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Genome-wide association studies (GWASs) have been successful at identifying single-nucleotide poly-
morphisms (SNPs) highly associated with common traits; however, a great deal of the heritable variation
associated with common traits remains unaccounted for within the genome. Genome-wide complex trait ana-
lysis (GCTA) is a statistical method that applies a linear mixed model to estimate phenotypic variance of com-
plex traits explained by genome-wide SNPs, including those not associated with the trait in a GWAS. We
applied GCTA to 8 cohorts containing 7096 case and 19 455 control individuals of European ancestry in
order to examine the missing heritability present in Parkinson’s disease (PD). We meta-analyzed our initial
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results to produce robust heritability estimates for PD types across cohorts. Our results identify 27% (95% CI
17–38, P 5 8.08E 2 08) phenotypic variance associated with all types of PD, 15% (95% CI 20.2 to 33, P 5 0.09)
phenotypic variance associated with early-onset PD and 31% (95% CI 17–44, P 5 1.34E 2 05) phenotypic vari-
ance associated with late-onset PD. This is a substantial increase from the genetic variance identified by top
GWAS hits alone (between 3 and 5%) and indicates there are substantially more risk loci to be identified. Our
results suggest that although GWASs are a useful tool in identifying the most common variants associated
with complex disease, a great deal of common variants of small effect remain to be discovered.

INTRODUCTION

Genome-wide association studies (GWASs) have been suc-
cessful at identifying single-nucleotide polymorphisms
(SNPs) highly associated with common traits; however, a
great deal of the heritable variation associated with common
traits remains unknown (1–3). Parkinson’s disease (PD) is
the second most common neurodegenerative disease, and is
clinically characterized by rigidity, resting tremor and brady-
kinesia (slowed movement). The average age at onset is 68
years, however this is highly variable and can range from ado-
lescence to old age (4–6). Generally, individuals with disease
onset before age 55 are categorized as early onset, and those
with disease onset after age 55 are categorized as late onset
(7–9).

GWASs have identified risk variants at over two dozen loci
influencing PD risk; however, these are thought to explain
only a fraction of the variance in PD liability (8,10). In addition,
mutations known to cause monogenic forms of PD account for
only a small proportion of disease (11). These include mutations
in a-synuclein (SNCA), parkin (PARK2), DJ-1 (PARK7),
PTEN-induced putative kinase I (PINK1) and leucine-rich
repeat kinase 2 (LRRK2) (12–14). Although additional loci
that have been implicated in PD risk produce small effects, col-
lectively they comprise a larger portion of genetic component
responsible for the development of PD (15).

Twin studies are useful in differentiating the impacts of gen-
etics and the environment as the sources of a disease. If
genetic factors greatly influence the presence of a disease, it
is expected that concordance in monozygotic (MZ) twins
will be greater than dizygotic (DZ) twins. Twin studies of
PD have shown very low pairwise concordance, estimated as
�0.129, with no discernable difference between MZ and DZ
pairs, although there is some concern over the cross-sectional
nature of these studies. In addition, concordance-adjusted
prevalence in twin studies has been estimated at 8.67/1000,
or ,0.1% (16). This is a similar prevalence value to what is
seen in other population-based studies of PD prevalence
(4,8,17,18).

Monogenic familial forms of PD are often early-onset, and
it has been suggested that early-onset PD has a greater famil-
ial/heritable component in its etiology than later onset mani-
festations of the disease (19). It is likely that the etiology of
early-onset PD is dissimilar to late-onset PD, which seems
to occur more sporadically (15). At least one twin study has
performed analyses controlled for age, with results showing
significant rates of concordance for MZ pairs with early age
at onset of PD, and a near lack of concordance for later
onset individuals. This strongly supports the role of genetics

in early-onset PD; however, the sample size for this subset
of individuals was very small, and shared environmental ex-
posure in twins cannot be overlooked (16). Furthermore, a lon-
gitudinal twin study examined both MZ and DZ pairs over an
8-year period and observed a significantly higher concordance
rate among MZ pairs; over time, concordance in these indivi-
duals increased from 0 to 33% (20). These data suggest an
additional environmental trigger in the etiology of PD and
further demonstrate that a simple genetic model does not fit
the etiology of this disease (16,20,21).

