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Using Geodesic Space Density Gradients for
Network Community Detection

Arif Mahmood, Michael Small, Nasir Rajpoot, and Sumaya Ali Al-Maadeed

Abstract—Many real world complex systems naturally map to network data structures instead of geometric spaces because the only

available information is the presence or absence of a link between two entities in the system. To enable data mining techniques to solve

problems in the network domain, the nodes need to be mapped to a geometric space. We propose this mapping by representing each

network node with its geodesic distances from all other nodes. The space spanned by the geodesic distance vectors is the geodesic

space of that network. Position of different nodes in the geodesic space encode the network structure. In this space, considering a

continuous density field induced by each node, density at a specific point is the summation of density fields induced by all nodes. We

drift each node in the direction of positive density gradient using an iterative algorithm till each node reaches a local maximum. Due to

the network structure captured by this space, the nodes that drift to the same region of space belong to the same communities in the

original network. We use the direction of movement and final position of each node as important clues for community membership

assignment. The proposed algorithm is compared with more than ten state of the art community detection techniques on two

benchmark networks with known communities using Normalized Mutual Information criterion. The proposed algorithm outperformed

these methods by a significant margin. Moreover, the proposed algorithm has also shown excellent performance on many real-world

networks.

Index Terms—Complex Networks, Community Detection, Geodesic Space, Geodesic Distance, Density Field Gradients

✦

1 INTRODUCTION

Many real world complex systems such as social networks on

facebook and twitter, the internet and the web of hyper-links,

connections between different components in an electric circuit

and interactions of neural cells directly map to network data

structures instead of geometric spaces. Therefore, network the-

oretic algorithms have often been used to analyze the structure

of the underlying systems to study various network aspects such

as interactions within the network, change propagation, edge

and node density variations and resilience to targeted or random

attacks. Often the edge and the node distribution is inhomogeneous

in real-world networks resulting in node groups with high number

of intra-group and low number of inter-group edges. These groups

are referred to as communities and play an important role in the

understanding of the structure of complex systems [37], [3].

Communities are the groups of entities in a network which

share common attributes and often exhibit similar behavior. Com-

munity detection has the potential to solve many real world

challenges such as identification of communities of clients having

similar interests help in improving the service standards. The

online community structure within social networks influences

information propagation across the globe. The network of pas-

sengers traveling across countries define the spread of diseases

across continents. A community of health workers and the patients

they handled share a level of exposure to the disease proportional
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to the intra-community links. Such communities are important for

isolating possible carriers of contagious diseases such as the Ebola

virus. Thus identification of network communities is an important

topic across a number of research areas [14], [16].

Most existing community detection algorithms [8], [12], [18],

[38], [42], [45], [46], [48] are graph theoretic and directly operate

on the adjacency matrix. Most graph theoretic algorithms lack the

ability to detect accurate community boundaries if the average

difference between the internal and the external node degree does

not exceed a strictly positive threshold [44]. Most of these methods

use modularity [38], [17] as the quality index of a community.

It has been observed that modularity maximization algorithms

fail to identify communities smaller than a particular size even

in cases when communities are well-defined [29]. The proposed

community detection algorithm is fundamentally different from

existing techniques as it is not based on modularity maximization.

We experimentally observe that our proposed algorithm can detect

communities at multiple resolutions. Also the detected community

boundaries are more accurate even if the external node degree is

the same as internal or even larger in some cases.

The proposed Geodesic Density Gradient (GDG) algorithm

has three main steps. First we map a network to a geometric space,

then we make the communities compact in that space by reducing

intra-community distances and increasing inter-community gaps,

and finally we cluster the nodes to get community labels. These

steps have been shown as a block diagram in Figure 1. We

map a network to a geometric space such that each node has a

unique global position defined by a vector of geodesic distances

from all other nodes. Geodesic distance is the shortest path

distance between two nodes in the network. Geodesic distance

vector contains shortest path distances between a node and all

other nodes in the network. The choice of geodesic distance is

motivated because of its ability to efficiently represent network

structure as recently shown by Mahmood and Small [35]. The
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Fig. 1. Proposed algorithm has three main steps: for a given network geodesic distance at all pairs is computed and each node is represented by
the corresponding vector of distances. In the geometric space, each node is drifted towards the local density maximum following a positive density
gradient. A linear clustering algorithm is used to find an estimate of each maximum density region. All nodes drifting towards a particular region are
assigned the same community label.

space spanned by the geodesic distance vectors of a network is

the geodesic space of that network. Distribution of nodes in the

geodesic space encodes the network structure. Distance between

two nodes in this space depends on the global position of these

nodes in the network. The global network structure consists of

global communities, while in many cases local network structure is

also important to determine accurate local community boundaries.

We propose a distance which incorporates both the global as

well as local network structure for better discrimination between

nodes belonging to the different communities especially on the

community boundaries.

The motivation for the next step is to bring closer the nodes

belonging to the same community, and move away the nodes

belonging to the different communities. Purpose is compactness of

communities and larger inter community gaps which will improve

community detection performance. For this purpose, we consider

each node in the geodesic space inducing a density field which

is maximum at the node position and reduces as the distance

increases. Density fields induced by all nodes get superimposed

and therefore in certain regions of the space density becomes more

compared to the other regions. This density distribution depends

on the node distribution in the space which depends upon the

network structure. Thus if the network structure varies, density

distribution in geodesic space will also vary. For each node, we

compute the direction of maximum positive density gradient and

drift the node in that direction. Considering only one node at a

time, the algorithm drifts all nodes one by one and then starts

from the first node once again. The process is repeated until most

of the nodes converge to regions with minimal density variation.

These uniform density regions are also local maximum of the

density field. It is because nodes have followed positive density

gradients to reach these regions. The path followed by each node

from its original position to the final position is a trajectory in the

geodesic space (Figure 2). We observe that the nodes converging

towards the same local maximum density region belongs to the

same community in the original network. It is because of the

network structure encoded in the geodesic space, the community

structure translates into cluster structure. Our experiments show

that the proposed algorithm can resolve communities at different

resolutions much better than the traditional methods based on

modularity optimization.

As a post processing step, clustering is required to be per-

formed. It is because all nodes belonging to the same community

do not converge to exactly the same position in the geodesic space.

As a node drifts closer to a uniform density region, the density gra-

dient gradually reduces to zero. Also the distribution of the density

gradient is not uniform around a maximum in the geodesic space

(a)

(b)

(c)
(d)

Fig. 2. In consecutive iterations of the step 2 of the proposed algorithm,
nodes drift in the direction of positive density gradient and converge
towards local density maximum regions. Initial position of a node is
shown as circle and final position as ‘∗’. Each community is shown
in a different color. (a) Dolphins Network [33], [34](b) Zachary Karate
Club [50] (c) Jazz Bands Network [19] (c) LFR Benchmark [31] with 500
nodes and 13 communities.

causing nodes drifting from different directions to be stopped at

different positions. By using a simple approach based on the k-

means clustering algorithm we find clusters of nodes. A challenge

with using the k-means algorithm is that it requires the number of

clusters (unknown to us) as an input parameter. We solve this

problem by varying the number of clusters and by observing

the variation of clustering error derivative we can estimate an

appropriate number of clusters in the network (see Figures 6 &

7). Note that other clustering algorithms such as DBSCAN [13]

and OPTICS [2] do not require the number of clusters but do

require other input parameters including the maximum distance

(ǫ), and the minimum number of points (MinPts). There is no

easy answer to fix appropriate values of these parameters.

