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Abstract

Background: Visual analytics aims to connect the processing power of information technologies and the user’s

ability of logical thinking and reasoning through the complex visual interaction. Moreover, the most of the data

contain the spatial component. Therefore, the need for geovisual tools and methods arises. Either one can develop

own system but the dissemination of findings and its usability might be problematic or the widespread and

well-known platform can be utilized. The aim of this paper is to prove the applicability of Google Earth™ software

as a tool for geovisual analytics that helps to understand the spatio-temporal patterns of the disease distribution.

Methods: We combined the complex joint spatio-temporal analysis with comprehensive visualisation. We analysed

the spatio-temporal distribution of the campylobacteriosis in the Czech Republic between 2008 and 2012. We

applied three main approaches in the study: (1) the geovisual analytics of the surveillance data that were visualised

in the form of bubble chart; (2) the geovisual analytics of the disease’s weekly incidence surfaces computed by

spatio-temporal kriging and (3) the spatio-temporal scan statistics that was employed in order to identify high

or low rates clusters of affected municipalities. The final data are stored in Keyhole Markup Language files and

visualised in Google Earth™ in order to apply geovisual analytics.

Results: Using geovisual analytics we were able to display and retrieve information from complex dataset

efficiently. Instead of searching for patterns in a series of static maps or using numerical statistics, we created the

set of interactive visualisations in order to explore and communicate results of analyses to the wider audience. The

results of the geovisual analytics identified periodical patterns in the behaviour of the disease as well as fourteen

spatio-temporal clusters of increased relative risk.

Conclusions: We prove that Google Earth™ software is a usable tool for the geovisual analysis of the disease

distribution. Google Earth™ has many indisputable advantages (widespread, freely available, intuitive interface,

space-time visualisation capabilities and animations, communication of results), nevertheless it is still needed to

combine it with pre-processing tools that prepare the data into a form suitable for the geovisual analytics itself.
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Background
Rise of visual analytics

The exploration of the spatial distribution of diseases

and their patterns became the relevant research in both,

medical sciences and geosciences. It can help to under-

stand not only the spread or location of the disease, but

it can also address potential environmental and/or social

factors that cause the higher occurrence of the disease.

The increasing amount of (geo)data and their complexity

coerced into the need for complex tools and methods

that enable the connection of computing power of infor-

mation technologies and the human reasoning. The scien-

tific field and theory of visual analytics is capable of

fulfilling these requirements. By visual analytics, it is usu-

ally meant the science of analytical reasoning facilitated by

interactive visual interfaces [1]. A more sophisticated de-

scription of this emerging scientific field describes the

complexity and the dynamic nature of the area more ap-

propriately as it combines automated analysis techniques

with interactive visualisations for an effective under-

standing, reasoning and decision making on the basis of

very large and complex datasets [2]. The goal of visual

analytics is to make the processes of data elaboration,

information gathering and knowledge generation trans-

parent to tool users [3]. To meet these goals, research

methods of visual analytics identify three major direc-

tions that focus on the analytical reasoning; (1) visual

representation and interaction; (2) data representations

and transformations; and (3) production, presentation

and dissemination of results [1,4].

Geovisual analytics

Nowadays, most of the data also contain the spatial com-

ponent, so the traditional visual analytics needs to be en-

hanced, and the new sub-discipline called geovisual

analytics emerges. Geovisual analytics is then described as

the science of analytical reasoning and decision-making

with geographic information, facilitated by interactive vis-

ual interfaces, computational methods, and knowledge

construction, representation and management strategies

[5]. The end goal of the investigation using geovisual ana-

lytics techniques should be oriented on the dissemination

of results to decision makers while providing the succinct

communication of the interpretations made by analysts

[6]. It is worth to notice that the time component holds at

least the same importance as space within the geovisual

evaluation of the phenomena.