We sought a method to capture the genetic variance asso-
ciated with PD. Genome-wide complex trait analysis
(GCTA) estimates the components of phenotypic variance,
that is, the polygenic additive variance (heritability) that can
be explained by genome-wide SNPs, including those that are
not significantly associated with the phenotype of interest in
GWASs (22). Notably, this method provides a lower limit
for trait heritability because it is improbable that all causal var-
iants have been exactly tagged by the SNPs on the genotyping
platforms used to perform initial analyses (15). GCTA works
by utilizing genome-wide SNPs to quantify the phenotypic
variance of all putative causal variants, as opposed to only
genome-wide significant trait-associated variants. For a
given disease trait, the heritability explained by all SNPs is
estimated simultaneously, as opposed to testing the association
of some previously identified SNPs from GWASs, which
relies on shared linkage disequilibrium across common var-
iants associated with disease status to quantify heritability
(1–3).

Using GCTA, we aim to identify a larger segment of addi-
tive genetic variance not typically associated with early- and
late-onset PD via GWASs in central European and Scandi-
navian ancestry populations, thus generating the most compre-
hensive estimates to date of PD heritability (23). Recent
analyses have also used GCTA to examine the dichotomy of
early and late-onset PD, using self-reported diagnosis data col-
lected by the personal genetics company 23andMe (15). Do
et al. (15) report estimates for early-onset PD heritability as
�0.306 (95% CI 0.136–0.476) and for late onset as �0.285
(95% CI 0.2224–0.346). These estimates are supported by
our meta-analysis, which provides additional support for the
complex genetic structure of PD.

Our analyses offer a continuation and extension of this pre-
vious research by dichotomizing the PD phenotype based on
age and subsets of SNPs; in addition, we imputed our data
to test both typed and untyped variants when estimating
phenotypic variance of the PD phenotype. This not only
encapsulates more putatively associated variants than previous
studies yielding a more informed estimate, but it is also in line
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with the methodologies that will be used in future GWAS
studies. Critically, imputation is useful in this study because
of the inclusion of multiple clinically derived studies as
opposed to a single cohort study of self-reported cases. In par-
ticular, the use of imputation provided a means of facilitating
more cohesive data for meta-analyses, as our genotyped data
were standardized and expanded by the imputation of millions
of shared SNPs per cohort. By imputing genotypes across
cohorts, we are able to test the same set of SNPs regardless
of the limitations of the initial platform.

RESULTS

Cohort-level heritability estimates are provided in Table 1 and
accompanying forest plots are shown in Figure 1. Our herit-
ability estimates vary from �16% (UK, SE ¼ 0.027) to
�49% (Finland, SE ¼ 0.04). Moderate estimates were
obtained for the majority of cohorts.

Results of our meta-analysis are presented in Table 2. We
generated statistically significant heritability estimates for all
PD types and late-onset PD across all SNP sets at the
meta-analysis level. Our results identify 27% (95% CI 17–
38, P ¼ 8.08E 2 08) phenotypic variance associated with all
PD samples, 15% (95% CI 20.2 to 33, P ¼ 0.09, non signifi-
cant) phenotypic variance associated with early-onset PD and
31% (95% CI 17–44, P ¼ 1.34E – 05) phenotypic variance
associated with late-onset PD. These estimates are a substan-
tial increase from the genetic variance identified by GWA
top SNPs alone (3–5%). The estimates for all PD and
late-onset PD types increased moderately using imputed data
(estimate using only genotyped SNPs—all samples: 24%,
P ¼ 1.33E 2 07; estimate using only genotyped SNPs—
late-onset samples: 26%, P ¼ 7.34E 2 07); however, these
estimates are not significantly different and are attributed to
unexplained variation. The early-onset estimate decreased
drastically and lost significance when imputed data were
used (estimate using only genotyped SNPs—early-onset
samples: 33%, P ¼ 3.91E 2 04; see Table 3 for additional
detail). Despite the apparent difference between genotyped
and imputed early-onset samples, the reported estimates
remain within the 95% confidence interval ranges of each
data type.

The data suggest a large portion of heritability in PD has not
yet been accounted for in current GWASs. Although a small
degree of heritable genetic variation is tagged by common
SNPs (i.e. those included on micro-array genotyping assays),
recent studies point toward the role of rare variants in
disease etiology (24–26). It was expected that combined her-
itability estimates would show early-onset PD as having a
higher portion of phenotypic variance than late-onset PD;
however, this was not observed in the pooled analyses or the
meta-analysis. The remaining variability in PD etiology not
ascribed to heritable factors in our analyses suggests a contri-
bution of combined effects of rare variants not tagged by
current genotyping, possible environmental factors or a sto-
chastic component. In addition, other factors including non-
additive genetic effects and artifacts in the SNP data may
also contribute to this discrepancy. We noted a priori 3 263

728 of rare variants were of lower quality and poorly tagged
by the available microarray genotype data (57.69%).

