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Abstract—In this paper, we address the problem of 

recovering the intrinsic and extrinsic parameters of a camera 

or a group of cameras in a setting overlooking a traffic scene. 

Unlike many other settings, conventional camera calibration 

techniques are not applicable in this case. We present a 

method that uses certain geometric primitives commonly 

found in traffic scenes in order to recover calibration 

parameters. These primitives provide needed redundancy 

and are weighted depending on the significance of their 

corresponding image features. We show experimentally that 

these primitives are capable of achieving accurate results 

suitable for most traffic monitoring applications. 

Keywords- Calibration; Multi-View Stereo; Multi-View 
Reconstruction; Application Systems; Traffic Monitoring; 

I. INTRODUCTION 

Images of natural and man-made environments exhibit 
certain regularities that are often overlooked. One of these 
regularities is the presence of geometric entities and 
constraints that bind them together. Traditionally, the 
structure-from-motion problem used low-level geometric 
entities (or features) such as points and lines with hardly 
any geometric constraints. Although theoretically sound, 
these methods suffer from two main disadvantages. First, 
they usually require a large number of features to achieve 
robustness; and second, because there are no constraints 
among the features, errors in localizing these features in the 
image propagate to the structure unnoticed. It is therefore 
no surprise that primitive-based approaches for 
reconstruction and camera calibration are on the rise  [2], 
 [3],  [4],  [6],  [8],  [9],  [10],  [11],  [13],  [17]. It is a very 
effective way to make use of the a priori knowledge in 
natural and man-made scenes. The primitives used can be 
planes, cubes, prisms, etc. and the relationships can be 
parallelism, orthogonality, coincidence, angle, distance, and 
so on. 

This paper presents a primitive-base approach that 
targets traffic scenes. Traffic monitoring applications have 
long been and are still interested in computer vision 
techniques. Unfortunately, the input data available to these 
applications comes from cameras that are already mounted 
in an outdoor setting with little known information about 
the camera parameters (e.g., height, zoom, tilt, etc.). The 
recovery of camera intrinsic and extrinsic parameters is 
essential to produce measurements needed by these 
applications (e.g., vehicle locations, speeds, etc.). In 
addition to traffic scenes, the presented method is 

applicable in other situations (e.g., an environment of 
mobile robots) where similar geometric primitives can be 
found. Camera calibration is an important problem that has 
received a considerable amount of attention in the literature. 
Accurate camera calibration requires the use of especially 
designed patterns to be placed in the field of view of the 
camera. However, in a many cases, such as in a traffic 
situation, this is not practical or even possible since one 
would need a very large calibration pattern let alone having 
to place it on the road. 

Depending on the application at hand, primitive-based 
methods select an appropriate set of relevant primitives  [2], 
 [6],  [8],  [9],  [10],  [11],  [13]. In a similar manner, we select 
primitives commonly found in a traffic scene. Fig. 1 shows 
a depiction of a typical traffic scene and camera layout. The 
proposed primitives (lane structure, point-to-point 
distances, normal, horizontal, and parallel lines) are usually 
either obvious in the scene, are previously known 
properties of the scene (e.g., lane width), or as in the case of 
point-to-point distances, can be measured. Our method then 
solves for camera parameters and scene structure by 
minimizing reprojection errors in the image.  

A number of methods  [3],  [4],  [17] have been proposed 
that addressed the primitive-based structure from motion 
problem as a theorem-proving and/or constraint 
propagation problem. These methods can accept arbitrary 
geometric constraints involving points, lines, and planes, 
provided as a grammar. The flexibility in such methods 

X Z

Y

Z

X

Y

Lane structure

Point-to-point distance

Normal 

Horizontal

 
 

Figure 1.  Common traffic scenes geometric primitives; the figure also 
shows camera and ground plane coordinate systems. 
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makes them suitable for large size problems such as 
architectural modeling. However, these methods still need 
to deal with one or more of a number of issues, such as the 
guarantee to find a solution, computational cost, and 
problems arising from the presence of redundant 
constraints. In our case, the primitives we deal with are well 
defined and therefore we can choose the parameters 
optimally. 

