs are indicated by a triangle
symbol. The pattern of the test statistic was similar for the intercept
and slope within the traits, although for intercept the signals were
generally more pronounced, leading to the higher number of signifi-
cant associations. Significant SNPs were found on many chromo-
somes, and the clearest signals were observed on BTA14. Promising
SNP clusters affecting intercept and slope of all traits were also iden-
tified on BTA26. Chromosome 9 is interesting with regard to protein,
as it contains a validated SNP cluster for both intercept and slope. For
slope, validated SNPs with a remarkably high test statistic were found
on BTA20 and BTA25. For fat intercept, a highly significant SNP was
found on BTA5, which also affected slope to a lesser extent. For milk
slope validated SNPs were mapped on BTA6 and BTA20. The test
statistic plots for intercept on the observed and on the log-scale are
almost identical for all three traits (not shown). For slope, however,
the plots differ between the scales (see Figure 4). Again, SNPs on
BTA14 showed the strongest signals for all three log-transformed
traits for slope.

In Figure 5 the estimates of the validation set are shown for SNPs
that were either significant for intercept, or for slope, or for both. The
slope effect of the allele that increases the intercept is shown. It can be
seen that every validated SNP affects both traits in the same direction,

and the correlation between the solutions is highly positive. This was
less pronounced if the data were log-transformed (Figure 6). For ln
(protein yield), many validated SNPs for intercept showed a small but
mostly non-significant negative effect for slope. In general, the largest
SNP effects (in units of the standard deviation, s) were observed for
milk yield, with 11 (4) SNPs showing an intercept (slope) effect larger
than 0.3s. For the log-transformed data sets, the intercept effects are
generally larger. This was not observed for slope effects. The estimates
of each validated SNP for the traits on the observed scale are presented
in Table S1; estimates for the log-transformed observations are pre-
sented in Table S2.

DISCUSSION
In this study we attempted to identify and confirm SNPs for intercept
(reflecting GP) and slope (reflecting ES) of milk traits in the German
Holstein dairy cattle population. Numerous SNPs were identified and
confirmed for both GP and ES. Many SNPs affecting GP also affect
ES. We showed that ES of milk traits has a similar genetic architecture
as GP and is a typical quantitative trait, genetically controlled by many
genes with small effects and few genes with larger effect (Figure 5,
Table S1). Given the FDR q-values of the SNPs in the discovery set
(Table 2 and Table 3), it seems that some SNPs with true associations
were not confirmed. This might be due to the reduced power of the
validation set with 500 sires. A more stringent validation would be to
also test whether the SNP is significant in another population (Hayes
et al. 2009, Pryce et al. 2010). Such a validation study would also
increase mapping precision, because mapping resolution is increased
when using an across-breed approach and only those SNPs being in
LD with the mutation in both breeds would be validated. No inde-
pendent population was available, however, to do an across-popula-
tion validation in this study.

In our study, the mapping precision is limited due to the LD
structure observed in this population (Qanbari et al. 2010) in combi-
nation with the applied single marker association analysis. Alterna-
tively, a combined linkage and LD mapping approach could have been
applied, which predicts IBD-probabilities at putative quantitative trait

Figure 3 Test statistic profile of SNP
effects for milk yield intercept (top)
and milk yield slope (bottom) in the
discovery data set. The nominal signif-
icance level (P , 0.001) is indicated by
a solid line. Positions of validated
SNPs are indicated by a triangle.
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loci (QTL) regions using multimarker and pedigree information and
uses these probabilities for QTL fine-mapping (Meuwissen et al.

2002). This method is, however, computationally demanding and
needs greater marker densities. Another multimarker approach that
could have been applied is a Bayes-method originally developed for
genomic selection (Meuwissen et al. 2001, Goddard and Hayes 2009).
These Bayes-methods make use of the LD of the markers and the
mutation and additionally of the LD between the markers. It is not
completely clear how to test for significance when using these meth-
ods. Olsen et al. (2011) applied the three aforementioned approaches
to map genes for fertility and milk production in dairy cattle. They
applied single-marker association analysis for a first screen, fine-map-
ped the regions by using combined linkage and LD mapping, and
confirmed the putative positions by using BayesA from Meuwissen
et al. (2001).

Some interesting SNP clusters affecting GP are located closely to
well-known candidate genes that segregate in the German Holstein
population. This is most obvious on BTA14, were the clear signals for
all milk traits for GP and ES probably reflect the effect of DGAT1
(Grisart et al. 2002, Winter et al. 2002). This gene is known to seg-
regate and affect all milk traits in this population (Bennewitz et al.

2004a). Several SNPs affecting GP of all three investigated milk traits
were found on BTA6. From previous linkage analyses, it is known that
BTA6 harbors QTL affecting milk traits in this population (Kühn et al.

1999, Bennewitz et al. 2004b). Putative candidate genes underlying
mapped QTL are discussed in Weikard et al. (2005). The PPARGC1A
gene was postulated as the most plausible gene underlying a QTL for
fat yield. In addition, the casein gene complex is located on this
chromosome, with an effect on protein yield and protein percentage
traits in this population (Prinzenberg et al. 2003). On BTA5 we found
a single SNP with a remarkably high test statistic for fat GP, which was
also validated for fat ES. Wang et al. (2012) reported the gene EPS8 to
be most likely causative for this association. The significant SNPs on
BTA20 is very likely to be associated with the GHR gene (Blott et al.
2003, Wang et al. 2012).