The rising popularity of the (geo)visual analytics in the

research, education and also among the general public

supports the development of specialized complex soft-

ware tools, either desktop or web-based. GeoViz Toolkit

[7] is one of the user-friendly desktop applications that

were developed by GeoVista Center of The Pennsylvania

State University. GeoDa Center for geospatial analysis

and computation is another provider of geovisual analyt-

ics software with linked view. One can mention mainly

GeoDa; a free, open source, cross-platform software pro-

gram that serves as an introduction to exploratory

spatial data analysis [8]. The Organisation for Economic

Co-operation and Development (OECD) and Eurostat

provide visually attractive online platforms for geovisual

analytics that are well supplied with mainly statistical

data including some health related topics. Both plat-

forms, OECD Regional eXplorer [9] and Eurostat Re-

gional Statistics Illustrated [10] aim to provide the data

and their visualisation to the public. Their customization

and data upload are limited to the data and tools origin-

ally prepared on web pages. StatPlanet [11] is more ad-

vanced web-based interactive data visualisation and

mapping application that also allows the customization

for the user’s purpose as well as uploading the data. Vic-

torian Heart Maps [12] are one of the real-world exam-

ples of StatPlanet application with the health data. One

can also use well-known Gapminder [13], Pivot [14] or

create user’s geovisual applications using the capabilities

of ArcGIS Online platform [15].

Google and its technologies

Google, as one of the recent technological leaders, also

develops tools enabling the data browsing and charting

(Google Public Dataset Directory [16]) or mapping and

visual exploring (Google Fusion Tables [17]). In this

paper, we demonstrate a geovisual analytics possibilities

of Google Earth™ desktop application [18]. Google

Earth™ is a popular virtual globe application that allows

displaying of spatial data and their interactive exploring.

Despite the fact that Google Earth™ is not the fully-

operational platform for geovisual analytics, we still con-

sider it capable of fulfilling the several of visual analytics

primary goals – the exploration of (unknown) data pat-

terns, the dissemination of results and the communica-

tion of their interpretations. However, one has to be

aware that the interpretation of data results, as well as

spatio-temporal thinking and reasoning, are complex

processes that require not only the focus user’s mind,

but they are also experience-dependent. The main rea-

sons, why Google Earth™ was utilized in this study can

be summarized as (1) the software is free of charge (we

do not require Pro version); (2) it is well-known to pub-

lic and probably the most widespread browser of geodata

(more than 1 billion downloads [19]); (3) it is easy to use

and considered intuitive; (4) it provides high-quality re-

mote sensing imagery and administrative data; (5) it sup-

ports of KML (Keyhole Markup Language) file format,

which is XML-based file format used to display geodata

that is also the OGC (Open Geospatial Consortium)

standard for the exchange of spatial data. The applicability

of the platform in the geohealth research is documented
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by previous studies and papers [20-22]. The comprehen-

sive comparison of Google Earth™ versus commonly used

GIS software provides [23].

Case study

The suitability of the Google Earth™ for the geovisual

analytics of health datasets is shown in the case study.

The case study combines the spatio-temporal analysis of

the disease distribution with its geovisual exploration.

It focuses on the distribution of campylobacteriosis

in the Czech Republic between 2008 and 2012. Campy-

lobacteriosis is one of the most common gastroenteritis

of humans. Most of the campylobacteriosis cases are

caused by Campylobacter jejuni, which is widespread in

different environments but is often linked to the poultry

and raw meat. Previous studies estimated that the dis-

ease is highly underreported, which may be caused by

the fact that the disease can sometimes have mild symp-

toms. Approximately 72% of municipalities recorded at

least one case of the disease during the analysed period.

The occurrence of the disease, as well as its incidence,

grew gradually until the year 2010 when the peak was

recorded (see Table 1 for more details). The disease oc-

currence and incidence started to decrease since then.

Using the Google Earth™ platform, we wanted to explore

how the disease distribution pattern has been changing

during the observed period in the Czech Republic and

also in its particular regions.

The pre-processing of the data, all analyses and the

preparation of results for the visualisation proceeded in

free or open source software. QGIS was utilized for the

preparation of spatial data. Most of the analytical work

and the generation of final KML files were made using R

programming language 3.1.0 with suitable additional pack-

ages mainly spacetime [24], gstat [25] and plotKML [26]

with the usage of IDE RStudio. The final KML files were

displayed and analysed in the free version of Google Earth™.

The overall schema of the processing workflow that is

visually described step by step is depicted in Figure 1.

Methods and materials
Google Earth™ and Keyhole Markup Language

Google Earth™ is freely available (although proprietary)

3D virtual globe provided by Google Inc. that allows

browsing the geographical data in exchange formats.

The technology fuses imagery, terrain, and GIS data to

deliver them to their users by means of a client–server

architecture, where a Web browser is the client that ac-

cesses the data viewing and navigational services on the

Google Earth™ server [5]. It enables the interactive dis-

playing and exploring of spatial and spatio-temporal data

including the zooming, querying, adding overlays or ani-

mations. However, the strength of Google Earth™ is not

the data creation, but their visualisation. The free ver-

sion of Google Earth™ has a limited number of data file

formats that can be opened, including images formats,

GPS formats, COLLADA models and mainly Keyhole

Markup Language files (KML/KMZ).

