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Abstract: The only way for dengue to spread in the human population is through the 
human-mosquito-human cycle. Most research in this field discusses the dengue-mosquito 
or dengue-human relationships over a particular study area, but few have explored the local 
spatial variations of dengue-mosquito and dengue-human relationships within a study area. 
This study examined whether spatial heterogeneity exists in these relationships. We used 
Ordinary Least Squares (OLS) and Geographically Weighted Regression (GWR) models to 
analyze spatial relationships and identify the geographical heterogeneities by using the 
information of entomology and dengue cases in the cities of Kaohsiung and Fengshan in 
2002. Our findings indicate that dengue-mosquito and dengue-human relationships were 
significantly spatially non-stationary. This means that in some areas higher dengue 
incidences were associated with higher vector/host densities, but in some areas higher 
incidences were related to lower vector/host densities. We demonstrated that a GWR model 
can be used to geographically differentiate the relationships of dengue incidence with 
immature mosquito and human densities. This study provides more insights into spatial 
targeting of intervention and control programs against dengue outbreaks within the  
study areas. 
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1. Introduction 

Dengue is the most rapidly spreading mosquito-borne viral disease in the World [1]. Its incidence 
has increased 30-fold in the last 50 years and has extended to new areas, across both rural and urban 
environments [1]. The South, South-East Asia and the Western Pacific WHO regions are among the 
most affected areas [1]. Dengue or dengue-like transmission has been observed in southern Taiwan 
since the late 19th century [2], initially as intermittent epidemics at intervals of up to 40 years [3]. 
However, for the past 10 years, dengue epidemics have become an annual phenomenon with the cities 
of Kaohsiung and Fengshan as the main foci of activity. 

The dengue viruses (DENVs) are transmitted to humans by Aedes (Ae.) mosquitoes (vector), in 
particular Ae. aegypti and Ae. albopictus [1,4]. There is currently no effective treatment or available 
vaccine against dengue [5], hence current prevention and control policies mainly aim to reduce  
human-mosquito contact or to decrease the vector population to levels where viral transmission is 
unsustainable. To ensure efficient prevention policies, it is important to understand the relative impact 
of vector and host density on the dispersal of DENVs within an area.  

The relationships of the dengue incidence–mosquito abundance and dengue incidence-human 
density are still not well understood. Since the density of adult mosquitoes is difficult to estimate, 
immature vector data were widely used for evaluating the incidence–mosquito relationship [6-14]. 
Some entomology studies have found no correlation between dengue incidence and immature vectors, 
neither temporally nor spatially [6-10]. However, a study in Trinidad recently showed that high dengue 
incidences were significantly related to high mosquito larval densities during certain years [11]. Other 
spatial studies in Cuba, Trinidad and Thailand have successfully demonstrated that the Breteau index (BI) 
and house index can be an indicator for incidence [12-14]. The association of dengue incidence and 
human density are also ambiguous. Studies in Brazil have shown no correlation between dengue 
incidence and human density [15], but researches in both Taiwan and Puerto Rico have proven that the 
spatial distribution of dengue incidence may be positively related to the population density [16,17]. 
Population density and urbanization are also considered as risk factors for DENV spread in Argentina 
and Hawaii [18,19]. Moreover, in hyperendemic areas of Thailand, DENVs transmission is more 
prevalent in children in localized neighborhoods [20]. 

Until now, most studies of dengue-mosquito or dengue-human relationships have presented a global 
perspective by which any relationship was assumed to be spatially constant across the whole study 
area, thereby ignoring local variations. However, this assumption may be inappropriate since the 
dengue-mosquito or dengue-human relationships could be positively correlated in some study areas, 
but negatively or not correlated at all in other areas. For example, a small number of female 
mosquitoes in a very dense area is sufficient to cause an outbreak. This study was conducted to 
evaluate the hypothesis that spatial heterogeneity existed for dengue-mosquito and dengue-human 
relationships. We demonstrated that the variation of dengue incidences among study areas was 
reflected by the densities of both immature vectors and hosts. By capturing the local relationships 
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across the space, the authorities can design more effective, locally-specific strategies. This 
understanding is especially important where the control and prevention resources are limited. 