In  [18], an interactive method was proposed to perform 
traffic scene calibration. Although very intuitive, it relies on 
the user’s visual judgment rather than actual measurements.  

The contributions of this paper are: (i) A method for 
calibrating traffic scenes from primitives extracted from a 
single image and multiple images; (ii) An error analysis of 
the effectiveness of using the proposed primitives by 
comparing our calibration results to those of a robust 
calibration method.  

This paper is organized as follows. Section  II discusses 
the camera parameters and assumptions. In Section  III, the 
geometric primitives used in our method are presented. The 
cost function and the optimization procedure are presented 
in Section  IV followed by a discussion of initial solution 
generation in Section  V. Section  0 discusses the extension 
to multiple cameras. The results are then presented in 
Section  0 followed by the conclusion in Section  VIII. 

II. CAMERA CALIBRATION FOR TRAFFIC SCENES 

Camera calibration involves the recovery of the 
camera’s intrinsic and extrinsic parameters. These 
parameters combined describe the image point ),( yx  

where a 3D point P  projects onto the image plane. In a 
pinhole camera, this process can be expressed as 

� ATP 
»
»
»

¼

º

«
«
«

¬

ª

w

wy

wx

� ����

where > @tRT |  relates the world coordinate system to that 

of the camera through a rotation R  and a translation t . 
The matrix A  describes the camera’s intrinsic parameters 
which in the most general case is given by 
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The parameter uD  corresponds to the focal length in 

pixels (by pixel we mean the pixel width since it could be 
different from its height). In fact, uu fk D , where f  is 

the focal length in camera coordinate system units and uk  

is image sensor horizontal resolution given in pixels per 
unit length. The two terms are not separable and therefore, 
only their product ( uD ) can be recovered. Throughout this 

paper, we will refer to uD  as the focal length. vD  is similar 

but corresponds to the focal length in terms of pixel 
heights. It is equal to uD  when the sensor has square pixels. 

The ratio between the two is known as the aspect ratio. The 
horizontal and vertical axes may not be exactly 
perpendicular. The parameter T  is the angle between them. 
The amount by which this angle differs from 90 degrees is 
called the skew angle. The optical axis may not intersect the 
image plane at the center of the image. The coordinates of 
this intersection are given by ),( 00 vu  and are referred to as 

the principal point. In addition to these parameters, there 
are parameters that can be used to model lens distortion. 

In this paper we make a natural camera assumption 
(i.e., zero skew angle and known aspect ratio). It is a matter 
of practicality to make this assumption since these two 
parameters rarely differ from zero and one (respectively) 
anyway. Moreover, of all intrinsic parameters, only the 
focal length changes during camera operation due to 
changing zoom. Therefore, other parameters could be 
calibrated at the laboratory if needed. The principal point is 
also assumed to be known (the center of the image). It has 
been shown  [14] that the recovery of the principal point is 
ill-posed especially when the field of view is not wide 
(which is the case in many traffic scenes).  

The geometric primitives that we use in this paper have 
one thing in common: they are related through coincidence 
or orthogonality relationships to a plane representing the 
ground (see Fig. 1). This is similar to the ground-plane 
constraint (GPC) of  [18]. Although roads and intersections 
are usually not perfectly planar (e.g., they bulge upward to 
facilitate drainage), this is still a valid assumption as the 
deviation from planarity is insignificant (e.g., relative to 
camera height). We also make an assumption that there is a 
straight segment of a road in the scene.  

We attach a coordinate system to the ground plane 
whose origin is the point closest to the camera and whose 
Y-axis is parallel to the straight road segment (see Fig. 1). 
The primitives are essentially independent from one 
another and the only thing that relates them is the ground 
plane. Therefore, they are independently parameterized 
with respect to the ground plane coordinate system. 

There are four degrees of freedom that relate the 
camera’s coordinate system to the ground plane coordinate 
system. These may be understood as the camera’s height, 
roll, pitch, and yaw. With the addition of focal length, this 
makes the total number of parameters to be found equal to 
five plus any parameters specific to the primitives 
(described below). 