Keyhole Markup Language (KML) is a file format used

to display geographic data in an Earth browser such as

Google Earth™ or Google Maps. KML uses a tag-based

structure with nested elements and attributes and is

based on the XML standard [27]. Moreover, KML is also

the exchange standard for geospatial data approved by

Open Geospatial Consortium. The KML file specifies a

set of standard features (e.g. geolocation, placemarks,

images, polygons, 3D models, textual descriptions, time-

stamps) for the display in Google Earth™ [28].

Main reasons, why to use the combination of Google

Earth TM and KML, are well described in [26,29] and

may be summarized as accessibility and popularity of

Google Earth™; availability of good-quality (geo)data as

base layers; KML as OGC standard for the geodata; and

variability of KML that provides cover platform for vari-

ous data types and their visualisation.

Surveillance and spatial data

The dataset used in this study was provided by The Na-

tional Institute of Public Health of the Czech Republic.

Table 1 Basic statistics of campylobacteriosis frequency and smoothed incidence in the Czech Republic in years

2008–2012

2008 2009 2010 2011 2012 Overall

Freq. Inc. Freq. Inc. Freq. Inc. Freq. Inc. Freq. Inc. Freq. Inc.

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Maximum 480.00 7,750.46 412.00 4,049.63 403.00 3,532.49 339.00 7,472.88 363.00 7,892.20 396.00 6,605.42

Median 0.00 142.14 0.00 153.50 0.00 157.03 0.00 141.94 0.00 145.44 0.40 144.38

Mean 3.14 164.63 3.19 171.72 3.31 179.38 2.94 156.72 2.88 161.52 3.09 161.72

Std.Dev. 16.90 165.62 15.82 145.71 16.45 145.02 14.06 149.15 13.19 150.61 15.08 138.85

Sum 20,076 20,348 21,150 18,797 18,393 19,752

The table shows selected basic statistical characteristics of the occurrence frequency (Freq.; no. of cases) and the disease’s incidence (Inc.; no. of cases per 100,000

population) in municipalities in the Czech Republic. Statistics are computed for individual years and also for all years together (Overall). The abbreviation Std. Dev.

stands for the standard deviation.
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The data come from the EPIDAT database, which is the

official database ensuring the mandatory reporting, re-

cording and analysis of infectious diseases in the Czech

Republic. The database contains almost 100,000 cases of

Campylobacteriosis infection in the Czech Republic

between 1 January 2008 and 31 December 2012. The

database is filled directly by physicians. The dataset does

not contain any confidential information (name, identity

number, full address) that would allow the re-identification

of the individual. In order to geocode data to the street

level, we used the geocoding function implemented in the

R language script [30] using the Application Programming

Interface (API) of the Czech web maps provider Mapy.cz.

This API does not have any day limits, but it is usable

mainly in the area of the Czech Republic. Surveillance data

were categorized according to the age/sex structure pro-

vided by census data and demography data supplied by

Czech Statistical Office. Figure 2 shows the stratified aver-

age year incidence in the Czech population based on the

data from 2008–2012. Children under four years of age

are the most affected demographic group, but increased

incidence appears in the group of children and youth

younger than 20 years old. People in age groups older

than 30 years are the least affected. The incidence rates

in these age groups do not exceed 100 cases per 100,000

people. The average year incidence of the Campylobac-

teriosis in the Czech Republic in 2011 was 225 cases per

100,000 population [31]. Up to 72% of municipalities

were affected by the disease in 2008–2012 with the inci-

dence rate ranging from 0 up to 7,892 cases per 100,000

population, with up to 480 cases recorded within one

year in individual municipality. Table 1 provides further

statistical characteristics. Additional file 1 shows annual

changes in the incidence rate in municipalities in the

animated map.

Data were spatio-temporally aggregated (weekly data

in regular grid/municipality), in order to enter spatio-

temporal kriging and space-time scan statistics. This step

also reduced the influence of administrative borders and

provided the possibility to present results in a finer reso-

lution. We chose the square grid covering the Czech Re-

public with the 4 km2 cell size. On one hand, it provides

suitable spatial resolution but preserve the data confi-

dentiality on the other, while it is still computationally

effective. Moreover, previous studies showed that the

spatial autocorrelation between individual points of in-

fectious disease is usually strongest in distances around

2 km [32]. Final aggregated data consist of 261 time cuts

representing weeks and 6,385 administrative units/

34,440 grid cells.