2. Materials and Methods 

2.1. Study Area 

Kaohsiung city has been the epicenter where most of the dengue outbreaks have been recorded in 
Taiwan [3]. It is a major port and industrial metropolis with a population of some 1.5 million. 
Kaohsiung International Airport is an important access point for visitors as well as foreign workers, 
many of whom are employed in the city’s commercial harbor. The large industrial and export 
processing zones of Kaohsiung city also attract around 15,000 foreign workers per year, mainly 
citizens from neighboring countries such as Philippines, Indonesia, Vietnam and Thailand. Kaohsiung 
city, which covers a total area of 150 km2, is the most densely populated urban centre in Taiwan. The 
neighboring Fengshan city, located directly to its east, has a population of 330,000 within an area of  
27 km2. Piped water is available for 99% of the city households and household waste is removed daily 
throughout both cities by the government. The 2002 dengue epidemic in which Kaohsiung and 
Fengshan cities were the major foci was the largest outbreak in recent years in Taiwan (Figure 1), with 
more than 15,000 reported cases, with a total of 3,786 confirmed dengue cases [3]. 

The “Li”, the lowest administrative unit in Taiwan, was used as the spatial mapping unit in this 
study. There were a total of 542 Lis and 12 districts in the two cities during the study period of 2002. 
On average each Li had a population of 3,366 and 1138.41 households in an area of 0.36 km2. The 
study area is shown in Figure 2.  

Figure 1. The epidemic curve of confirmed dengue cases as cumulated by weeks of onset 
in Kaohsiung and Fengshan cities, 2002–2009.  
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Figure 2. The distribution of 542 Lis and 12 districts in Kaohsiung (district 1–10 and 12) 
and Fengshan cities (district 11) in Taiwan. Each small polygon represents each Li. 

 
 
2.2. Dengue Data 

All information on dengue cases was provided by the Centers for Disease Control-Taiwan (Taiwan 
CDC). Laboratory confirmation was obtained for all suspected cases identified through passive, active 
and passive-based active surveillance activities. Passive surveillance involved the mandatory referral 
of suspected dengue cases within 24 h of presentation at any of 231 health clinics or hospitals (both 
private and public), school-based reports of absence due to fever as well as individual self-reporting [3]. 
Self-reporting refers to any requests for a free dengue test by patients presenting at any public health 
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center. Active surveillances were maintained through fever checkpoints at the Kaohsiung airport. 
Passive-based active method was systematic screening of contacts (family members, colleagues and 
neighbors) of confirmed cases [3]. Laboratory diagnosis of suspected cases was conducted by the fifth 
branch office of Taiwan CDC in Kaohsiung City. Confirmation of dengue infection using patient 
serum was obtained by: (1) detection of DENV-specific IgM or IgG by capturing enzyme linked 
immune-sorbent assay (ELISA) in single sample or fourfold IgG titer increase in paired acute and 
convalescent samples, or (2) detection of DENV RNA by reverse transcriptase polymerase chain 
reaction (RT-PCR) [3]. All test expenses were covered by the National Health Insurance.  

2.3. Immature Mosquito and Human Density 

Larval habitats of Ae. aegypti and Ae. albopictus were observed on a routine basis by trained 
personnel from the Kaohsiung city Health Bureau and county governments during the study period. 
All personnel had received training in mosquito species distinction, mosquito habitat recognition 
techniques and sampling methods. According to the control and prevention protocol of Taiwan CDC, 
50 households in each Li were randomly selected for inspection, which covered indoor and outdoor 
areas of the selected premise. On average, each Li was surveyed once per month. Containers with 
immature Ae. mosquitoes (larvae/pupae) were considered as positive containers [3]. For habitats with 
low water volume (<30 L) the larvae/pupae would be strained off and transferred into white bowls for 
visualization and counting. For habitats containing high water volume, as many larvae/pupae would be 
collected as possible [3]. The stage of larval maturation (1–4 instars) was not documented. The 
mosquito species was determined following adult emergence from collected specimen reared at the 
laboratory facilities of the health bureau of Kaohsiung city and county governments. 

Breteau index was used to estimate the density of immature Ae. mosquitoes in the study. BI is 
defined as number of positive containers per 100 houses [1], and was estimated on a monthly basis in 
each Li. The average number of people per unit area (people/km2) was taken from 2002 census data as 
an indicator of human population density (POPden) estimated for each Li. 