To demonstrate the basic concept, an experiment was per-

formed on an LFR network [31] with 500 nodes, 2500 links and

16 ground truth communities of size varying from 20 to 50 nodes

(Figure 3). In the geodesic space nodes drift towards the positive

density gradients. After convergence of nodes, final node positions

are shown in Figure 4. One may observe that the compactness of

communities has increased and inter community distances have

increased making the community boundaries more distinct. This
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Fig. 3. An LFR benchmark network with 500 nodes, 2500 links used to
demonstrate the proposed algorithm. Each node is represented by a 500
dimensional geodesic distance vector. For the purpose of visualization
each node is projected on the three principal components using PCA. A
3D view of the network is rotated to clearly show all planted communities
using different random colors.

Fig. 4. The same network in Figure 3 after nodes have been iteratively
drifted towards the local maximum density regions in the geodesic
space. Communities have become more compact and inter-community
distances have increased. Due to this step, significant performance gain
is obtained compared to direct application of clustering techniques on
the network shown in Figure 3. Using the proposed algorithm, we were
able to find all 16 communities without any error.

is one of the main reasons why we were able to obtain a better

performance than the other algorithms which do not use this step.

On the converged network, we applied k-means algorithm. As

the number of clusters increased in the k-means algorithm, the

clustering error decreased at a larger rate till k = 16. Beyond that

the rate of decrease of clustering error was quite small. The 16

identified communities are shown in Figure 4 using different ran-

dom colors. On the same network modularity maximization was

also applied by varying the number of communities. Maximum

modularity of 0.859 was obtained for 12 communities shown in

Figure 5 using random colors. At least three communities contain

visible sub-groups. This experiment shows that despite obvious

structure, modularity maximization was not able to resolve all

communities. In contrast, in this example, our proposed algorithm

has accurately detected all communities without suffering from

the resolution limit.

The idea of drifting nodes towards local density maxima in

Fig. 5. For network of Figure 3 maximum modularity was obtained
for 13 communities shown by different random colors. Each of the
red, green and blue community has two groups of nodes. Despite an
obvious community structure, modularity maximization failed to resolve
all communities.

geodesic space is conceptually similar to the Mean Shift algo-

rithm [7], [9]. However, to the best of our knowledge no similar

algorithm has yet been applied to the problem of community

detection in complex networks. In this direction, our contributions

are several including a suitable distance for community detection

in the geodesic space (Section 3.1), derivation of the estimate of

the new node position using the proposed distance measure (Sec-

tion 3.2), and estimation of the maximum density regions (Section

3.3). We also propose a technique to estimate suitable number

of communities in a given network based on clustering error

derivative (Section 3.4). Our experimental results will demonstrate

the effectiveness of the proposed algorithm (Section 4). In the next

section we give a brief overview of the related work.

2 RELATED WORK

We broadly arrange the important existing community detection

methods in two groups. The methods in the first group use graph

attributes to find communities. Methods in the second group map

a network to a geometric space and then use pattern recognition

techniques for community detection. Our proposed algorithm

comes under the second group.

2.1 Graph Theoretic Algorithms

In this group of algorithms, network communities have been de-

fined in a number of ways. S. V. Dongen considered a community

to be a group of nodes if visited by a random walk, the walk

will likely not leave the group until most of its vertices have been

visited. He proposed Markov Cluster algorithm [48] based on the

idea of current flow in the graph. If natural groups are present in

the graph, then the current across group borders will be small thus

revealing group structure in the graph.

Radicchi et al. [45] defined a strong community as a group of

nodes with each node having more connections within the group

than with the rest of the graph and a weak community has the

sum of all degrees within the group larger than the sum of all

degrees toward the rest of the network. They proposed a divisive

algorithm based on edge-clustering coefficient, the ratio of number

of triangles an edge belongs to the potential number of such



4

triangles. Edges connecting different groups have low clustering

coefficient and are removed first.

Girvan and Newman [18], [38] proposed a community detec-

tion algorithm (GN) based on the concept of edge betweenness

which is the number of shortest paths that run along an edge.

The edge with highest betweenness is removed and shortest

paths are recomputed each time. Clauset et al.[8] proposed a fast

greedy modularity optimization algorithm which is very efficient

on sparse graphs with hierarchical structure. Blondel et al.[4]

proposed a modularity optimization based fast heuristic algorithms

for community structure extraction in large networks.

Palla et al. [42] defined a community as a union of all k-

cliques (complete subgraphs of size k) that can be reached from

each other through a series of adjacent k-cliques (where adjacency

means sharing k − 1 nodes). Their method first locates all cliques

of the network and then finds the communities by carrying out

a standard component analysis of the cliqueclique overlap. Chen

and Saad [6] define communities as dense subgraphs.

Donetti and Munoz [12] have proposed DM algorithm which is

spectral clustering for community detection. First a few eigenvec-

tors of the network Laplacian matrix are computed and then based

on Euclidean or angular distance existing algorithms are used to

find clusters. Rosvall and Bergstrom has proposed an information-

theoretic framework for resolving community structure in complex

networks [47] known as Infomap. A network is divided into

small modules such that Minimum Description Length (MDL)

is minimized.

2.2 Algorithms Mapping Networks to Geometric

Spaces

Finding communities in complex networks by mapping to geo-

metric spaces has not been well investigated. Nishikawa et al [41]

used 28 node properties for feature space representation. Twenty

of these properties are the eigenvector coefficients of the Laplacian

and the normalized Laplacian matrices. Their method mainly

leverages the strength of spectral clustering which maps data from

nonlinear manifolds to linear space where data can be grouped by

using k-means algorithm. Moreover, despite significant difference

in the meaning of different features, the 28 dimensional feature

vector is projected to random 2D space and the user is required to

manually mark the clusters. The user input over different 2D views

is combined to infer the community structure. In contrast to this

approach, we represent a node with a feature vector containing the

same type of distance from all other nodes in the network. Thus

our approach is purely distance based and does not include node

properties such a node degree or centrality which are not relevant

to the notion of distance.