Bubble chart in Google Earth™ as an alternative to

space-time cube

The confident nature of the data does not allow the

visualisation of disease cases in the form of precise dot

maps due to the information confidentiality. That is why

the aggregation of the data is necessary. We aggregated

frequency of disease cases in both, space (the regular

grid) and time (weekly cases). This kind of aggregation

enables the displaying of data as circles in map or

spheres in 3D environment. The size and colour of the

sphere correspond to the frequency of disease occur-

rence in individual grid cell. The time domain occurs in

two forms in this kind of visualisation. Firstly, there is

an internal time component describing the precise data

and allowing the time animation. Secondly, the time

supplies the z-axis of the case frequency in the grid cell;

i.e. offset from the surface. By this manner, we are able

to visually explore time trends of disease behaviour in

individual localities, as well as to compare group of lo-

calities in space (in particular time slices) and in time

(3D view on selected zoom level). The presented tech-

nique can be considered to be a variation on the well-

known space-time cube model [33,34]. Time support

and the length of the time period can be easily set using

the incorporated time slider that also enables the anima-

tion of the phenomena.

Spatio-temporal kriging: the joint power of space

and time

While the kriging is a well-known and well-described

interpolation method [29,35] that has been used in geos-

ciences for several decades, its spatio-temporal enhance-

ment is rather a new procedure. The idea of spatio-

temporal kriging regularly appears for several decades,

but its computational demands allowed the proper im-

plementation of the method only recently thanks to the

Figure 1 The workflow of the case study.
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increasing computing performance of information technolo-

gies. The spatio-temporal kriging uses correlation of the

data evaluates by the spatio-temporal variogram that de-

scribes spatial, temporal and also joint spatio-temporal cor-

relations of the data [36]. Due to its novelty, the method is

used very rarely in the context of health data, e.g. in [37,38].

The main aim of the spatio-temporal kriging in this

study was to create the continuous surface of the disease

incidence in the populated places of the Czech Republic

in every time unit given by the data aggregation. The

logarithm of standardized incidence serves as input data,

and the metric model of spatio-temporal variogram was

used in the computation. To be more particular, we used

exponential model with following parameters: nugget =

0.15, partial sill = 1.94, range = 14150.46 m and space-

time anisotropy = 544.58. Figure 3 shows the visualisa-

tion of the empirical spatio-temporal variogram that

directly depicts spatial dependence in both, space and

time using the colour scale. It also depicts the fitted the-

oretical model of the spatio-temporal variogram. The

theoretical model is well fitted mainly in the left part of

variograms, which means that the best estimations are

made for observations closer in space and time. The in-

terpolated continuous incidence surface was computed

by ordinary global spatio-temporal kriging on point sup-

port coming from the centroids of the aggregated data.

Space-time clustering

The spatio-temporal scan statistics, that had the aim to

identify clusters of high and low rate areas together in

the continuous geographical regions and time, was com-

puted in the environment of the SaTScan 9.3 software

[39]. This procedure served to confirm that patterns in

the data are significant real world situations, and they

are not just the realization of a random process in

the study area. Input data consist of age/sex stratified in-

dividual cases aggregated in municipalities by weeks;

municipality demography structure and coordinates of

centroids of administrative units. The space-time retro-

spective analysis of high and low rate clusters was based

on the age/sex stratified data with Poisson probability

model. The SaTScan was set to find clusters of max-

imum size of 3% of the population in the circular win-

dow [40] with maximum temporal cluster size set to

50% of the time period or 100% in case of purely spatial

clusters. The nonparametric temporal trend adjustment

with time stratified randomization [41] was also applied

to ensure the comparability of rates within various pe-

riods. The significance of found clusters was assessed at

p-value lower than 0.05 and performed by 999 Monte

Carlo realizations. Then, the program calculated indir-

ectly standardized rates (expressed as the relative risk

which is the observed rate divided by the expected rate)

for each identified geographic cluster [42] and only sig-

nificant clusters remained in the outputting files.

Results
Geovisualisation of the surveillance frequency data

The first visual overview of the space-time pattern in the

data was realized using the KML file that contains the

Figure 2 Average incidence of campylobacteriosis in the Czech Republic (2008–2012) by age and gender.
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information about weekly frequency of the disease oc-

currence within the regular grid. The information is

visualised as 3D spatio-temporal bubble chart (Figure 4).