DISCUSSION

Our estimates of phenotypic variance provide unequivocal and
compelling evidence of yet-to-be-discovered additional
genetic factors that contribute to the etiology of PD. While im-
putation can capture up to �50% of the genetic variation asso-
ciated with PD in some cohorts, our study was limited by the
sensitivity of microarray-based genotyping methods utilized in
our calculation of heritability. In addition, disparate demo-
graphic histories between cohorts likely contributed to the dif-
ferences shown in the cohort-level heritability estimates. In
particular, the Icelandic cohort produced the highest genome-
wide estimates and the lowest GWAS SNPs estimates. The
population of Iceland is remarkably homogenous compared
with the populations of France and the UK, for example,
and their shared ancestry is reflected in their genetic structure
as measured by GCTA.

Our results also provide support for the hypothesis that
rare variants of potentially large effect are less likely to be
accurately tagged by microarray, potentially biasing heritabil-
ity estimates as appearing lower than what should be
expected, particularly for early-onset PD. Large-scale
genome and exome sequencing in conjunction with denser
genotyping in large cohorts may help to better quantify the
heritability of complex diseases. These efforts will also aid
in the identification of loci that contribute to ‘missing herit-
ability’ previously undetected in earlier generation technolo-
gies used for capturing genomic variation, as were
implemented in this study. For example, the GBA locus con-
tains approximately 17 rare mutations, not all of which were
originally detected by GWASs (27,28). In addition, the use of
newer technologies is likely to revise disease heritability esti-
mates upward.

Heterogeneity in the heritability estimates reported here
could result from heterogeneity in the coverage of the
genome as well as from patient acquisition biases. A large pro-
portion of the dbGaP cohort (herein referred to as MF, further
described in Materials and Methods) is comprised of familial
PD cases; however, the heritability estimates for this cohort
are among the lowest. This may reflect differences in genotyp-
ing platform. The US-NIA (US), Dutch (NL), UK: WTCCC2/
Cardiff (UK), French (FR) and German (GER) cohorts were
genotyped using the 610 and 550K Illumina arrays containing
500K SNPs, whereas the MF, Finnish (FIN) and Icelandic
(ICE) cohorts were genotyped using the Illumina 370K. The
use of MACH (Markov Chain-based haplotyper) for imput-
ation allows comparisons between cohorts of different geno-
typing platforms to be made, because genotypes are imputed
based on the observed haplotype structure of each cohort,
and therefore analysis occurs across the same set of SNPs.

It is important to note that the choice of prevalence value
has a minor impact on our heritability estimates. Our study
model dichotomizes the PD phenotype based on age, and
because PD prevalence increases with age, we used a preva-
lence value standardized for age and gender, specified here
as 0.002. To account for the larger prevalence within the
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case population and to control for ascertainment, we used
GCTA to transform the explained variance estimate from the
observed scale (V(1)/Vp) to the underlying scale (V(1)/
Vp_L). Previous work has shown that assumed prevalence
has only a small impact on GCTA estimates. In particular,

Do et al. (15) show that prevalence values ranging 3-fold
(0.005–0.015) impact on their estimates by only �5%. Our
subsequent analyses show that using a conservative prevalence
value still provides ample evidence for identifying increased
phenotypic variance of PD.

Table 1. Cohort level analyses

Heritability estimate SE of heritability estimate Cases (n) Controls (n)

Cohort: US
All samples All SNPs 0.182545 0.045998 971 3034

PD GWAS SNPs in PD loci/regions 0.037605 0.009569 971 3034
PD GWAS regions excluded 0.143514 0.045902 971 3034

Early onset All SNPs 0.080189 0.214376 365 276
PD GWAS SNPs in PD loci/regions 0.013059 0.035854 365 276
PD GWAS regions excluded 0.047529 0.214932 365 276

Late onset All SNPs 0.227307 0.080002 572 1620
PD GWAS SNPs in PD loci/regions 0.033377 0.014531 572 1620
PD GWAS regions excluded 0.174017 0.079982 572 1620

Cohort: GER
All samples All SNPs 0.259042 0.080298 742 944

PD GWAS SNPs in PD loci/regions 0.047032 0.015157 742 944
PD GWAS regions excluded 0.228625 0.0807 742 944

Early onset All SNPs 0.22548 0.162678 302 670
PD GWAS SNPs in PD loci/regions 0.111 0.030216 302 670
PD GWAS regions excluded 0.154317 0.162772 302 670

Late onset All SNPs 0.221245 0.222233 367 267
PD GWAS SNPs in PD loci/regions 0.021783 0.035878 367 267
PD GWAS regions excluded 0.183247 0.22393 367 267

Cohort: NL
All samples All SNPs 0.426036 0.055851 772 2024

GWAS SNPs in PD loci/regions 0.02337 0.010787 772 2024
PD GWAS regions excluded 0.430828 0.055468 772 2024