Jin et al [26] defined a distance function between two nodes

based on the geometric mean of the costs of all paths between

those nodes. Each node is assigned a density value as the sum

of exponentially decaying influence functions. The node with

maximum density value is selected to be the density-attractor and

the nodes directly connected to it with lower density values are

considered as the density-attracted. The embedding space is dis-

crete considering only two nodes at a time. Another density based

heuristic approach was proposed by Gong et al [20]. Similarity

between two nodes was defined as the ratio of cardinality of

the intersection to the union of the neighbors of the two nodes.

All nodes in the neighborhood of a node with similarities larger

than a threshold parameter are considered as one group. Recently

Deritei et al [11] represented distance between two nodes based

on the edge-clustering coefficient and used Voroni diagrams for

community detection. To the best of our knowledge, none of

these algorithms have used the drifting of nodes towards positive

density gradients to increase compactness of communities and

improved discrimination by increased inter community distances

as we propose before the clustering step. This is one of the main

reasons our algorithm was able to achieve very good performance

in almost all test cases.

In all of the existing approaches [11], [26], [20] network to

geometric space mapping is considered for only two nodes at a

time while the positions of the rest of the nodes in the geometric

space are ignored. Since the assumed spaces are not continuous,

therefore these are also not directly differentiable. None of these

approaches are capable to represent complete network in the

embedding space at the same time with an exception of Nishikawa

et al [41]. They were able to represent network nodes in 2D space

with the help of spectral clustering algorithm which acts as a non-

linear to linear space transformation function. Therefore the pro-

jections shown by [41] are not the actual network representation

rather a view after a transformation.

Recently Mahmood and Small [35] have proposed a subspace

based network community detection algorithm. Their algorithm

is based on the observation that each community only spans a

subspace in the geodesic space. Sparse coding based approach

was used to find community boundaries. The proposed concept

works excellent for sparse networks. In real world dense networks

due to the small world effect, the subspaces spanned by differ-

ent communities become overlapped. To overcome this effect,

information was leveraged from the traditional spectral clustering

technique. Although the accuracy of their algorithm was better

than the previous algorithms, the algorithm has high computational

complexity.

Our proposed method is stochastic like the algorithm of New-

man and Leicht (EM) [40] which is based on stochastic model to

parametrize the probability of each possible configuration of group

assignment. The likelihood of generating the observed network is

maximized over the model parameters. However, in contrast to

them we use k-means for finding cluster labels. Though k-means

is a special case of EM on Mixture of Gaussians, our algorithm is

much simpler than Newman and Leicht algorithm.

In contrast to the existing approaches, we propose to embed a

network to a continuous geometric space using geodesic distance

vectors. We consider path followed by nodes drifting towards the

local density maximum to find the label of each node. To the

best of our knowledge, no such network community detection

algorithm has been proposed before. This work also bridges the

gap between Data Mining and Complex Networks. Our algorithm

is equally applicable to the weighted and directed networks,

however we demonstrate results on unweighted and undirected

networks which present a more difficult challenge.

3 PROPOSED ALGORITHM

The proposed Geodesic Density Gradient (GDG) algorithm has

three main steps. First we map a network to a geometric space

using geodesic distance vectors, then we make the communities

in the geodesic space more compact by reducing intra-community

distances and increasing inter-community gaps. Finally we cluster

the nodes to get community labels. These steps has been shown

as block diagram in Figure 1. In this section we will explain the
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details of the theoretical challenges and our proposed solutions to

handle these challenges.

Consider a graph G with n vertices and m edges represented

by an adjacency matrix A ∈ Rn×n such that if there is an edge

between the two vertices {vi, vj} then A(i, j) = 1, otherwise

A(i, j) = 0 (assuming no self loops). The adjacency matrix as a

whole captures the structure of the graph. The i-th column records

the vertices directly incident on vi and thus captures the local

structure of the graph at the vertex vi. Consider a mapping of

vertices of G to a set of points P in an n dimensional geometric

space such that each vertex vi corresponds to a unique point pi ∈

R
n.

We propose the vector pi to be the set of geodesic distances

of vi from each vj ∈ G. Let pi(j) be the shortest path distance

between vi and vj . By the same notation, pi(j) = 0 if and only if

i = j (no self loops). In case of a fully connected graph each vertex

vi is reachable from any other vertex vj , therefore the values in

pi(j)will be finite: 0 ≤ pi(j) <∞. By using this mapping, no two

distinct vertices in the same network can be mapped to exactly the

same point in space. The space spanned by the geodesic vectors{pi}ni=1 ∈ Rn is an n dimensional Geodesic Space, where n are

number of nodes in the network.

3.1 Defining Distance in the Geodesic Space

Geodesic space is the space spanned by the geodesic vectors

corresponding to the nodes of a particular network. In order

to decide if vertices vi ∈ G and vj ∈ G belong to the same

community, we consider two types of distances, a direct distance

as the geodesic distance between vi and vj and an indirect distance

induced by all other nodes in the network reachable from both of

these nodes. Direct distance can also be considered as a local

distance because it involves only two nodes. The indirect distance

depends upon the global position of the two nodes with respect

to all other nodes of the same network. Therefore, it may also be

considered as a global distance. The direct distance is given by:

Si,j =
pi(j) + pj(i)

2
. (1)

In undirected networks pi(j) = pj(i) and Si,j = pi(j) = pj(i).
However, in case of directed networks geodesic distance may be

different in both directions.

Considering the indirect distance Hi,j between vi and vj , each

vertex vk ∈ G where k ≠ {i, j} induces a component ∆Hi,j,k =

pi(k) − pj(k). Overall indirect distance is given by

H
2

i,j =

n−2

∑
k=1

(pi(k) − pj(k))2, s.t. k ≠ {i, j}. (2)

Sum of both distances is given as di,j where

di,j =
√
αS2

i,j + βH
2

i,j , (3)

where the parameters α and β scale the direct and the indirect

distances. Note that for α = 2 and β = 1, for undirected networks,

the distance d2i,j = 2S
2

i,j +H
2

i,j becomes Euclidean distance

di,j =
√(pi − pj)⊺(pi − pj). (4)

However, in this case, the indirect distance becomes dominant

over the direct distance and as a result global or coarse network

structure gets more emphasis. On the other hand, selection of a

large α and small β emphasizes local or fine structure of the net-

work. We observe that an appropriate choice of these parameters

will emphasize an intermediate network structure which is more

meaningful than the fine structure or the coarse structures. We can

rewrite Equation (3) in vector form

di,j =
√(Λ(pi − pj))⊺(Λ(pi − pj)), (5)

where Λ is an n × n dimensional scaling matrix with Λii = Λjj =√
α and Λkk =

√
β where k ≠ {i, j} as required by Equation (3).

The distance between two nodes (5) in the geodesic space helps

resolving community boundaries better than Euclidean distance or

geodesic distance. Therefore, this distance (5) will be used for the

derivation density field in the geodesic space.