The size and colour of bubbles depict the frequency of

cases in the grid cell in individual weeks in order to dis-

tinguish between the actual disease’s occurrence in se-

lected time intervals and areas easily. The elevation

above the surface is then linked to an individual week,

i.e. there are 261 levels, where bubbles can or cannot ap-

pear during weeks. There are labels next to each bubble

and the guideline in order to ensure the proper reading

of the number of cases represented by the size of the

bubble, as well as the membership to the appropriate

grid cell. The red colour depicts the category with the

highest frequency in order to attract the user’s focus im-

mediately. The time slider located in the top left corner

of the working environment enables both, the setting of

the time period and the length of its lasting. Using this

feature, one can geovisually analyse the overall area and

also the specific location. In fact, there is a possibility of

Figure 3 Empirical spatio-temporal variogram and fitted theoretical spatio-temporal variogram. Empirical spatio-temporal variogram

(left part of the image) describes spatial, temporal and also spatio-temporal relations that can be found in the sample data. The fitted

theoretical spatio-temporal variogram (right part of the figure) shows the fitting of the theoretical metric model that tries to describe all relations

by mathematically defined function with estimated parameters. The horizontal axis shows the distance among data points in space; vertical axis

displays the time distance and semivariance (the power of the relations) is expressed by the colour scale. The theoretical model approximates the

real data mainly at closer distances in both, space and time.

Figure 4 Spatio-temporal bubble chart visualised in Google Earth. Number of cases per week are visualised using the bubble chart in the

environment of Google Earth. The data are aggregated in the regular square grid (4 km2). The number of cases is represented by the size and

colour of the sphere as well as by the neighbouring number. The time serves as an offset from the terrain. The time slider is located in top left

corner. It enables the settings of the date and also the period of visualised data. Visualised area belongs to the north-eastern part of the Czech

Republic near Ostrava city that is one of the highly affected areas. See ‘Additional file 2’ for a short example.
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the evaluation of the distribution in individual time

slices, locations or their combinations. Additional file 2

shows how the created KML file looks and how it is pos-

sible to work with it.

The example of the visualisation is depicted on Figure 4

that shows one of the areas with the highest occurrence of

the campylobacteriosis. Using the visual analytics, we iden-

tified several areas with higher frequency of the disease’s oc-

currence. The eastern part of the Czech Republic (Moravia)

is more affected than the western part (Bohemia). Particu-

larly, Campylobacteriosis appears mainly the north-eastern

part of Moravia and then southern part of Moravia. More-

over, three small clusters of increased occurrence were visu-

ally identified near Bohemian cities Prague, Pilsen and

Ceske Budejovice. The central part of the study area seems

to indicate rather a sparse occurrence of the disease.

Geovisual analytics of the continuous incidence surface

Because we used the spatio-temporal kriging as the

method of interpolation, the spatio-temporal variogram

was created (Figure 5) prior the interpolation proceeded.

This variogram described the spatial, temporal and spatio-

temporal dependencies. It was found out that spatial de-

pendencies among incidence rates are the strongest, and

likely the most meaningful within 14 km range in space

and within four weeks interval in time. These settings

were used for the consequent interpolation. These data

were categorized and exported into KML file in order to

enable visualisation in the Google Earth™ software. It

allows interactive exploring of the spatial and temporal

support of the data including the settings of the scale

and time interval or the animation. The file consists of

261 raster layers representing each week during the

study period. Furthermore, the visualisation of continuous

incidence surface in KML is enriched by thousand random

sample points that carry the time series plot of the inci-

dence in selected location (Figure 6). The results of the

interpolation are classified into 9 categories (<25; 25–50;

51–100; 101–150; 151–250; 251–500; 501–1,000; 1,001–

2,500; >2,500 cases per 100,000 population) according to

the incidence rate in the cell. The legend remains the same

for every time interval, so the state of the phenomena

can be easily compared in time (using the time slider in

Google Earth™) and space. The KML file also contains

time-series graphs of the incidence rate for sampled loca-

tions that allows better evaluation of the disease occur-

rence. Thus, the user is able to identify both, expected

patterns and unexpected findings and compare them im-

mediately with situation in different locations and their

neighbourhood. Additional file 3 shows how the created

KML file looks and how it is possible to work with it.