III. GEOMETRIC PRIMITIVES 

A. Lane Structure 

Central to a traffic scene is what we refer to as a lane 
structure. By lane structure, we mean a set of parallel lines 
coincident to the ground plane with known distances 
among them. Given the ground plane coordinate system, 
we can fully specify a lane structure with exactly one 
variable: the X-intercept of one of its lines (see Fig. 1). 



B. Ground Plane Point-to-Point Distances 

These primitives can be obtained from knowledge about 
the road structure (e.g., longitudinal lane marking 
separation) or by performing field measurements between 
landmarks on the ground. Another creative way of 
obtaining these measurements is by identifying the make 
and model of a vehicle from the traffic video and then 
looking up that model’s wheelbase dimension and 
assigning it to the line segment in the image connecting the 
two wheels. The fixed length segment connecting the two 
points can be fully specified in the ground plane coordinate 
system by three parameters: a 2D point (e.g., the midpoint) 
and an angle (e.g., off the X-axis).  

C. Normal, Horizontal, and Parallel Lines 

These can represent poles, building corner edges, and 
pedestrian crossings, among other things. They are all 
primarily related to a lane structure. Normal lines can be 
specified by a single 2D point on the ground plane while 
horizontal (resp. parallel) lines can be specified by a Y 
(resp. X) coordinate. 

IV. COST FUNCTION AND OPTIMIZATION 

The cost function is the sum of squared reprojection 
errors in the image. In the case of point features (such as in 
point-to-point distances), it is straightforward what this 
means. However, for line features, one has to be more 
careful. Many techniques that performed structure-from-
motion using line features used one form or another for 
comparing the model and feature lines  [1],  [15],  [16],  [19]. 
There is no universally agreed upon error function for 
comparing lines. In our case, we consider the error in a line 
segment as the error in the two points that specify the line 
segment. Consequently, the reprojection error for a line 
segment becomes the square of the two distances 
corresponding to the orthogonal distances from the end 
points to the reprojected model line. This is advantageous 
since it makes it possible to combine the errors from points 
and lines features together in one cost function. This is also 
advantageous because the certainty about the location of a 
line is implicit in the segment length. Therefore, if only a 
short segment of a line is visible in the image, the user 
should only specify the endpoints of the visible part and not 
extrapolate. 

The search is done on camera parameters (focal length 
and extrinsic, a total of five) and model parameters. The 
camera’s rotation is represented in angle-axis form where 
the axis is represented in spherical coordinates. The model 
parameters are as follows: 

1. Lane structure: one parameter (X-intercept of an 
arbitrarily selected line). 

2. Point-to-point distances: three parameters each, 
with the 2D point represented in polar 
coordinates. 

3. Normal, horizontal, and parallel lines: no 
parameters are needed because it is possible to 
compute a closed form solution in image space. 

The cost function optimization is done iteratively using 
the Levenberg-Marquardt method. 

V. INITIAL SOLUTION 

An initial solution close to the global minimum is 
needed to guarantee convergence of the above optimization. 
Since not all primitive types need to be specified by the 
user, the initial solution can be computed in two different 
ways depending on whether one or two vanishing points 
can be estimated. We will now explain how we estimate the 
vanishing points and then the computation of the initial 
solution. 

A. Vanishing Point Estimation 

There are many methods for estimating the vanishing 
point from a set of convergent line segments. Many of these 
methods use statistical models for errors in the segments 
 [7],  [12],  [13]. Since the vanishing points we need are used 
in generating the initial solution, we instead estimate the 
vanishing point as simply the point with the minimum sum 
of square distances to all the lines passing through these 
segments. Let iu  be a unit normal to the line iL  that passes 

through segment i ’s endpoints ia  and ib . Given a point 

p , the orthogonal distance from p  to iL  is � �ii apu ��  or 

iii aupu ��� . Therefore, the sum of square distances 

from point p  to a set of n  lines can be written as 
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Minimizing this sum is equivalent to solving the linear 

system rAp   where > @TnuuuA �21  and 

> @Tnn auauaur ��� �2211 . 

B. Initial Solution Using Two Vanishing Points 

If the input primitives include a lane structure and two 
or more normal lines or two or more horizontal lines, two 
vanishing points are computed as above. These points are 
sufficient to compute four of the five camera parameters. 
The remaining parameter (camera height) can then be 
computed as a scale factor that makes model distances 
similar to what they should be. The following describes 
these steps in detail. 