2.4. Statistical Analysis 

In this study, the dengue annual cumulative incidence (IR), given as cases per 100,000 populations, 
was used as the measure of disease severity, and as the dependent variable; independent variables were 
POPden and the monthly maximum BI detected in each Li in 2002 (BImax). A summary of the variables 
in both Ordinary Least Squares (OLS) and Geographically Weighted Regression (GWR) models are 
shown in Table 1. We first applied OLS regression, in an attempt to explain the global relations between 
dependent and independent variables. The model was set as: IR = β0 + β1 BImax+ β2 POPden + ε. β0 and 
β1 were the regression coefficients whereas ε was the model random error. 

Table 1. Summary of dependent and independent variables used in OLS and GWR. 

Variable Numerator Denominator 
Dependent: IR 100,000 × number of cases Populations 
Independent: BImax 100 × number of positive containers Number of premises inspected 
 POPden Populations The area of Li (km2) 
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IR: cumulative incidence of dengue; BImax: Maximum Breteau index; POPden: Population density. 

The diagnoses of an OLS model were approached by assessing multicollinearity and the residuals. 
The multicollinearity was assessed through variance inflation factor (VIF) values, and if VIFs were 
greater than 10, this indicated multicollinearity existed [21]. The spatial independency of residuals was 
evaluated by the spatial autocorrelation coefficient, Moran’s I, which was expressed as: 
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where n was the total number of Li in the study [19]. i  and j  represented different Lis. yi was the 

residual of i, and y  was the mean of residuals. wij was a measure of spatial proximity pairs of i  and 
j [22]. We used the inverse of the distance between i and j for specifying the relationship between them. 

The values of Moran's I would be approximately between +1 (positive autocorrelation) and −1 
(negative autocorrelation), and the expected value in the absence of autocorrelation was (−1)/(n−1). 
Positive spatial autocorrelation meant similar values tended to occur in adjacent areas, while negative 
autocorrelation implied nearby locations tended to have dissimilar values. If no spatial autocorrelation 
was found, then the spatial arrangement would be completely random [23]. 

A GWR local model was applied to analyze how the IR-BImax and POPden relationships changed 
from one Li to another. It was a localized multivariate regression that allowed the parameters of a 
regression estimation to change locally. Unlike conventional regression, which produced a single 
regression equation to summarize global relationships among the independent and dependent variables, 
GWR detected spatial variation of relationships in a model and produced maps for exploring and 
interpreting spatial non-stationarity [24]. GWR was calibrated by multiplying the geographically 
weighted matrix w(g) consisting of geo-referenced data [24,25]. The w(g) was defined by the spatial 
neighboring relations between points, which can be presented as:  
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Within the matrix, wgn referred to the impact between position g and position n in which the values 
range between 0 and 1. This study presumed the degree of impact had an inverse ratio to the square 
distance of different Lis. In other words, the larger the wgn was, the closer geographically data points 
were, and the stronger impact they had on each other. 

The spatial variability of an estimated local regression coefficient was examined to determine 
whether the underlying process exhibited spatial heterogeneity [24,25]. The regression model can be 
rewritten as IRi(g) = β0i(g) + β1i BImaxi(g) + β2i POPdeni(g) + εi, where (g) indicated the parameters that 
were estimated at each Li in which the coordinates were given by vector g; i represented each Li. By 
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applying GWR modeling, the spatial influences among neighborhoods could be assessed, which was 
not able to be achieved through traditional OLS methods [25]. 

We also examined the local collinearity as well as the independency and normality of residuals of 
GWR model to evaluate the fit of the model. The local collinearity was assessed by scatter plots of the 
local coefficient estimates for BImax and POPden and condition number. The condition number is the 
square root of the largest eigenvalue divided by the smallest eigenvalue. If the condition numbers are 
greater than 30, multicollinearity would be a very serious concern. The adjusted coefficient of 
determination (Adjusted R2), and ANOVA were used for comparing OLS and GWR models. Akaike 
Information Criterion (AIC) generated for OLS and corrected Akaike Information Criterion (AICc) 
calculated for GWR were also used for model comparison [24]. The concept here is to determine 
which model could interpret data better. 

Our analysis in this article was based on Li-level data. All analyses were implemented using 
ESRI®ArcGISTM9.3 and GWR 3.0 with 0.05 significance level. In the GWR model, the adaptive 
kernel with AICc estimated bandwidth was chosen. The adaptive kernel was chosen because the 
distribution of Li was inhomogeneous in the study area (Figure 2). The data set from the 2002 dengue 
outbreak in Kaohsiung and Fengshan cities was provided by Taiwan CDC. We aggregated the 
confirmed dengue cases with home address to each Li for regression analyses. 