Some validated SNPs for ES are in chromosomal regions similar to
those found in other dairy cattle populations harboring genes with
GxE effects. In the Norwegian Red, milk production QTL for ES on
BTA2, BTA6, BTA7, and BTA16 were reported by Lillehammer et al.
(2007, 2008). A detailed analysis of BTA6 with a high marker density
revealed two QTL for milk yield with an effect on ES, but no QTL
with an ES effect for fat and protein yield. In our population, we were
able to validate ES SNPs on BTA6 for milk and fat yield,but not for
protein yield. In the Australian Holstein population Lillehammer et al.
(2009b) found several SNPs with ES effects. Roughly one third of their
significant associations affected GP and ES in opposite directions,
which is in contrast to our findings. They stated, however, that this
proportion is probably smaller than one third because it is generally

Figure 4 Test statistic profile of SNP
effects for ln(protein yield) slope (top),
ln(fat yield) slope (middle), and ln(milk
yield) slope (bottom) in the discovery
data set. The nominal significance
level (P , 0.001) is indicated by a solid
line. Positions of validated SNPs are
indicated by a triangle.
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more difficult to find SNPs that affect GP and ES in the same direction
rather than in opposite directions. Our study is considerably more
powerful than that of Lillehammer et al. (2009b); hence, we were likely
able to detect more SNPs with effects in the same direction.

We previously reported significant GxE resulting in substantial
scaling effects (Streit et al. 2012). To remove these scaling effects,
a log-transformation was applied. The results from the association
analysis applied to the log-transformed data revealed SNP that were
not removable by this kind of transformation. These validated SNPs
are of special interest because they point to chromosomal regions
harboring genes with an effect on ES that are not or not solely due
to scaling effects. Some regions with clear signals for ES on the ob-
served scale could not be found on the log-scale. This was especially
observed for ln(protein yield) and SNPs on BTA14 close to the
DGAT1 gene, where positive effects on ES were turned into small
negative effects, although mostly not significant (Figure 6, Table S2).
Hence, these effects were completely removable by the log-transfor-

mation. It may be noted that the log-transformation is frequently
applied, but maybe another transformation function (e.g., from the
Box-Cox-family of transformation) would be able to eliminate scaling
effects more effectively. This was not investigated further in this study.
The reduced correlation between intercept and slope when applying
the log-transformation (Table 1) was also observed by Lillehammer
et al. (2009b). This decreased correlation has the following reason. For
large yields the intercept of a regression is large as well. Because the
logarithm is a concave function, the interval containing these yields is
mapped to a smaller interval than an interval of the same size con-
taining small yields. Thus, the transformation causes large yields to
decrease in variance more drastically than small yields. This causes
positive slopes of the regression lines for large yields to decrease more
than positive slopes of regression lines for small yields.

As described in the Introduction, breeding for robustness for both
milk production and health traits is an issue in dairy cattle. In this

Figure 5 Estimated SNP effects for the traits on the observed scale.
The term sS (si ) denotes the sire intercept (slope) SD. Each SNP was
validated within the population either for intercept, slope or both.
Estimates were taken from the validation set.

Figure 6 Estimated SNP effects for the traits on the log-scale. The
term sS (si ) denotes the sire intercept (slope) SD. Each SNP was
validated within the population either for intercept, slope or both.
Estimates were taken from the validation set.
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study only milk production traits were considered. On the basis of our
results, it seems that simultaneously breeding for an increase in milk
GP and a decrease in ES by applying marker-assisted selection is
difficult because no SNPs showed opposite directions of the effects.
Genomic selection can be seen as marker assisted selection on a ge-
nome-wide scale. It is currently implemented in many dairy cattle
populations (Goddard and Hayes 2009). Improving ES by genomic
selection should be possible by considering ES as an additional trait
and by estimating genomic assisted breeding values for this trait. A
reference population for the estimation of marker effects is needed.
Existing reference populations mainly built by progeny-tested bulls
can also be used for ES, provided that the daughters are distributed
over a wide range of environments. As done in this study, the daugh-
ter records can then be used for the estimation of sire effects for ES,
which in turn, can be used to estimate marker effects. The most
appropriate method for this estimation depends on the genetic archi-
tecture of the trait, i.e., on the number of genes affecting the trait and
on the distribution of the effect size (Hayes et al. 2010). The current
study shows that for the estimation of marker effects for ES a model
should be used that is tailored to traits affected by many genes with
small effects and few with large effects.

We presented GxE for milk traits resulting in substantial scaling
effects. Many SNP clusters affecting GP and ES could be identified and
validated. The effects of some SNPs for ES were not removable by
a data transformation, indicating that these are not solely scaling
effects. The positions of these clusters were often found in well-known
candidate regions affecting milk traits. No validated SNP showed
effects for ES and GP in opposite directions. We showed that ES of
milk traits is a typical quantitative trait controlled by many genes with
small and few genes with large effects.
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