3.2 Density Field in the Geodesic Space

Using geodesic distance vector, a network node vj is mapped to

a point pj in the geodesic space. A point pj may be considered

inducing a continueous probability density field in the geodesic

space. Assuming Gausian probability density function with mean

pj and isotropic varience b2w, density at any point p ∈R
n due to a

single node pj is given by

K(dp,j , bw) = 1

ξ
exp
−(Λ(p − pj))⊺Λ(p − pj)

2b2w
, (6)

where ξ is a normalizing factor ensuring unit summation over all

p. As p moves away from pj , density will exponentially decrease

with the increasing distance, where the definition of distance is as

given by (5).

Density fields induced by all nodes of a network will get

superimposed and generate a resultant density field in the geodesic

space. Since the nodes belonging to the same community in the

network form groups in the geodesic space, density will increase

towards the center of the group. Therefore, group centers may be

found by following the direction of positive density gradients. The

community label of a node may be found by drifting that node in

the direction of positive density gradient, until positive gradient

vanishes in a region of local maximum density.

At any point p ∈R
n density induced by all nodes of a network

is given by the summation of densities induced by individual nodes

f̂(p) = 1

nbnw

n

∑
j=1

K (Λ(p − pj)/bw), (7)

where Λ is the scaling matrix defined in (5) for appropriately

scaling of different dimensions in Rn and K(⋅) is a non-negative

scalar function with bounded energy. The parameter bw is the

bandwidth of the kernel function. Variation of the bandwidth

parameter allows network analysis at different resolutions. If a

differentiable kernel function similar to the one given by (6) is

used, the gradient of the density estimate is given by

▽f(p) = Λ

nbn+1w

n

∑
j=1

▽K (Λ(p − pj)/bw), (8)

where ▽ is a gradient operator with respect to each of the n
spatial dimensions. Substituting the value of K from (6) in (8)

and differentiating w. r. t. p,

▽f(p) = Λ

nbn+1w

n

∑
j=1

Λ(p − pj)
b2w

K(dp,j , bw). (9)

The scaled and weighted average shift given by (9) is an estimate

of the density gradient pointing in the direction of the maximum

increase in the density. Iterating in the direction of the positive
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Fig. 6. Variation of SSE (14), derivative of SSE (δǫk) (15) and smooth
derivative (δ̂ǫk) (16) with k for Cond Mat Col and Protein networks (see
Table 1).

gradient, each node will converge towards a region of higher

density. In this region the density gradient will approach zero

because the density will be the same in all directions. Therefore,

considering p to be the current mode estimate, setting ▽f(p) = 0
we get the new estimate

p̂ =

∑n
j=1 pj exp((Λ(p − pj))⊺Λ(p − pj)/2b2w)
∑n

j=1 exp((Λ(p − pj))⊺Λ(p − pj)/2b2w)
. (10)

We repeatedly apply (10) to each node in the network resulting

in a drift of each node in each iteration. As a result, nodes

follow specific paths in the geodesic space. The final position of

a node and its direction of movement are important clue for the

community memberships. Iterations last until the ℓ1 norm distance

between the new and the old estimates et+1 = ∑n
j=1 ∣∣̂pt+1

j − p̂j
t∣∣1

is less than a threshold showing that change in position of all

nodes is insignificant.

3.3 Estimating Maximum Density Regions

As a node is drifted in the direction of positive density gradient,

after a few iterations it will stop because density gradients will

become very small in a region of local density maximum. We

name the path followed by a node from its starting position to the

stopping position as the node trajectory and the node stopping

position as the trajectory endpoint. Most of the nodes do not

converge to a single point rather stop at different positions in the

maximum density region. In order to estimate boundaries of this

region, we use a simple algorithm. We randomly pick a trajectory

and find its nearest neighbor such that the distance between the two

trajectories is minimum at the endpoints (node stopping positions).

We simultaneously extend both trajectories as straight lines such

that the perpendicular distance between them is minimized. The

two nodes may not actually collide rather may pass close to

each other. We compute the corresponding nearest points for all

trajectory pairs and apply linear clustering on the nearest points

and consider each cluster to span a region of maximum density. All

Fig. 7. Variation of SSE (14), derivative of SSE (δǫk) (15) and smooth
derivative (δ̂ǫk) (16) with k for Yeast and Polblogs networks (see Table
1).

nodes converging towards a maximum density region are assigned

the same community label.

Consider two trajectories with {pB ,qB}∈ R
n as the trajectory

endpoints. Let {pA,qA}∈ R
n be the points before the end points.

Assuming in each of the following iteration, both nodes will

keep on moving along the same straight lines with equal drift.

In parametric form a point on each of these straight lines after t
iterations is

pt = pB + t(pB − pA), (11)

qt = qB + t(qB − qA). (12)

Distance between the two lines after t iterations is dt = pt − qt =

∆B − t(∆B −∆A) where ∆A = pA−qA, ∆B = pB −qB . Taking

the derivative of squared distance function ∂(d⊺t dt)/∂t = 0 we get

the value of to for which error function is minimum:

to =
∆⊺B(∆B −∆A)∣∣∆B −∆A∣∣22 . (13)

Substituting value of to in (11) and (12) the values of nearest

points {po,qo} is computed. If the two trajectory end points are

very close to each other, then ∆B ≈ 0 resulting in to = 0 meaning

the trajectory end points are the nearest points.

3.4 Estimating the Number of Communities

K-means clustering is used as a post processing step to divide

the nearest points (defined in the Subsection 3.3) to k clusters.

In many real world networks the division of nearest points into

well-defined groups is challenging, especially when k is unknown.

Note that other clustering algorithms such as DBSCAN [13] and

OPTICS [2] can also be used at this step. However none of

the clustering algorithm is parameter free. K-means requires the

number of clusters to be input by the user, DBSCAN and OPTICS

both need maximum distance (ǫ) and minimum number of points

(MinPts) to be provided by the user. Also the shape of maximum

density regions resulting by summation of Gaussians is linear

and therefore a non-linear clustering algorithm may not result in

significant performance boost.
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K-means objective function is Sum of Squared Error (SSE).

SSE for k clusters given by

ǫk =
k

∑
j=1

∑
i

(pji − cj)⊺(pji − cj), (14)

where pji is a data point having nearest cluster center cj , therefore

considered member of j-th cluster. In general, as k is increased,

ǫk will decrease and eventually becomes zero when the number

of clusters equals the number of data points. Figures 6 & 7 show

the variation of SSE with k for four networks. In these networks,

there is no clear indication on the plots when the clustering must

be stopped.

Discrete derivative of the objective function (14) w.r.t. k is

given by

δǫk =
ǫk − ǫk+δk

δk
, (15)

where δǫk is SSE derivative. We empirically observed that SSE

derivative rapidly decreases from k = 2 to a larger value, then

it becomes a bit transient as k approaches the actual number of

clusters in the network. This behavior of SSE derivative is shown

in Figures 6 & 7 for four networks.