The visual analytics helped to identify several findings.

Some of them came directly from the methodology and

generally accepted knowledge about the Campylobacter-

iosis, e.g. seasonality of the disease with the peak during

summer months (June–August). The change of the inci-

dence caused by the seasonality is usually less evident in

the densely populated areas. On the contrary, it is more

apparent in rural areas and also in bigger towns’ neigh-

bourhoods that are often used as recreational areas. The

increased incidence rates are also visible in mountain

areas during the winter season, which is valid mainly

for the foothills of the two biggest mountain ranges –

Krkonose Mountains and Jeseniky Mountains.

Geovisualisation of space-time clusters

The spatio-temporal scan statistics using SaTScan software

is also able to generate results as KML files. They are usu-

ally made up of the indexed circles representing detected

clusters according to their type, and they also contain the

centroid of municipality units. We used this primary infor-

mation in combination with the original municipal data.

Then we generated resulting KML, which consists of mu-

nicipalities coloured by the membership to low/high rates

clusters or to outliers. During the evaluation of clusters,

one should focus not only on characteristics of individual

clusters but also on their inner homogeneity. The map in

Figure 7 depicts the location and type of clusters and

also their structure. Outliers that cause the heterogeneity

are visualised in lighter colours while areas without any

disease occurrence are depicted in grey. Outliers in the

high rates clusters (light red coloured areas) are municipal-

ities that have an average or low relative risk (RR ≤ 1.50)

although they belong to the high rates cluster. On the

contrary, outliers in low rates clusters (light green coloured

areas) are municipalities that have average or high relative

risk (RR > 0.80) although they belong to the low rates cluster.

Uncoloured areas on the map then represent municipality
Figure 5 Spatio-temporal variogram used for the interpolation.
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that does not belong to any cluster. The final KML is

also enriched by the characteristics of individual muni-

cipalities and by the time stamp that allows usage of the

time slider and animation like in the previous examples.

During the study period, we identified up to 30 signifi-

cant clusters (p-value < 0.001) in the Czech Republic.

Fourteen of them are clusters of high rates that signalize

areas with increased risk estimates (RR > 1.50). The pri-

mary most likely cluster is the cluster number one (RR =

2.16) that lies in the north-eastern part of the Czech

Republic in the city of Ostrava (Figure 6). It consists

of thirty-one municipal districts, which cover almost

293,000 of the population in the risk. Other clusters are

so-called secondary clusters. Nine of all high rates clus-

ters are located in the eastern part of the Czech Republic

called Moravia. Only five high rates clusters are located

in the Bohemia (western part of the Czech Republic).

Most of the high rates clusters show throughout the en-

tire study period, while only five of them (no. 5, 10, 11,

13, 14 in Table 2) are more specific showing the particu-

lar outbreak or period with an increased risk of the cam-

pylobacteriosis. There are also two secondary clusters of

high rates that cover only one administrative unit. First

of them is the very centre of Prague (RR = 4.13), i.e.

densely populated area, second is a small village in the

South Bohemia called Drazic (RR = 41.92). The rest of

detected clusters (n = 16, RR ≤ 1.80) are low rates clus-

ters, i.e. they represent the area where the risk estima-

tion is lower than expected. All low rates areas are

located in the Bohemia; the only exception is cluster no.

20 that also covers part of Moravia. One can find two

main types of low rates clusters – the first type can be

described as mainly mountainous areas with low popula-

tion density (no. 15, 17, 20, 21, 25, 26); the second type

then consists of densely populated areas with lower agri-

cultural activity. The description of all identified clusters

is stored in Table 2 including the cluster type, period of

cluster duration, number of municipalities within the

cluster, observed and expected cases, relative risk and

most potentially affected population.

Discussion
Strengths and limitations of Google Earth™ and KML in

the field of geovisual analytics

The case study provided three main results, (1) the

spatio-temporal bubble chart; (2) the spatiotemporally

interpolated incidence surface; and (3) detected spatio-

temporal clusters of high and low rates. KML files were

created from all results, and then they were visualised in

Google Earth™ with the purpose of following geovisual

Figure 6 Continuous spatio-temporal surface of the incidence in the Czech Republic. The spatiotemporally interpolated surface of the

incidence in the Czech Republic is classified in nine categories that are represented by the colour scale that is also located in the figure. One can

also easily explore different time periods using the time slider. The surface is depicting only places that are inhabited. The visualisation contains