3. Results  

3.1. OLS Regression 

The spatial distributions of the IR, BImax and POPden were mapped in Figure 3. The map of 
cumulative IR showed high values clustered in some border areas. The northern areas generally had 
lower IR values than middle and southern areas in the cities. The pattern of maximum Breteau index 
was less obvious. High population density was found in both city centers.  

The results of applying OLS regression showed that holding the variable of population density fixed, 
ceteris paribus, one BImax increase is significantly associated with 947.93 increase of average IR  
(Table 2). The VIF values indicated OLS estimations were not biased from multicollinearity. However, 
this global regression model explained only 4 percent of the total variance of IR with the AIC 7,902.12. 
We further examined the residuals of the OLS model, and found the residuals had positive spatial 
autocorrelation (Moran’s I = 0.28, p < 0.01). Since the existence of dependent residuals violates the 
assumptions of OLS estimation, we employed a GWR model to fit the data. We used GWR to present 
the spatial diversities of the IR-BImax and POPden relationships. 

Table 2. Ordinary Least Squares (OLS) results. 

Parameter Estimated Value Standard Error p-value VIF 
Intercept 115.52 34.73 0.003  
BImax 947.93 202.48 0.013 1.02 
POPden 0.00 0.00 0.111 1.02 
Adjusted R2 0.04    
AIC 7,902.12    
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Figure 3. Spatial distributions of (a) dengue incidence (IR); (b) maximum Breteau index 
(BImax); and (c) population density (POPden) in each Li in Kaohsiung and Fengshan cities, 
2002. IR was based on 2002 census with the unit of case per 100,000 population. The unit 
of POPden was populations per km2. Li was the basic administrative unit in Taiwan, and 
there were 542 Lis in the study area. 

 

3.2. GWR Model and Spatial Variations 

The summary results of GWR are listed in Table 3 and showed the GWR was more suitable than 
the OLS model since GWR could explain 59 percent of the total model variation with the decreased 
AICc. Moreover, the ANOVA comparison results also showed the GWR local model was significantly 
more appropriate than the OLS global model (F = 5.36, p < 0.001). 

Table 3. Geographical weighted regression (GWR) results. 

Parameter Minimum 25% quartile 50 % quartile 75 % quartile Maximum
Intercept −272.60 78.46  166.09 320.92 1,088.31 
BImax −2980.43 −262.53 100.40 838.91 5,797.87 
POPden −0.02 −0.00 0.00 0.00 0.02 
Condition number 2.96 4.67 5.83 7.32 10.39 
Adjusted R2 0.59     
AICc 7,715.17     
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Figure 4 showed the maps of the locally weighed R2 between the observed and fitted values, which 
indicated how well the GWR model replicated the local IR around BImax and POPden. It was obvious 
that the value of R2 was not homogeneously distributed in all Lis, and the overall GWR regression 
fitted best in districts 1, 5, 10 and 11. This model did not fit well in district 12, and this could imply 
additional covariates were needed to explain the IR in district 12. Figure 4 helped us realize whether 
additional explanatory factors were required and where could those factors be applied. We also 
mapped the pseudo t values for intercept and each dependent variable to represent the fitting level for 
each specific variable under GWR [Figure 5(a)–(c)]. The significant t values, blue and red areas, 
indicated that the parameter estimations in these areas were reliable.  

Figure 4. Spatial mapping of the locally weighed coefficient of determination (R2) 
between the observed and fitted values by geographically weighted regression (GWR) 
modeling. The data presented here were the 2002 dengue incidence, the maximum Breteau 
index and population density in each Li in Kaohsiung and Fengshan cities.  
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Figure 5. Spatial mapping of pseudo t values of regression fitting (a–c) and the coefficients 
(d-f) of intercept, maximum Breteau index (BImax) and population density (POPden) for 
each Li by geographically weighted regression (GWR) modeling. The dependent variable 
was dengue incidence (per 100,000 populations) taken from 2002 dengue epidemic data in 
Kaohsiung and Fengshan cities. Each polygon represents each district. 
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The condition number shown in Table 3 and the scatter plot of the GWR coefficients suggested 
multicollinearity was not serious (Figure 6). However, the local residuals deviated, since residuals 
showed moderate positive spatial autocorrelation (Moran’s I = 0.02, p = 0.02), and some parts failed to 
follow a normal distribution (Figure 7). 