We propose a simple smoothing function for the SSE deriva-

tive such that it becomes monotonic decreasing function of k. If

the current value of δǫk > 0 is larger than a previously seen value

of δǫk−p > 0, where p > 0 is a positive number, then replace the

current value with the previously seen minimum value.

δ̂ǫk+1 =

⎧⎪⎪⎨⎪⎪⎩
∣δǫk+1∣ If ∣δǫk+1∣ ≤ δ̂ǫk
δ̂ǫk Otherwise

, (16)

where δ̂ǫk+1 is smooth SSE derivative. The required number of

clusters k∗ corresponds to k beyond which δ̂ǫk ≤ ǫth, where ǫth is

a small positive threshold. In networks with not a good clustering

structure, δ̂ǫk may not approach the ǫth. In those cases if δ̂ǫk
remains unchanged for a particular number of clusters. We assume

that the appropriate number of clusters has already been achieved

when the minimum value of δ̂ǫk+1 was obtained.

In Figure 6, for the case of the Protein network, reduction of

SSE smooth derivative beyond 21 communities is negligibly small

δ̂ǫ21 ≤ δ̂ǫ3/100, therefore algorithm selected k∗ = 21. In Figure 7,

for the case of Yeast network, δ̂ǫ20 ≤ δ̂ǫ3/40 however for k > 20,

smooth derivative remains the same for the next four values of

k = {21,22,23,24}. Therefore, algorithm selected k∗ = 20 for

the Yeast network.

3.5 Complexity Analysis of the Proposed Algorithm

The proposed algorithm has three main steps: computation of

geodesic distances, drifting each node towards a local density

maximum, and finally the use of k-means community label as-

signment. Complexity of each step has been analyzed separately.

The presence of very fast algorithms for computation of

shortest paths between all pairs of nodes in a network motivates

our choice of using geodesic distances for mapping a network to

a geometric space. Pettie and Ramachandran [43] have proposed

an algorithm for the all-pairs geodesic distance problem having

the time complexity of O(mn logα(m,n)), where α(m,n) is

a very slowly growing inverse-Ackermann function, m is the

number of edges, and n is the number of vertices. Recently

Jiang et al. [25] has proposed Quantum Bosonic Shortest Path

Searching (QBSPS). For the all-pairs shortest-path problem in

a random scale-free network with n vertices, QBSPS runs in

O(µ(n) ln lnn) time [25].

A simple implementation of the algorithm used in step 2 of

the proposed approach has time complexity of O(dtn2) where d
is the dimensionality of the space, t is the number of iterations

and n is the nodes in the network. We observe that algorithm

converges quickly, mostly in less than five iterations t ≤ 5. More

efficient implementations of this step are possible by using bucket

data structure [27].

Number of iterations may be reduced by using a simple

heuristic that if a node comes within a small distance of another

node then both will end up in the same final position. Therefore,

a previously computed result may be reused. Complexity may

further be reduced by using the locality constraint. If a node ni

has a final position p̂i, then all nodes which are initially within a

small distance of ni will also end up very close to p̂i. Therefore,

these nodes may be assigned the same community label as ni.

For scalability of the algorithm to larger networks, the di-

mensionality of the space has to be reduced by using appropriate

dimensionality reduction techniques. We performed some experi-

ments using PCA as the dimensionality reduction technique (see

Section 4.6). In addition to all these speedup techniques, a parallel

implementation of the algorithm can also significantly reduce the

execution time.

Computing PCA is equivalent to computing SVD of a ma-

trix. Exact SVD of an m × n matrix has time complexity

O(min{mn2,m2n}). In case of geodesic distance matrix of size

n × n, time complexity of SVD is O(n3). It is one-time cost in

the proposed algorithm and may be performed offline. Therefore,

it is feasible for networks with couple of thousands of nodes. For

larger networks with millions of nodes, randomized algorithms

may be used. Halko et al. [24] have used a randomized version of

the block Lanczos method for computing SVD of large matrices

having time complexity O(ikNa + i2k2n), where i ≤ 2, k is

the number of principal components to be computed, Na is the

number of non-zero entries in the matrix.

The third step of the algorithm is post processing of the results

generated by step 2. We apply k-means repeatedly with increasing

number of clusters until cluster error rate becomes less than a

threshold. If there are k communities in the network, then k-

means will be applied less than k times. Starting with a better

initial estimate will reduce the number of iterations. The running

time of Lloyds k-means algorithm, that we used in this work has

time complexity of O(nkdt), where n is the number of nodes,

k the number of clusters, t the number of iterations needed until

convergence, and d is the dimensionality of the space.

Thus the dominating factor of time complexity of the proposed

algorithm is O(dtn2) in step 2 of the algorithm. The space

complexity of the proposed algorithm is O(dn) because we have

to store n vectors each of dimensionality d.

4 EXPERIMENTS AND RESULTS

Proposed algorithm is named as Geodesic Density Gradient

(GDG) algorithm for community detection. For all experiments

the values of α = 1/2 and β = 1/(n − 2) are used in (3) where n
is the number of nodes in the network. This is because the indirect

distance has (n − 2) dimensions and the direct distance has only

two dimensions. These values of α and β ensure both distances

become normalized over the number of dimensions. The value

of the band-width parameter bw in (10) also produces a scaling
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Fig. 8. Normalized Mutual Information (NMI) obtained by different al-
gorithms averaged over 100 realizations of GN benchmark network for
each value of Mixing Parameter µ = {7/16,7.5/16,8/16}, where 16 is
the total degree of each node. The proposed Geodesic Density Gradient
(GDG) algorithm has obtained cumulative 35.36% more accuracy than
SSCF which is the existing best performing algorithm.
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Fig. 9. Overall Average Normalized Mutual Information (NMI) obtained
by different algorithms over 300 realizations of GN benchmark network.
The proposed SGA algorithm has obtained on the average 11.78% more
accuracy than SSCF, the existing best performing algorithm.

effect. For the above mentioned values of α = 1/2, β = 1/(n− 2),
bw = 1 yielded the best performance.

The GDG algorithm is compared with the existing state of the

art methods on two standard benchmark networks with known

communities. The performance is compared with 12 existing

algorithms including fast modularity optimization by Blondel et

al. [4], Markov Cluster algorithm (MCL) [48], Infomap [47],

Cfinder [42], fast greedy modularity optimization by Clauset

et al.[8], Radicchi et al. [45], algorithm of Girvan and New-

man (GN) [18], [38], spectral algorithm by Donetti and Munoz

(DM) [12], Expectation-Maximization (EM) algorithm by New-

man and Leicht (EM) [40] and Potts model approach by Ronhovde

and Nussinov (RN) [46]. In addition to these algorithms compar-

isons are also performed with two recent algorithms including

Geodesic Sparse Subspace Communities (GSSC) and Sparse Sub-

space Communities with Fusion (SSCF) [35]. Experiments are

also performed on ten real-world networks.