also 1,000 sample points that allow to display the time-series graph of the incidence rate on the location. See ‘Additional file 3’ for a short

example of the animation using KML and Google Earth.
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analytics. We are aware that Google Earth™ is not the

complex platform for the overall process of geovisual an-

alytics covering all necessary steps from data uploading,

their transformations, analyses, up to final presentation

and dissemination. Reasons for this are mainly due to

different tools that pre-process data and create output

files and also because of the limited data analysis cap-

ability of Google Earth™. On the contrary, the advantages

of the Google Earth™ are undisputable. Google Earth™ is

multiplatform, freely available and extremely wide-

spread (more than 1 billion downloads in the year 2011

[19]) application, which makes it probably the world’s

most used browser of geodata. The Google Earth™ inter-

face is also user-friendly and intuitive, so users do not

need any specific knowledge. The visualisations in

Google Earth™ are usually interactive using the zooming

and simple querying functions on displayed objects. The

crucial aspect of Google Earth™ concerning the geovisual

analytics is the direct support of spatio-temporal data

and their animations. This aspect helps to fulfil one of

the main ideas of the geovisual analytics: “Detect the ex-

pected and discover the unexpected” [1,43]. It opens the

geovisual analytics not only for specialized researchers,

but also to decision-makers or to the general public,

which makes the dissemination of results much easier.

However, the geovisual analytics in Google Earth™ often

requires a certain level of user’s experiences. The other

advantage is the usage of KML as the primary format of

input data. The KML is an open standard for geodata

and provides the broad range of possibilities for the visu-

alisation. KML can contain different kinds of data for-

mats, or it can link to them. It might cause an increased

computer’s memory usage mainly in the case of big

datasets consisting of vector data or a series of raster

maps. However, KML files can be compressed to KMZ,

which is the zipped version of KML that provides rea-

sonable savings of the hard-disk space. In case that

someone needs the linked view consisting of several

types of information, it is possible to create such kind of

presentation using KML. It is right that proceeding of all

analyses requires several prerequisite and data preparation.

The subsequent creation of resulting KML files is, in fact,

quite simple. In the presented study, KML files were made

and customized mainly using R package plotKML, which

is very straightforward and not difficult to use (considering

elementary skills in R language). However, KML can be

created directly from spatial data using geoinformation

system (e.g. QGIS, ArcGIS for Desktop) very easily. SaTS-

can also supports the creation of KML files showing iden-

tified clusters as one of its results.

Figure 7 High and low rates space-time clusters of campylobacteriosis in the Czech Republic. Dark red colour depicts clusters of more

affected/vulnerable municipalities. Clusters that are more resistant to the campylobacteriosis than its neighbourhood are dark green. The map

also shows the particular heterogeneity of clusters. The healthy areas within more affected clusters are coloured in light red, and on the contrary,

more affected municipalities in healthy clusters are depicted as light green. The overall description of individual clusters is in Table 2.
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Spatio-temporal bias in the data

We mentioned that our case study had purely spatial,

temporal and spatio-temporal character, so the under-

lying environmental and social factors were not in-

cluded. However, we are aware of the fact that the

number of factors may be significant for the distribution

of diseases. Relations of these factors on the spatial dis-

tribution of campylobacteriosis that we analysed is well-

described in previous studies [42,44-46]. Together with

the geographical knowledge of the study area, the visual

analytics of the disease incidence surface and detected

clusters can point out the likely connection among the

areas with increased risk and agriculture activities, rural

areas, social deprivation and demographic structure of

the population. Researchers should be also aware of the

spatial and temporal variability of particular diseases and

their clusters that may be closely related to changes in

environmental and demographic factors (climate change,

population change, land use change, etc.).

Since the presented case study and its results are fo-

cused mainly on the spatial and spatio-temporal proper-

ties of the disease distribution, the selected spatial, and

temporal scale are very important parts of all proce-

dures, whether they are dealing with the aggregation,

range of clusters, estimation of parameters during

spatio-temporal kriging or with resulting visualisations

Table 2 Space-time clusters of high and low rates of campylobacteriosis in the Czech Republic, 2008–2012