Early onset All SNPs 0.133057 0.125479 366 871
GWAS SNPs in PD loci/regions 0.035313 0.022193 366 871
PD GWAS regions excluded 0.156223 0.125421 366 871

Late onset All SNPs 0.531087 0.105094 379 1148
GWAS SNPs in PD loci/regions 0.026801 0.02065 379 1148
PD GWAS regions excluded 0.531087 0.105496 379 1148

Cohort: UK
All samples All SNPs 0.164206 0.027159 1705 5200

GWAS SNPs in PD loci/regions 0.027181 0.009195 1705 5200
PD GWAS regions excluded 0.141085 0.027061 1705 5200

Late onset All SNPs 0.167639 0.039548 1258 2699
GWAS SNPs in PD loci/regions 0.023974 0.012248 1258 2699
PD GWAS regions excluded 0.150867 0.039547 1258 2699

Cohort: ICE
All samples All SNPs 0.491238 0.044370 604 4916

GWAS SNPs in PD loci/regions 0.000001 0.016722 604 4916
PD GWAS regions excluded 0.517731 0.044039 604 4916

Late onset All SNPs 0.446607 0.060354 449 2624
GWAS SNPs in PD loci/regions 0.000001 0.023778 449 2624
PD GWAS regions excluded 0.473371 0.059609 449 2624

Cohort: FR
All samples All SNPs 0.243203 0.04944 1039 1984

GWAS SNPs in PD loci/regions 0.062499 0.011242 1039 1984
PD GWAS regions excluded 0.198351 0.049936 1039 1984

Late onset All SNPs 0.222832 0.116052 340 1984
GWAS SNPs in PD loci/regions 0.047813 0.022223 340 1984
PD GWAS regions excluded 0.206995 0.116277 340 1984

Cohort: MF
All samples All SNPs 0.179096 0.077089 876 857

GWAS SNPs in PD loci/regions 0.018118 0.01266 876 857
PD GWAS regions excluded 0.170097 0.076168 876 857

Cohort: FIN
All Samples All SNPs 0.224504 0.127949 387 496

GWAS SNPs in PD loci/regions 0.058549 0.026548 387 496
PD GWAS regions excluded 0.252043 0.126645 387 496

Cohort-level heritability estimates from imputation.
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An alternative method of analysis would employ a condi-
tional analysis within GCTA, using the GWAS-significant
PD SNPs as covariates to statistically correct for known
signals during the restricted maximum likelihood (REML)

analysis. It is expected that the known SNPs would capture
the same variance as the whole set of SNPs used in the
GWAS region analysis; however, three of the top SNPs
(rs1491942, rs6710823 and rs76763715) were not available

Figure 1. Forest plots of heritability estimates across cohorts. Cohort-specific heritability estimates are shown in blue, the size of the square is proportional to the
size of the study. Confidence intervals of the summary heritability estimates are shown as red diamonds, with the centerline of each diamond representing the
summary heritability estimate for that particular subset of data.
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Table 2. Summary of random-effects meta-analysis from imputation

PD type SNPs included in
analysis

Heritability estimate from
random effects

Lower 95% confidence
interval

Upper 95% confidence
interval

P-value from random
effects

Heterogeneity of variance from
random effects (%)

Heterogeneity
P-value

All All SNPs 0.27 0.17 0.38 8.80E 2 08 0.02 0.00E + 00
GWAS SNPs in PD

loci/regions
0.03 0.02 0.05 5.23E 2 07 0.00 3.20E 2 02

Non-GWAS regions 0.26 0.15 0.38 9.69E 2 06 0.02 0.00E + 00
Early

onset
All SNPs 0.15 20.02 0.33 9.16E 2 02 0.00 8.44E 2 01

GWAS SNPs in PD
loci/regions

0.05 0.00 0.11 5.50E 2 02 0.00 6.20E 2 02

Non-GWAS regions 0.14 20.04 0.31 1.30E 2 01 0.00 9.01E 2 01
Late

onset
All SNPs 0.31 0.17 0.44 1.34E 2 05 0.02 1.00E 2 03

GWAS SNPs in PD
loci/regions

0.03 0.01 0.04 2.59E 2 04 0.00 7.85E 2 01

Non-GWAS regions 0.29 0.14 0.45 2.30E 2 04 0.03 0.00E + 00

Meta-analysis of heritability estimates from imputed data. Results are significant for All and late-onset subset of PD.