Figure 6. Scatter plot of the GWR coefficients of population density (POPden) and 
maximum Breteau index (BImax) with R2 = 0.01. The dashed lines were the levels of the 
OLS estimations. 

 

Figure 7. Normal quantile-quantile plot of the residuals from GWR estimations. 
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The spatial variations in parameter estimations for intercept, maximum Breteau index and 
population density are shown in Figure 5(d)–(f). The map of intercept term represented the 
distributions of IR when BImax and POPden equaled zero. It was observed that higher intercept values 
were located around the borders of two cities [districts 9, 10 and 11, Figure 5(d)]. This spatial 
heterogeneity implied that besides immature mosquito and population density, there were still other 
variables that would influence IR pattern. The relationship between IR and BImax shown in Figure 5(e) 
suggested that, ceteris paribus, in districts 2, 5, 6, 7, 8, 10 and 11, increased IR would relate to 
increased BImax. However, in the remaining districts, higher IR associated with lower BImax and vice 
versa. The distribution of population density parameter showed a more clearly spatial non-stationary 
pattern [Figure 5(f)]. The positive relationships that were mostly clustered in the northern areas, 
indicating higher population density tended to associate with higher IR. On the contrary, the impact of 
population density on IR was negative in the southern parts representing higher IR related to lower 
population density. A brief summary of these relationships is shown in Figure 8.  

Figure 8. Summary of BImax and POPden impact on incidence using GWR in each district. 
BImax (+) means BImax had positive impact on incidence while BImax (−) means BImax had 
negative impact on incidence; POPden (+) means POPden had positive impact on 
incidence whereas POPden (−) means POPden had negative impact on incidence. 
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4. Discussion 

This study provides further indications that the relationships of dengue incidence-maximum BI and 
dengue incidence-population density were spatially non-stationary in Kaohsiung and Fengshan cities. 
In regression maps, it is clear that the intensity and directions of the influence of maximum BI and 
population density on dengue incidence were different in the study area. This result gives the policy 
makers more ideas how to better adopt specific control and prevention strategies to specific areas [26]. 

The spatial heterogeneity of intercept results in Figure 5(a) could imply that the DENVs 
seroprevalence was non-stationary. Our study found that the density of immature vectors was a 
significant predictor of dengue incidence in some areas with either positive or negative correlations. 
Reducing immature mosquito densities is currently the major control and prevention approach for 
dengue [1]. However, the results from this study suggest that this strategy may not be spatially  
and universally suitable for the control of dengue, especially for those areas with negative  
incidence-maximum BI correlations. Possible reasons could be that other than immature mosquito 
density, local characteristics could affect dengue transmission as well. For instance, some rural areas 
with high vector density may lack common exposure sites to humans, thus making outbreaks less 
likely to occur. On the contrary, places where crowds gather easily like markets, parks, train stations 
and schools may propel huge dengue outbreaks even though the mosquito density is low [17]. Human 
activities that promote host-vector contact increases the risks for people to be infected within a short 
distance [1,27,28]. This study showed that the distribution of dengue incidence-BI relationships was very 
similar to the distribution of districts which implied the presence of additional risk factors, such as  
the age distribution in human population, human activity [15,29], housing structures/patterns [30,31], 
environmental factors [29], and serosurveillance [32]. These other factors should also be considered, 
since the diversities of these factors were large among the districts. 

In the northern part of the study area, higher human densities were shown to contribute to higher 
dengue incidence rates. This positive relationship was expected as higher human density may lead to 
higher vector-host contact rates. A previous finding in Taiwan showed that the relative risk of 
accumulated dengue incidence for areas with more than 10,000 people/km2 was 10-fold compared to 
areas with less than 1,000 people/km2 [16]. Other studies in Florida and Puerto Rico showed that the 
human population had almost the same spatial pattern as the number of dengue cases during the study 
period [17]. However, the GWR results also demonstrated that in some areas higher incidence related 
to lower human densities and vice versa [Figure 5(f)]. One explanation could be that in scattered 
populated areas, mosquitoes tend to aggregate since fewer blood sources were available [33]. Human 
travelling behaviors should also be taken into account for the link between higher incidence and lower 
population density. Travelers not only could initiate new indigenous epidemics, their travelling waves 
could also contribute to dengue occurrence in low population and rural areas [34,35]. According to  
our findings and those from other studies mentioned above, the relationship between human 
population/density and dengue occurrence remains controversial. Further studies should take more 
spatial information into consideration such as dwelling density [31], type of household [36,37], 
socioeconomic status [15,31], age and gender distributions [31], pesticide spraying areas and 
frequencies, water storage habits and landscape [37,38]. Successful dengue transmission requires that 
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the virus, vector, and host exist in the same areas and interact properly. Understanding the relationship 
among them is necessary and urgent for more effective disease control. 