4.1 Comparisons on GN Benchmark Network

The Girvan-Newman (GN) benchmark [18] has regularly been

used to compare the performance of different community detection

algorithms [10], [28]. The network has 128 nodes and four planted

ground truth (GT) communities of equal size. Each node has

probability pin of being connected to the nodes of the same

community and pout of being connected to the nodes of the

outside communities. Since the degree of a node is fixed to 16,

therefore only one of these two parameters is independent. A

mixing parameter µ is defined as the ratio of the external degree

of a node to the total degree. For example, µ = 7/16 means for

each node out of 16 links, 7 links are to the outside world. For

small values of µ the structure is well-defined, while for µ ≥ 0.50,

pout ≥ pin, the graph becomes random with subtle structure.

Experiments are performed by varying the mixing parameter

µ = {7/16, 7.5/16, 8/16}. In each setting, 100 realizations of

the benchmark are used to find an average Normalized Mutual

Information (NMI) [10], [30] between the ground truth and the

obtained communities. The proposed algorithm has obtained an

NMI={0.997±0.0721, 0.938±0.0758, 0.443±0.0820} respectively.

The NMI comparison is shown in Figures 8 & 9. For all

values of µ < 7/16 the proposed GDG algorithm was obtained

NMI≈1.00, showing 100% accuracy. For µ = 7/16 we obtained

average NMI of 99.66% which is higher than all other algo-

rithms under consideration. For µ = 8/16, performance of most

algorithms significantly decreased however the proposed GDG

algorithm was able to achieve average NMI of 93.83% which is

again significantly larger than all other algorithms.

On this benchmark, on the average, SSCF algorithm of Mah-

mmod and Small has remained the second best and the spectral

clustering algorithm of Donetti and Munoz (DM) [12] is the third

best algorithm. DM was able to obtain good accuracy by using

angular distance and complete linkage clustering (see Figure 3

in [12]). Also the number of nodes in this network are only 128

and degree of each node is very high. Due to the small world

effect, maximum geodesic distance in typical GN networks is ≤3.

Despite these challenges, the GDG algorithm has performed better

than the rest of the existing algorithms including subspace based

community detection with fusion (SSCF).

We use T-test to evaluate the statistical significance of the

hypothesis that the proposed GDG algorithm is on the average

more accurate than the closest competitor SSCF algorithm on

GN benchmark. Because the sample is 100 random networks

in each of the three settings, degree of freedom is 99 and the

computed value of t is {3.564,9.473,9.360} respectively for

µ = {0.60,0.65,0.70}. Using our results, the hypothesis is

statistically significant for p-value ≤ 0.05% for all settings.

4.2 Comparisons on the LFR Benchmark

The Lancichinetti-Fortunato-Radicchi (LFR) benchmark [31] has

power law degree distribution and community sizes are also

variable, presenting more challenges to the community detec-

tion algorithms. In this experiment, the number of nodes in the

network is 1000, the average degree is 20 and the maximum

degree is 50. Minimum ground truth community size is 30

and maximum is 100. Therefore, the number of ground truth

communities may vary from 10 to 33. The mixing parameter is

varied µ = {0.60,0.65,0.70}. For each setting, 100 networks are

randomly generated by using the implementation of the original

authors [28]. The detected communities are compared with the

ground truth by using NMI [30]. The proposed algorithm has

achieved NMI={0.834±0.0710, 0.600±0.0759, 0.240±0.0662} re-

spectively for the three mixing parameter values. For the EM
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Fig. 10. Normalized Mutual Information (NMI) obtained by different
algorithms averaged over 100 realizations of LFR benchmark network
for each value of the Mixing Parameter µ = {0.60,0.65,0.70}. Overall
accuracy improvement of the proposed GDG algorithm is 13.73% over
the existing best performing algorithm SSCF of Mahmood and Small.
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Fig. 11. Average Normalized Mutual Information (NMI) obtained by
different algorithms over 300 realizations of LFR benchmark network.
Average accuracy improvement of the proposed GDG algorithm is
8.10% over the existing best performing algorithm SSCF of Mahmood
and Small.

algorithm, results are reported for the random initialization. Due

to variable degree, communities of different sizes and increased

mixing parameter, the performance of all algorithms has reduced

compared to GN benchmark. An NMI comparison for different

algorithms is shown in Figures 10 and 11.

The performance of subspace based community detection

GSSC algorithm has improved on this benchmark and it has

become the second best algorithm. It is because of increased num-

ber of nodes and comparatively lower average node degree. The

performance of DM [12] algorithm has significantly deteriorated

due to more challenges. Other algorithms including Blondal et al.,

infomap and RN performed better for µ = 0.60 while for µ = 0.65
only the algorithm of Blondal et al. has shown comparatively

good performance. For µ = 0.70 all existing algorithms except

GSSC and SSCF have shown almost zero performance. It is

because the modularity based methods perform poor when the

community size reduces and the network size increases [15].

Also for zero or negative detectability thresholds, the performance

of these methods deteriorate. The proposed GDG algorithm has

TABLE 1
Results of the proposed GDG algorithm on 11 real-world networks,
n,m are the number of nodes and edges, M,km are the maximum

modularity and corresponding number of communities, ǫk/ǫ2, k are the
normalized clustering error and corresponding communities.

Network n,m M,km ǫk/ǫ2, k
Dolphin [33], [34] 62, 159 0.5, 6 0.08,16

Jazz [19] 198, 2742 0.43, 4 0.12, 14
Coauthorships [39] 379, 914 0.79, 13 0.13, 13

Technology [5], [36] 512, 819 0.70, 6 0.25, 19
Asia MidEast [21], [22] 706, 2572 0.56, 7 0.23, 13

POLBLOGS [1] 1490, 9545 0.78, 3 0.32, 15
Protein [23] 1458, 1970 0.71, 20 0.45, 21

Yeast [36] 622, 1062 0.70, 13 0.16, 20
Global Air [21], [22] 3618, 14142 0.55, 11 0.33, 13
WestPower Grid [49] 4941, 6594 0.83, 13 0.00, 24

Cond Mat Col [32] 23133, 93497 0.75, 2 0.03, 13

obtained 24.03% NMI for µ = 0.70 which is an improvement

over the current best method. More accuracy of GDG algorithm

for µ = {0.65,0.70} shows the capability of the approach to

accurately detect communities in more challenging situations.

We use T-test to evaluate the statistical significance of the hy-

pothesis that the proposed GDG algorithm is on the average more

accurate than the closest competitor SSCF on LRF benchmark.

Because the sample is aganin 100 networks therefore DOF is 99

and we found t = {2.256,8.721,2.89} respectively for the three

settings. Using our results, the hypothesis is statistically significant

for p-value ≤ {2.5 %, 0.05 %, 0.5%} respectively.