Table 3. Summary of random-effects meta-analysis from genotyping

PD type SNPs included in
analysis

Heritability estimate from
random effects

Lower 95% confidence
interval

Upper 95% confidence
interval

P-value from random
effects

Heterogeneity of variance from
random effects (%)

Heterogeneity
P-value

All All SNPs 0.24 0.16 0.31 6.27E + 00 0.01 4.00E 2 03
GWAS SNPs in PD

loci/regions
0.02 0.01 0.03 1.77E 2 04 0.00 3.30E 2 02

Non-GWAS regions 0.23 0.14 0.32 5.05E 2 07 1.30 ,1.00E 2 16
Early

onset
All SNPs 0.33 0.15 0.52 3.91E 2 04 0.00 7.45E 2 01

GWAS SNPs in PD
loci/regions

0.02 20.01 0.05 1.38E 2 01 0.00 5.94E 2 01

Non-GWAS regions 0.32 0.13 0.50 7.33E 2 04 0.00 6.45E 2 01
Late

onset
All SNPs 0.26 0.16 0.36 7.34E 2 07 1.00 2.10E 2 02

GWAS SNPs in PD
loci/regions

0.01 0.00 0.02 1.98E 2 02 0.00 5.63E 2 01

Non-GWAS regions 0.25 0.15 0.35 9.11E 2 07 1.00 2.70E 2 02

Meta-analysis of heritability estimates from genotyped data.
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in our imputed data for multiple cohorts. As no proxies were
available, the results are not comparable with the uncondition-
al analysis and are not reported here.

Our analyses indicate that the estimates of heritability pre-
sented here are minimal estimates, despite the significant in-
crease over what has been identified by GWASs. The
genetic additive heritability identified by the GWAS SNPs is
also likely an underestimate of the genetic variance due to
common PD variants, as the associated GWAS SNPs are not
necessarily causal: their effects are lower than those of the
true susceptibility variants. Genotyping these variants would
likely produce greater estimates of the common genetic addi-
tive variance due to the GWAS PD loci. Indel and structural
variants were not considered here, although a portion of
these was likely tagged by the considered SNPs. In addition,
the portion of variance explained by GWAS SNPs is underes-
timated by GCTA, as the model places a prior centered zero as
the effect size of the SNPs that are used in the calculation of
the genetic relationship matrix (GRM). This has been previ-
ously shown using sparse regression techniques, which
account for 6–7% of total variance in GWAS SNPs, further
suggesting the majority of genetic variants that contribute to
PD lay outside of GWAS-significant SNPs (15). Large-scale
sequencing efforts often identify many variants that are not
easily tagged using microarray genotyping. This is apparent
in evaluations of the success of capturing rare variants, most
commonly defined as having a minor allele frequency
(MAF) of ≤0.05. In addition, rare variants are thought to
harbor larger deleterious effects than more common variants
(29,30). In this context, it is likely that further GWA studies
that include greater numbers of typed SNPs will identify add-
itional risk for PD.

In conclusion, our estimates do not confirm hypotheses of a
greater contribution of genetic risk for early-onset PD com-
pared with late-onset PD; however, we expect the contribu-
tions of rare variants not tagged by microarray genotyping to
have a substantial impact on the genetic contributions to
disease risk. Although our imputed analysis did not provide
significant results for this subset of PD, we note a priori that
a significant portion of rare variants are not well captured in
microarrays (�58%); therefore, our heritability estimates are
lower than what might be expected. In addition, very rare var-
iants (MAF , 0.005) require reference panels with at least
1200 subjects in order to impute, as it is necessary to

observe multiple copies of an SNP in order to accurately con-
stitute the haplotypes that will be used for imputation (31).
Future analyses incorporating denser genome and exome-wide
assays in conjunction with newer sequencing technologies will
likely see increased heritability estimates associated with PD
and other complex traits, as a significantly larger genetic con-
tribution to disease risk is identified.

MATERIALS AND METHODS

Study populations

We utilized six GWAS data sets drawn from the International
Parkinson’s Disease Genomics Consortium (IPDGC), com-
prised of US and European participants previously described
in detail elsewhere (7,32–37). The IPDGC includes data
from Iceland (ICE, n ¼ 5520), the UK: WTCCC2/Cardiff
(UK, n ¼ 6905), the Netherlands (NL, n ¼ 2796), Germany
(GER, n ¼ 1686), France (FR, n ¼ 3023) and the USA-NIA
(US, n ¼ 4005). Additional US participant data were obtained
via dbGaP, made available by the NINDS Human Genetics
Resource Center and have been described by Pankratz et al.
(35) (MF, n ¼ 1733); a Finnish case–control cohort was
also incorporated into this study based on the Vantaa 85+
Study (38) (FIN ¼ 883; cases from Oulu, n ¼ 387; controls
from mitoPARK and Vantaa 85+, n ¼ 496). In total, 8
cohorts comprising 7096 cases and 19 455 controls were
used. Study descriptives for each cohort are outlined in
Table 4. Cohorts containing individuals with age data were
further subset to account for early- and late-onset cases and
controls. Age at onset was defined here as age at initial diag-
nosis in cases and matched to controls using age at study as-
certainment. Early onset was quantified as ≤55 years old
and late onset was quantified as .55 years old. Early-onset
data sets were drawn only from individuals in the US,
German and Dutch cohorts, as the remainder of the cohorts
did not contain control individuals ≤55 years of age.
Late-onset data sets were drawn from individuals in the US,
German, Dutch, Icelandic, French and UK cohorts.