First, we compute the focal length from the two 
vanishing points. Without loss of generality, let yv  and zv  

be the two vanishing image points corresponding to the 
ground’s Y- and Z-axes. Also, based on our assumptions on 
the camera intrinsic parameters, let 
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In the camera coordinate system, > @TT
yy 11

vAp
�  and 

> @TT
zz 11

vAp
�  are the corresponding vectors through 

yv  and zv , respectively (i.e., they are parallel to the 

ground’s Y- and Z-axes, respectively). Since yp  and zp  

are necessarily orthogonal, their inner product must be 
zero: 

� 0 � zy pp �� ����

This equation has two solutions for the focal length D . The 
desired solution is the negative one and can be written as: 

� � � � �DvDv ����� zyD � ����

where > @Tvu 00 D  is the principal point. The quantity 

under the root is the negative of the inner product of the 
vectors formed from the principal point to each one of the 
vanishing points. Note that in order for the quantity under 
the root to be positive, the angle between the two vectors 
must be greater than 90 degrees.  

Next, the rotation matrix can now be formed from yp , 

zp  and xp  (the latter computed as the cross product of the 

former two).  

Finally, the scale (i.e., camera height) is determined as 
follows. We first assume a scale of one to complete the 
camera parameters. Primitives that involve distances (e.g., 
lane structure, point-to-point distances) are then projected 
from the image to the ground to produce computed 
distances on the ground plane. Let the original (measured) 
and the corresponding computed distances be specified as 
two vectors m  and c , respectively. The scale, s , is chosen 

to minimize mc �s . This is simply 

�
2

c

mc �
 s �� ����

C. Initial Solution Using One Vanishing Point 

When there are not two or more normal or horizontal 
lines, the lane structure will produce one vanishing point. In 
this case, three camera parameters still need to be 
determined: the focal length, a rotation about the vanishing 
direction, and camera height. Fortunately, we can deal with 
the latter as a last step like we did above. To solve for the 
former two, we try to match distance ratios between the 
measured distances with distance ratios between the 
computed distances. To optimization is done using the 
Levenberg-Marquardt method. The residual we try to 
minimize is completely dependent on the ratios among the 
scene measurements. We use one measurement, 0m , as a 

reference and relate all other measurements to it. The 
residual is computed as 
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where im  are the measured distances and ic  are the 

computed distances. We found that this converges rapidly 
and the choice of the initial values does not affect the 
convergence but there can be multiple solutions. However, 
the desired solution can always be found from any of these 
solutions (e.g., by negating D ). 

VI. MULTIPLE CAMERAS 

When images of the scene from multiple cameras are 
available, two more constraints can be used: 

a. Parallelism of lane structures. This constraint can 
be used if the lane structures in two or more images 
correspond to the same road. 

b. Point correspondences. These may or may not be 
part of the points used to specify the primitives in 
the individual images. 

We have not used any other correspondences among 
primitives across cameras (other than the coincidence of the 
ground plane and the direction of the lane structure). One 
reason is that imposing correspondence of what seems to be 
the same primitive may not be a good idea. Consider for 
example a marker pen in Fig. 3. The left edge of the same 
marker as seen in the two images corresponds to two 
different lines in space because the marker does not have a 
zero radius. 

With the above constraints in place, dealing with 
multiple cameras is straightforward. If constraint (a) above 
is not used, the ground planes of two cameras can be related 
using three parameters: a 2D point on the ground plane and 
an angle. Otherwise, only a 2D point is needed. 

The optimization for multiple cameras is done as a final 
step after each camera is optimized independently. During 
this final step, the parameters optimized are the parameters 
for all cameras, the primitives in each image, and the 
parameters relating ground planes described above. An 
initial alignment of ground planes is done using one point 
(or two points if constraint (a) is not used) arbitrarily 
chosen from point correspondences. The cost function is 

 
Figure 2.  Specification of primitives. 



the same as before but now also includes reprojection errors 
from point correspondences. So if a point Ap  in camera 

A’s image corresponds to a point Bp  in cameras B’s image, 

Ap  is projected to the ground plane and reprojected onto 

B’s image where the distance to Bp  can be computed. The 

same is also done in reverse. 