4.3 Experiments on Real-World Networks

In real-world networks, there is no ground truth node labeling

therefore it becomes difficult to compare the accuracy of the

proposed algorithms with the existing methods. Also most of the

existing methods try to maximize modularity which has recently

been found to not be capable of resolving communities of smaller

sizes. Therefore we report both the modularity M and the cluster-

ing error ǫk corresponding to minimum error derivative (Table 1).

For each network, we normalize the k-means clustering error over

two clusters (ǫ2) to 1.00 and scale the error over k > 2 clusters as

ǫk/ǫ2. Results are reported for GDG algorithm with fixed value of

bw = 1/√2.

Experiments are performed on eleven real world networks and

the results are summarized in Table 1. Number of nodes in these

networks vary from 62 to 23133. For each network we compare the

communities found by maximum modularity with those found by

the proposed algorithm. The structure of the five of these networks

is shown in the geodesic space along with communities in Figure

12.

In the networks with well-defined community structure, the

ǫk/ǫ2 is significantly smaller than 1.00. For example consider

Western United States Power Grid Network [49] having 4941

nodes and 6594 edges (Table 1). This network represents the

topology of the power grid. An edge is a power supply line and a

node is either a generator, a transformer or a substation. Figure 13b

shows the initial node positions when the network was mapped to

the geodesic space. Figure 13a shows the final node positions after

each node has been converged to the region of maximum density.

Nodes belonging to the same communities have converged to very

small regions in the geodesic space. Very compact communities
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                    (a)                                                               (b)                                         (c)                                              (d)                                 (e) 

Fig. 12. (a) A two level hierarchical structure of the Jazz Bands network. The two main partitions correspond to bands in the New York and Chicago
and further division shows the segmentation of black and white bands in each partition. (b) Largest connected component of Coauthorship network
consisting of 13 communities. (c) Electronic circuits network. (d) Transcription Yeast network. (e) POLBLOGS network showing two main groups in
2004 US election. Tracks of node movements are also shown.

(a) 

(b) 

Fig. 13. Western Power Network has exhibited very strong community
structure with almost zero residual error for 24 clusters (b). Trajectory
end points after convergence.

can be viewed in Figure 13a. For this network, for 24 communities

shown by different colors in Figures 13a and 13b, ǫ24/ǫ2 < .005.

The Condensed Matter network (COND-MAT) [32] with

23,133 nodes and 93,497 edges also has a well-defined community

structure (see Table 1). This network covers scientific collabo-

rations between authors of papers submitted to the Condensed

Matter category in arXiv. The nodes indicate authors and the

links indicate co-authorship’s. For this network in our algorithm

ǫ13/ǫ2 < 0.03 indicates that network has 13 compact commu-

nities. Maximum modularity of 0.75 was obtained for only two

communities. Thus for this network, modularity maximization

has completely failed to capture the network structure because

network definitely have large number of communities.

The Technology Graphs [5], [36] are constructed from elec-

trical circuits, where nodes represent logic gates and flip-flops.

The 6 communities shown in Figure 12c correspond to maximum

modularity of 0.70. In the geodesic space, this network has a

conical structure which is open from one side. All nodes close

to the apex of the cone are in one community, the surface of

the cone is divided into five communities and protruding nodes

have formed the 6-th community. The number of communities

corresponding to minimum smooth error given by (16) is 19 and

the corresponding ǫ19/ǫ2 < 0.25, which shows that this network

(a)                                       (b)                                      (c) 

(d)                                       (e)                                  (f)          

Fig. 14. GDG Algorithm: (a)-(f) hierarchical structure of the Dolphins
network is revealed by increasing clusters from two to seven. Each time
clustering is independently performed but the cluster boundaries are
mostly preserved, demonstrating stability of the communities.

has a weak community structure.

4.4 Hierarchical Structure

The proposed GDG algorithm can also reveal hierarchical struc-

ture of a network, if such structure exists. For example, hier-

archical structure of the Dolphin social network [33], [34] is

revealed when the number of communities is increased from 2

to 7 (Figure 14). Similarly, two level hierarchical structure of Jazz

Bands Network [19] is shown in Figure 12a.

Zachary Karate Club [50] is one of the commonly used

network for community detection experiments. This network rep-

resents friendships between the 34 members of a karate club and

has 77 links. By increasing the number of communities (K) from

2 to 6 we observe a hierarchical structure in this network (Figure

15). For K = 2 the two detected communities are marked as L
and R in Figure 15. These communities are exactly the same as

the club later broke down. We observe split of a small community

{3, 9, 14, 21} in Figure 15 such that {3, 14, 20} are part of

the administrator group (with node 1) and {9} is the part of the

instructor group (with node 33). As the number of communities is

increased to 3, L split into L1 and L2 while R remained intact.

However with K = 4, R also split into R1 and R2 communities.

This reveals a perfect hierarchical structure in this network. For

K = 5, we observe a split of L1 into L1a and L1b communities.
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Fig. 15. Hierarchical structure of Karate club network is marked with
different ellipses. Two first level communities are L and R. Four second
level communities are L1, L2, R1, R2 and four third level communities
are L1a, L1b, R1a, R1b.

We observe L1a to be a disconnected community however the

nodes {9, 10, 28, 29, 31, 32} are globally close. There are no

direct links between three groups {28, 29, 32}, {9, 31} and {10}.

The global similarity can be visually observed from Figure 15

where all nodes in L1a are closer to the R while the nodes in L1b
are relatively distant from R. A further increase K = 6 caused a

split of R1 to R1a and R1b. The three nodes of R1 {3, 14, 20}
are close to the boundary of L and R communities. The nodes

{3,14} split from rest of the nodes and formed a new community

R1b which makes the third level of hierarchy.

These experiments demonstrate the capability of the proposed

GDG algorithm to detect hierarchical communities. Note that the

hierarchical structure is not imposed rather only the number of

communities are varied and communities are independently found

each time.

4.5 Consistency of Community Occupancy

We also performed consistency of community-occupancy analysis

by varying the number of communities and computing the occu-

pancy map each time. The occupancy map Mo has size n × n
and Mo(i, j) = 1 if a pair of nodes i, j is in the same community,

otherwise Mo(i, j) = 0. Integration of all occupancy maps yielded

an overall map showing the pairs which were for a given number

of times in the same community. For the Karate Club network

we varied the number of communities as K = {2,3,4,5,6}. The

integrated occupancy map and histogram of node pairs based on

consistency is shown in Figure 16. In this network we observe

19.55% of the pairs remained 100% consistent while 52.768%

pairs never existed. Due to hierarchical community structure, as

the communities are increased from 2 to 6, the occupancy pattern

changes significantly. Based on consistency, we can classify the

node pairs being never in the same community, or a given number

of times in the same community. Such a classification of nodes

pairs is shown in Figure 16a, in which each class is shown by a

different color. The color to consistency mapping is shown in the

histogram where color of a bar encodes the consistency value and

length of the bar represents the probability of the node pairs of a

particular consistency. By using this analysis we identify the core

(a)          (b) 
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Fig. 16. (a) Integrated consistency map of Karate Club network for K =
{2,3,4,5,6} and bw = 1.0. (b) Consistency histogram.
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Fig. 17. NMI between the original communities and the low dimensional
communities in the Asia MidEast network, starting from 200 dimensional
subspace.

of each community which are most consistent set of nodes in that

community.