As per our study design, older controls were excluded from
our early-onset analyses due to previous research suggesting
demographic factors such as age influence genetic sub-
structure. In particular, increasing homozygosity has been
associated with chronological age (39). As this trend could

Table 4. Study descriptives

Cases Controls Study details
Cohort Sample

size
Female
(%)

Mean age at onset
[years (SD)]

Sample
size

Female
(%)

Mean age [years
(SD)]

Number of SNPs
used for imputation

Genomic inflation
factor (l)

US 937 40.23 57.81 (13.16) 3033 52.82 63.3 (10.06) 545 066 1.035
GER 740 39.59 49.33 (22.21) 944 47.99 47 (13.25) 561 467 1.025
NL 771 36.45 53.39 (16.62) 2024 55.94 55.56 (6.60) 546 155 1.061
UK 1705 42.22 48.95 (13.84) 5200 49.42 53 (0) 532 616 1.034
ICE 604 47.85 73.26 (13.84) 5520 55.87 85.12 (10.77) 316 905 1.011
FR 1039 41.2 48.9 (12.8) 1984 42.9 73.7 (5.4) 492 929 1.03
MF 876 40.41 36.42 (11.08) 857 60.21 NA 325 770 1.013
FIN 387 45.99 48.28 (6.97) 496 0 91.98 (7.46) 302 463 1.066

Cohort-level descriptive statistics and study details.
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influence the frequency of the variants used in our analyses of
early-onset PD heritability and introduce stochastic change or
other potential bias that is not controlled for, we have excluded
older controls from early-onset analyses.

Stringent quality control measures were applied to all data
sets prior to GCTA analysis, in order to control for ascertain-
ment bias and any artifacts introduced into the data by the
genotyping process (32). It was necessary to employ more
stringent quality control that what is generally acceptable for
GWASs because systematic differences between cases and
controls could be picked up as genetic variance (3). Cases
and controls in all cohorts were analyzed together to reduce
bias. SNPs with different call rates in cases and controls
were excluded. Additional detail regarding specific
cohort-level quality control measures is described elsewhere
(32,40).

As a note, three SNPs, ACMSD, GAK, and HLA-DRB5,
were initially found to be associated in a GWAS that was per-
formed on the same data sets used in the present study (32).
Known inherited Mendelian loci were not directly accounted
for in our estimates.

Quality control and imputation

After samples were collected from each cohort, and standard
quality control was applied, MACH (version 1.0.16) was
applied to each cohort to impute genotypes for all European
ancestry participants. Haplotypes were derived from 500 Euro-
pean ancestry samples in the 1000 Genomes Project (as of
23 September 2011), based on initial low coverage and
exome sequencing. A quality threshold of a minimum 0.30
squared correlation between proximal, experimental and
imputed genotypes was applied, indicated by the R2 metric
from MACH (41,42). We used the default settings of
MiniMac (41,42) to impute variants into each cohort, and the
total number of imputed variants per cohort is shown in Table 4.

Data were imputed in a two-stage design. The first stage of
imputation generated error and crossover maps on a random
subset of 200 samples per study, for 100 iterations of the stat-
istical model. These maps were used as parameter estimates
for imputation, to generate maximum likelihood estimates of
allele dosages per SNP, on the basis of reference haplotypes
from the 1000 Genomes Project during the second stage of
the imputation. SNPs were excluded if their R2 quality esti-
mates were ,0.30, as estimated by MACH, or if their
MAFs were ,0.01, because imputed genotypes below these
values are likely poor in quality and are more susceptible to
errors in imputation.

Cryptic relatedness among samples was addressed at both
cohort and meta-analysis levels. Within the cohorts, samples
sharing .0.15 proportion of alleles or samples identified as
first or second degree relatives according to identity by
descent estimates were excluded (32). As an additional
quality control measure, we calculated genomic control for in-
dividual data sets. Genomic control is based on the x2 statistic
and is estimated as the deviance of the median test statistic dis-
tribution from the expected null. The product of this analysis is
a l-value; l-values ,1.05 are standard in GWASs (32).
l-Values were obtained before imputation, and indicate that

population stratification is minimal. Genome-wide l-values
for each cohort are reported in Table 4.