VII. RESULTS 

In this section, we present results from lab experiments 
as well as actual traffic scenes. In order evaluate the quality 
of the calibration parameters that our method produces, we 
constructed a mini-road scene, which is a scaled down 
version of a typical road in all its aspects (e.g., lane widths, 
lane markings lengths, markings paint widths, etc.). The 
scale is approximately 1:78. We also used two cameras A 
and B. Fig. 3(a) shows a snapshot of the setup. Marker pens 
standing on their flat end were used to represent vertical 
poles in the scene. Fig. 3(b) and 3(c) show the images 
captured by the two cameras. The cameras are standard 
CCD with 6mm lens giving them a horizontal field of view 
of about 60 degrees. The images are captured at a 640x480 
resolution.  

The reason for doing this scaling down is that it allows 
us to perform very accurate calibration of the cameras using 
a robust method, something that is not possible had we used 
an image of an actual traffic scene. This is essential in order 
to be able to produce a quantitative comparison. The robust 
method we used is by Jean-Yves Bouguet  [5]. In order to 
calibrate the cameras with this method, several images of a 
pattern (e.g., Fig. 3(d)) are first collected. We collected nine 
such images, one of which had the pattern carefully placed 

on the road and aligned with it (see Fig. 3(e)). This makes it 
possible to relate the coordinate system of the road with 
that of this pattern in order to be able to compute 
reprojection errors of all patterns. In  [5], the user has the 
flexibility to choose which intrinsic parameters to optimize. 
We chose to estimate the focal length (2 parameters, 
assuming unknown aspect-ratio), the principal point (2 
parameters), and lens distortion (4 parameters, a 4th order 
radial distortion model with a tangential component). The 
availability of many calibration images enables us to do 
this. The cameras are then simultaneously calibrated to 
refine all parameters. The RMS reprojection error was on 
the order of approximately 0.3 pixels for both cameras. We 
also repeated the process but this time with the restriction 
on intrinsic parameters that our method uses (i.e., a constant 
aspect ratio, a known principal point (image center) and no 
distortion model). This was done to give an idea of the 
expected lowest error when using a method that enforces 
these restrictions like ours. The results are shown in Table 
I. Using an elaborate intrinsic model has an advantage but 
the restricted model is still acceptable with errors being less 
than one pixel.  

To model this scene, we used a 5-line lane structure, 9 
point-to-point distances, and 4 normals in each of the 
cameras. Camera B had an additional horizontal line. These 
primitives are shown graphically (on a shaded background 
for clarity) in Fig. 2 for camera B. After generating the 
initial solution, the optimization was performed on each 
camera individually. Then the two cameras were optimized 
simultaneously using 8 correspondence points and a 

  
 (a) (b) 

  
 (c) (d) 

 
(e) 

Figure 3.  Experimental setup and calibration procedure. 

  
 (a) (b) 

  
 (c) (d) 

  
 (e) (f) 

Figure 4.  Calibration stages for cameras A and B. (a,b) results after 
initial solutions; (c,d) single image optimization; (e,f) results after cross-

camera optimization. 



parallelism constraint on the two lane structures. Fig. 6 
shows the results after each stage. The differences from one 
stage to the next are subtle (e.g., parallelism to horizontal 
line in camera B’s image). This is because the initial 
solution was already very good to start with. Quantitative 
results are shown in Table II. Values under “model” 
correspond to the RMS reprojection error resulting from 
projecting the geometric primitives to the image and 
computing the distances to the corresponding features. This 
is exactly the cost function being optimized and is therefore 
expected to be smaller than “pattern” error. The latter is the 
RMS reprojection error of all corners of all nine patterns. 
Notice that when calibrating multiple views 
simultaneously, the model error is higher than when using a 
single image. This is due to over-fitting noisy or otherwise 
insufficient features in the single image case. The combined 

pattern error, however, is decreased after simultaneous 
optimization, indicating an improvement over single-image 
optimization. This error is still three times larger than the 
best achievable but it is very small considering that a single 
pair of images was used to obtain it. As for the model error 
value of 1.25 pixels, it corresponds to approximately 10cm 
in the scaled-up version of this road at a point on the road 
near the center of the image. This is very acceptable in most 
traffic applications.  