4.6 Scalability of the Proposed Algorithm to Bigger

Networks

As the number of nodes in a network increases, the dimensionality

of the corresponding geodesic space will also increase. In very

high dimensional spaces, the performance of clustering algorithms

may degrade. To make the proposed algorithm applicable to

bigger networks, dimensionality reduction needs to be performed

over the geodesic space. In this section, we consider PCA for

dimensionality reduction. We find the principal components of the

geodesic space and project all geodesic vectors on p < n principal

dimensions. As a result, we get p dimensional geodesic space.

We apply the proposed algorithm in this space. Comparison of

the communities found in low-dimensional space with the original

communities reveals a good match in most cases, as discussed

below.

We have applied PCA based dimensionality reduction tech-

nique to various networks and studied the performance of the



12

5 10 15 20 25

Increasing Dimensionality in Multiples of 20

5

10

15

20

25

In
c
re

a
s
in

g
 D

im
e
n
s
io

n
a
lit

y
 i
n
 M

u
lt
ip

le
s
 o

f 
2
0

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Fig. 18. NMI across low dimensional communities in the Asia MidEast
network shown as heat-map. Starting dimensionality shown as 1 is 200
dimensional space. Each increment is of 20 dimensions in the order of
reducing eigenvalues.
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Fig. 19. NMI between the original communities and the low dimensional
communities in the Yeast network, starting from a 20 dimensional sub-
space. NMI increases with the increasing dimensionality from 20 to 300
dimensions. Beyond that NMI remains almost the same.

proposed algorithm by varying the dimensionality of the space. We

used Normalized Mutual Information (NMI) to find the similarity

between the communities found in reduced dimensionality spaces

and the original communities. The Asia MidEast network has 706

nodes. See details of the network in Table 1. By using the proposed

DGD algorithm, 13 communities were found corresponding to the

minimum clustering error gradient. We projected the network to{200,220,⋯,700} dimensional spaces and independently iden-

tified 13 communities in each subspace. Then NMI is computed

between the communities in each subspace and the original com-

munities, as shown in Figure 17. In this experiment, the average

NMI is 0.70±0.072. Communities found for the low-dimensional

sub-spaces are also compared with each other and the resulting

NMI has been shown as a heat map in Figure 18. The overall

average NMI is 0.721 ± 0.1043.

Similar experiments have also been performed for the Yeast

network having 662 nodes. See details of the Yeast network in

Table 1. We varied the dimensionality of the geodesic space
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Fig. 20. NMI across low dimensional communities in the Yeast network
shown as heat-map. The second row and 2nd column are the starting
dimensionality which is 20 dimensional space. Each increment is of 20
dimensions in the order of reducing eigenvalues. First column and first
row show the NMI between each lower dimensional community with the
full dimensionality communities.

as follows {20,40,⋯,660}. For each dimensionality, network

is divided into 21 communities. NMI computed between the

communities found in low-dimensional subspace and the original

communities is shown in Figure 19. The average NMI is found

to be 0.7508 ± 0.158. We observe a higher NMI for subspaces

with dimensionality 200 or more. In this case, average NMI is

0.7915+0.0452. NMI found between low dimensional commu-

nities is shown as a 2D heat map in Figure 20. In this exper-

iment, overall average NMI is 0.6731 ± 0.1843. NMI between

communities in 200 dimensional sub-spaces or higher has average

0.7813 ± 0.100. The first column and first row in this map is the

NMI of each low dimensional set of communities with the original

communities.

These experiments demonstrate that a dimensionality reduc-

tion technique preserving distances between the points as in

the original space will result in higher similarity between the

communities in the low dimensional space and the communities

in the original space.

4.7 Execution Time Comparisons

Execution time of the proposed GDG algorithm has been com-

pared with two recent algorithms GSSC and SSCF [35] for

six different networks on Intel 2.7GHz quad-core i5 processor

machine with 16GB RAM as shown in Figure 21. For smaller

networks such as Karate and Football the three algorithms are

quite fast. For the synthetic LFR network having 1000 nodes,

the execution time of both GSSC and SSCF increases with the

increasing value of the mixing parameter µ. However the proposed

GDG algorithm is not much effected due to increased network

complexity. For the case of polblog network having 1490 nodes

the proposed GDG algorithm has performed much faster than

the subspace based algorithms. It is because the performance

of subspace based algorithms is dependent on the the network

complexity while the proposed algorithm is not much effected.

5 CONCLUSION

Many real world complex systems can be easily mapped to

networks instead of geometric spaces because only the presence or
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Fig. 21. Execution time of the proposed GDG algorithm compared with
two recent algorithms GSSC and SSCF [35] on three real networks
(Karate (nodes=34, edges=78), Football(nodes=115, edges=631), Pol-
blog(nodes=1490, edges=16716)) and three synthetic networks (LFR
µ = {0.60,0.65,0.70} (nodes=1000, edges=9774)). The proposed GDG
algorithm is faster than both of these current algorithms.

absence of a link between two entities is known. For recognition

of structural patterns in these systems, the network nodes need to

be mapped to a geometric space. In this paper we proposed using

geodesic distance vectors for this purpose. A Geodesic Density

Gradient (GDG) algorithm is proposed to find communities and

to reduce the error at the community boundaries.

The proposed GDG algorithm is based on a distance mea-

sure specifically designed for improved community detection in

geodesic space. Each node in the geodesic space is shifted towards

a positive density gradient until convergence is obtained overall

nodes. In a post processing step, the number of communities is

increased from a minimum value (k ≥ 2) to a larger number

and the variation of the clustering error derivative is observed.

Initially the error derivative decreases rapidly and then it slows

down and after a particular number of communities the error

derivative becomes less than a threshold yielding the number of

communities.

The variation of the number of communities gave an oppor-

tunity to study hierarchical community structure. As the num-

ber of communities is increased, coarser communities split into

finer ones revealing a hierarchical community structure in the

network. Splitting of coarser communities is not forced rather

the optimization is independently applied for increased number

of communities. A perfect hierarchical structure was observed in

some real world networks such as Karate club network and the

Dolphin social network.

Consistency of community occupancy is also studied by vary-

ing the number of communities and counting the co-occupancy

of each pair of nodes. Node pairs having very high consistency

form the core of each community. The nodes which are outside

the core may switch partitions and therefore may be considered

members of more than one community as is the case of overlapped

community structure.

The focus of the current work has remained on non-overlapped

community detection by considering a node to be member of

only one community at a time. An important future goal of our

research is to extend it for overlapped and time varying community

detection.
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