Statistical analysis

We applied GCTA to estimate heritability within each of the
stratified data sets per cohort. Heritability is defined here as
the proportion of phenotypic variation in a population that is
due to genetic variance between individuals. GRMs were cal-
culated for each subset of data to determine the genetic rela-
tionship between pairs of individuals (3,22). The GRMs in
this analysis were estimated using imputed dosage score
SNP data; therefore, the estimation of variance explained by
the SNPs relies on the R2 cutoff used to select the SNPs.

GRMs were input into an REML analysis to produce esti-
mates of the proportion of phenotypic variance explained by
the SNPs within each subset of data (22). In addition to
cohort-level quality control, SNPs with MAFs ,0.01 and R2

values ,0.3 were excluded from the REML analysis. All ana-
lyses were adjusted for eigenvectors 1–20 from principal
component analyses to account for possible confounding by
population substructure within each cohort (22,43). Within
the analysis, the component vectors were used as basic covari-
ates to identify random genomic differences between geno-
typed data from cases and controls, in order to adjust
statistical models for covariates accounting for possible popu-
lation substructure. Summary statistics from these estimates
were produced by every data set and were included in the
meta-analyses.

The disease prevalence for PD was estimated from a general
European ancestry populations identified by the literature. PD
prevalence increases with age; therefore, the prevalence value
was standardized for age and gender, and is specified here as
0.002 (4,8,17,18). To control for ascertainment, GCTA trans-
formed the explained variance estimate from the observed
scale (V(1)/Vp) to the underlying scale (V(1)/Vp_L) to
provide more robust heritability estimates.

Using PLINK version 1.07 (44), imputed SNPs were used to
subset three basic data sets for each cohort. These included:

(i) All imputed SNPs;
(ii) All known SNPs +1 MB located within a region identi-

fied by replicated GWASs as associated with PD
(described in Table 5); and

(iii) SNPs not located within +1 MB of a region associated
with PD by GWASs. Twenty-seven highly significant
and well-replicated SNPs were used to define the PD
regions for the second and third data sets, as described
in Table 5.

Heritability estimates were compared between three data
sets, when using:

(i) All SNPs simultaneously;
(ii) SNPs identified by GWASs as located within regions

associated with PD; and
(iii) SNPs not identified by GWASs (i.e. ‘missing’ or poten-

tially hidden heritability).

We stratified our analysis to compare estimates between
early and late PD onset. This allowed for a comparison of
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‘heritability’ estimates for PD dependent on age at onset.
REML analyses were repeated for GER, US and NL cohorts
to compare early-onset (≤55 years) cases and controls, and
for GER, US, NL, UK, FR and ICE cohorts to compare
late-onset cases (.55 years) and controls. In addition to
cohort-level analyses, a meta-analysis was conducted to
combine summary statistics.

We performed a random-effects meta-analysis using R 2.15.
This produced powerful phenotypic variance and heterogen-
eity estimates across cohorts (Table 2). To quantify heterogen-
eity across cohorts, Cochran’s Q statistic was estimated using
R. Cochran’s Q is based on a x2 distribution, and is calculated
as the weighted sum of squared differences between each
effect of the individual study and the pooled effect across
studies (45–47):

Q =
∑

w(ẼEC)2, EC =
∑

wE
/∑

w.

This statistic does not inform the type or cause of heterogen-
eity, only of its presence or absence.

In order to quantify the impact of coverage of microarray
genotyping on our heritability estimates, we determined the
number of rare variants imputed into each cohort. Variants
with an MAF of ,1% were considered rare.
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(deCODE genetics and Department of Psychiatry, Oslo University

Hospital, N-0407 Oslo, Norway), Clare Harris (University of Aber-

deen), Jacobus J. van Hilten (Department of Neurology, Leiden Uni-

versity Medical Center, Leiden, The Netherlands), Albert Hofman

(Department of Epidemiology, Erasmus University Medical Center,

Rotterdam, The Netherlands), Albert Hollenbeck (AARP, Washing-

ton, DC, USA), Janice Holton (Queen Square Brain Bank for Neuro-

logical Disorders, UCL Institute of Neurology), Michele Hu

(Department of Clinical Neurology, John Radcliffe Hospital,

Oxford, UK), Xuemei Huang (Departments of Neurology, Radiology,

Neurosurgery, Pharmacology, Kinesiology, and Bioengineering,

Pennsylvania State University—Milton S. Hershey Medical Center,

Hershey, PA, USA), Heiko Huber (Department for Neurodegenera-

tive Diseases, Hertie Institute for Clinical Brain Research), Gavin

Hudson (Neurology M4104, The Medical School, Newcastle upon

Tyne, UK), Sarah E. Hunt (Wellcome Trust Sanger Institute),

Johanna Huttenlocher (deCODE genetics), Thomas Illig (Institute

of Epidemiology, Helmholtz Zentrum München, German Research

Centre for Environmental Health, Neuherberg, Germany), Pálmi V.