We also performed a sensitivity analysis by adding 
random Gaussian noise to the x- and y-coordinates of all 
image features. Fig. 4 shows how the RMS pattern 
reprojection error is affected. In all cases, a solution where 
the cameras are looking in the general right direction was 
found (see Fig. 5). We believe that the mere fact that the 
reconstruction did not fail is due to the inherent redundancy 
in the primitives. The figure also demonstrates graceful 
degradation of the solution quality.  

TABLE I.  RMS REPROJECTION ERRORS USING ALL PATTERNS (IN 

PIXELS) 

Camera A Camera B Combined 
Unconstrained intrinsic model 

0.27 0.31 0.29 
Restricted intrinsic model 

0.86 0.92 0.89 
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Figure 5.  Effect of adding noise to measurement coordinates. Graph 
shows minimum, maximum, and average RMS reprojection error after 

four trials at each point. 

 

Figure 6.  Robustness under extreme noise (standard deviation 10). Solid 
lines are corrupted measurements and dotted lines represent the 

reprojection of the reconstructed model. The overlaid grid provides a 
visual indicator of reconstruction quality. 

 
 (a) (b) 

  
 (c) (d) 

  
 (e) (f) 

  
 (g) (h) 

  
 (i) (j) 

Figure 7.  Calibration of a real traffic scene. 



TABLE II.  RMS REPROJECTION ERRORS USING PRIMITIVES (IN 

PIXELS) 

Camera A Camera B Combined 
Model Pattern Model Pattern Model Pattern 

Primitives: single image 

0.56 a 1.67 1.08 a 3.6 0.87 a 2.83 
Primitives: stereo 

0.98 2.91 1.47 2.17 1.25 2.56 

a. do not include point correspondence errors. 

Results from an actual pair of images of a traffic scene 
are now presented. Two images of the same traffic scene 
were captured by two different cameras A and B at 
320x240 resolution. The primitives used were a 3-line lane 
structure and two normals. In addition, Camera A had two 
horizontal lines while camera B had one horizontal line and 
one point-to-point distance. The two images from the scene 
and these measurements are shown graphically in Fig. 7(a-
d). Notice that the marked line segment corresponding to 
the middle line of camera B’s lane structure is short. This is 
intentional since this was the only part that is clearly visible 
in the image and it is better not to extrapolate. The initial 
solution (Fig. 7(e-f)) is further improved after image-based 
optimization (Fig. 7(g-h)) but it still has problems as can be 
observed by noticing how parallelism between the overlaid 
grid and the shadow of the pole on the road progresses. The 
simultaneous optimization step uses nine point 
correspondences and the results from that look further 
improved (Fig. 7(i-j)). The RMS reprojection error is 2.0 
pixels.  This corresponds to approximately a 40cm and a 
20cm distance on the road around the center of the images 
of camera A and B, respectively. From our experience, 
selecting more primitives and more accurate distances can 
further reduce this error. Finally, Fig. 8 gives a qualitative 
assessment of the results. The images shown are of the 
same time instant and the lines drawn are of manually 
placed cuboids whose bottom sides are coincident to the 
ground plane. It can be seen that the cuboids fit vehicles 
well including those visible in both cameras. 

VIII. CONCLUSION 

We presented a method to compute the camera intrinsic 
and extrinsic parameters given a single or multiple images 
of a traffic scene1. The geometric primitives used have been 
carefully chosen to reflect actual primitives one would find 
in a traffic scene. We have shown that using these 
primitives our method is capable of achieving accurate 
results suitable for most traffic monitoring applications. 
Several issues need to be investigated. One such issue is 
that when the road is segment is not straight, a different 
type of primitive is needed. Another issue that would be 
useful to a user of this method is to have a feedback 
indicating the type and location of the primitive that would 
be most decisive in improving the calibration accuracy. 
Such a feedback can guide users if they need to do field 
measurements. 
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Figure 8.  Manually fitted cuboids on vehicles using the calibration 

parameters. 