The relationship between vector abundance (both immature and mature stages) and dengue 
occurrence has been discussed in many studies [6,8,39]. This is a practical issue especially important 
for policy makers to decide the control and prevention measures. This study provides insight into the 
spatial heterogeneity of IR-immature mosquito density relationships at Li level; however, there were 
some limitations for applying entomology data. First, the traditional indicators (Stegomyia indices) 
such as house index, container index and Breteau index are based on the immature stages of 
mosquitoes, but larvae/pupae quantities have no direct link with adult abundance and thus an estimate 
of dengue transmission risk may not be reliable [8,40]. Moreover, these indices provide little 
information about the container productivity of vector. Assuming all positive habitats have equal 
vector contribution could lead the researchers to make false estimations of adult amount [41]. The 
information like number of vector per person or per unit area, which also relates to dengue 
transmission is disregarded in these indices as well [42]. Moreover, if we directly apply adult index for 
dengue risk assessment to avoid the limitations of immature stage data, the major problem would be 
the ratio of captured vectors to existing mosquitoes is still unknown. In this study we chose the 
monthly maximum BI in each Li as the measurement since we assumed the maximum BI was the best 
entomology indicator for the dengue cases. In addition to the vector indices problems, the 
susceptibility of the population to a specific dengue virus serotype is also a great contributor to the 
scale of epidemics. Once infected a person would acquire lifelong protective immunity to the infective 
serotype [43]; in other words, the incidence estimation is hindered by a lack of information concerning 
the overall population immunity to certain serotypes. This makes the estimation of case-vector 
relationship more complicated. Finally, silent DENVs transmission was not considered in this study. 

To improve the understanding of incidence-vector and incidence-host relationships, the followings 
could be further examined. First of all, the researchers could adopt GWR space-time analyses, such as 
stratifying the year of 2002 into different periods, or analyzing more than one epidemic year. This 
approach could provide more detailed patterns of spatial autocorrelation changes of incidence-vector 
and incidence-host associations. Secondly, the researchers could use other BI calculations such as 
minimum BI or average BI to see whether different incidence-BI relationships would be generated. 
Threshold effect of BI could also be considered. Thirdly, categorizing human by different age groups 
in the GWR model could assist policy makers to determine which actions are suitable for different 
populations. Finally, researchers could also separate Ae. aegypti and Ae. albopictus for relationship 
analyses to study the incidences associated with different vector ecologies. 

The geographical heterogeneity was detected by the GWR method in the relationships of dengue 
incidence with immature mosquito and human density (Figure 5). We used GWR since the 
conventional regression, OLS, cannot discriminate the spatial variation in relationships if geographical 
nonstationarity exists. The results of Adjusted R2, AIC/AICc and ANOVA all indicated GWR was a 
better model to explain this dataset. GWR approaches have been applied in a lot of areas, such as 
public health and demography, as an exploring method for identifying the spatial variations [44-46]. 
However, the GWR applications are limited for some reasons. First, the results conducted from GWR 
models were very sensitive to the chosen kernel type and bandwidth methods [47,48]. Next, the non-linear 
term cannot be added in the GWR models and the model inferences cannot be done in GWR [24]. 
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Future research could use more advanced methods like Bayesian additive regression models, which are 
based on Markov chain Monte Carlo (MCMC) algorithms for parameter estimations and inferences to 
overcome the problems mentioned above [49]. 

5. Conclusions 

This paper underlines the spatial variations of incidence-immature mosquito density and  
incidence-human density relationships in a local scale. Exploring the heterogeneity of spatial 
relationships could provide more insights into spatial targeting of intervention against dengue epidemics. 
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