Jónsson (Department of Geriatrics, Landspı́tali University Hospital,

Reykjavı́k, Iceland), Jean-Charles Lambert (INSERM U744, Lille,

France; and Institut Pasteur de Lille, Université de Lille Nord,
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Freeman1, Garrett Hellenthal1, Eleni Giannoulatou1, Matti Pirinen1,

Richard Pearson1, Amy Strange1, Zhan Su1, Damjan Vukcevic1 and

Peter Donnelly1,2

DNA, genotyping, data QC and informatics group

Cordelia Langford3, Sarah E. Hunt3, Sarah Edkins3, Rhian Gwilliam3,

Hannah Blackburn3, Suzannah J. Bumpstead3, Serge Dronov3,

Matthew Gillman3, Emma Gray3, Naomi Hammond3, Alagurevathi

Jayakumar3, Owen T. McCann3, Jennifer Liddle3, Simon C. Potter3,

Radhi Ravindrarajah3, Michelle Ricketts3, Matthew Waller3, Paul

Weston3, Sara Widaa3, Pamela Whittaker3, Ines Barroso3 and

Panos Deloukas3

Publications committee

Christopher G. Mathew (Chair)13, Jenefer M Blackwell4,5, Matthew

A. Brown7, Aiden Corvin9, Mark I. McCarthy19 and Chris C.A.

Spencer1

1Wellcome Trust Centre for Human Genetics, Roosevelt Drive,

Oxford OX3 7LJ, UK; 2Department of Statistics, University of

Oxford, Oxford OX1 3TG, UK; 3Wellcome Trust Sanger Institute,

Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA,

UK; 4Telethon Institute for Child Health Research, Centre for Child

Health Research, University of Western Australia, 100 Roberts

Road, Subiaco, Western Australia 6008, Australia; 5Cambridge In-

stitute for Medical Research, University of Cambridge School of

Clinical Medicine, Cambridge CB2 0XY, UK; 6Department of

Psychosis Studies, NIHR Biomedical Research Centre for Mental

Health at the Institute of Psychiatry, King’s College London and

The South London and Maudsley NHS Foundation Trust,

Denmark Hill, London SE5 8AF, UK; 7Diamantina Institute of

Cancer, Immunology and Metabolic Medicine, Princess Alexandra

Hospital, University of Queensland, Brisbane, Queensland, Austra-

lia; 8Department of Epidemiology and Population Health, London

School of Hygiene and Tropical Medicine, London WC1E 7HT,

UK, and Department of Epidemiology and Public Health,

5008 Human Molecular Genetics, 2012, Vol. 21, No. 22



University College London, London WC1E 6BT, UK; 9Neuro-

psychiatric Genetics Research Group, Institute of Molecular Medi-

cine, Trinity College Dublin, Dublin 2, Ireland; 10Molecular and

Physiological Sciences, The Wellcome Trust, London NW1 2BE,

UK; 11Centre for Digestive Diseases, Queen Mary University of

London, London E1 2AD, UK, and Digestive Diseases Centre,

Leicester Royal Infirmary, Leicester LE7 7HH, UK, and Depart-

ment of Clinical Pharmacology, Old Road Campus, University of

Oxford, Oxford OX3 7DQ, UK; 12Clinical Neurosciences, St

George’s University of London, London SW17 0RE, UK;
13King’s College London, Department of Medical and Molecular

Genetics, School of Medicine, Guy’s Hospital, London SE1 9RT,

UK; 14Biomedical Research Centre, Ninewells Hospital and

Medical School, Dundee DD1 9SY, UK; 15King’s College

London Social, Genetic and Developmental Psychiatry Centre, In-

stitute of Psychiatry, Denmark Hill, London SE5 8AF, UK; 16Uni-

versity of Cambridge Department of Clinical Neurosciences,

Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; 17NIHR Bio-

medical Research Centre for Ophthalmology, Moorfields Eye Hos-

pital NHS Foundation Trust and UCL Institute of Ophthalmology,

London EC1V 2PD, UK; 18Department Molecular Neuroscience,

Institute of Neurology, Queen Square, London WC1N 3BG, UK;
19Oxford Centre for Diabetes, Endocrinology and Metabolism

(ICDEM), Churchill Hospital, Oxford OX3 7LJ, UK.

Human Molecular Genetics, 2012, Vol. 21, No. 22 5009