Cluster T1 Time2 Region3 C4 Ob5 Exp6 RR7 Population8

1* H 2008/01/01 – 2012/12/31 Ostrava 31 5975 2861 2.16 292,978

2 H 2008/01/01 – 2012/12/31 North Wallachia - Lachia 70 5414 2788 2.00 277,236

3 H 2008/01/01 – 2012/12/31 Havirov and Karvina 16 4773 2534 1.93 256,657

4 H 2008/01/01 – 2012/12/31 Prague - centre 1 1006 245 4.13 29,948

5 H 2008/05/13 – 2010/11/01 Southern Moravia 167 2274 1432 1.60 292,885

6 H 2008/01/01 – 2012/12/31 Drazic 1 72 2 41.92 214

7 H 2008/01/01 – 2012/12/31 Brno - city 19 3951 2590 1.55 271,742

8 H 2008/01/01 – 2012/12/31 Opava 37 1714 877 1.97 87,203

9 H 2008/01/01 – 2012/12/31 Hanakia 66 3828 2526 1.54 256,721

10 H 2009/04/14 – 2011/09/05 Southern Wallachia 90 1596 932 1.72 196,522

11 H 2010/01/12 – 2010/02/22 Ceske Budejovice 60 194 36 5.41 157,425

12 H 2008/01/01 – 2012/12/31 Benesov 15 640 313 2.05 31,115

13 H 2010/04/06 – 2010/10/04 Brno - surroundings 224 568 286 1.99 284,346

14 H 2011/05/03 – 2011/11/14 Pilsen 22 394 201 1.96 197,263

15 L 2008/01/01 – 2012/12/31 Krkonose mountains 128 997 1841 0.54 182,641

16 L 2008/01/01 – 2012/12/31 North-Western Bohemia 108 1853 2930 0.63 290,222

17 L 2008/01/01 – 2012/12/31 Usti nad Labem - Decin 93 1266 2958 0.42 288,203

18 L 2008/01/01 – 2012/12/31 Prague - East 4 1591 2530 0.62 280,780

19 L 2008/01/01 – 2012/12/31 Mlada Boleslav 173 1124 2590 0.43 256,738

20 L 2008/01/01 – 2012/12/31 East Bohemia/Moravia borders 138 1482 2571 0.57 253,941

21 L 2008/01/01 – 2012/12/31 Jizera Mountains 59 1302 2320 0.56 230,360

22 L 2008/01/01 – 2012/12/31 Carlsbad 82 1284 1992 0.64 202,256

23 L 2008/01/01 – 2012/12/31 Prague - West 16 1805 2961 0.60 305,103

24 L 2008/01/01 – 2012/12/31 Kladno – Beroun - Rakovník 172 1950 2684 0.72 268,391

25 L 2008/01/01 – 2012/12/31 Bohemian Forest 211 1578 2667 0.58 268,701

26 L 2010/11/23 – 2011/04/25 Vysocina 252 84 247 0.34 294,203

27 L 2008/01/01 – 2012/12/31 Prague – South-East 21 1821 2961 0.61 318,958

28 L 2008/01/01 – 2012/12/31 Vysoke Myto 31 271 509 0.53 49,304

29 L 2010/11/09 – 2012/06/11 Hradec Kralove 25 173 348 0.50 113,501

30 L 2008/01/01 – 2012/12/31 Neratovice 71 2000 2490 0.80 249,994

*Denotes primary cluster; p-value of all clusters is < 0.001; 1the type of the cluster: H stands for high rates clusters (high relative risk) and L stands for low rates

clusters (lower relative risk); 2Time describes the period of cluster’s duration; 3Regions named by the local names of town, area or mountain range; 4the count of

municipalities in the cluster; 5the observed number of cases in the cluster; 6the expected number of cases in the cluster; 7computed relative risk; 8estimated

population in the cluster.
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and their understanding. The scale of the analysis or the

level of aggregation is usually a trade-off between speci-

ficity and precision: the smaller the area, the more

accurate and relevant are the findings to the local popu-

lation, but the greater are the imprecision and the po-

tential for bias [47]. Furthermore, many datasets exhibit

different spatial patterns when viewed at one spatial level

compared to another, which is known as a ‘scale’ effect

[48]. The temporal scale of the aggregated data was con-

stantly set to weeks throughout the study. However, we

used two different spatial types of the aggregation - the

municipality level and the regular grid. The main advan-

tage of the analysis in the municipality districts is the

known demographical structure of the population, which

means more accurate rate estimates. On the contrary,

the population structure of a regular grid is only esti-

mated, so the rates carry more uncertainty. However,

this method creates smoothened surfaces that decrease

differences appearing among neighbouring administra-

tive units, and it also provides more detailed results.

Why (not) to use spatio-temporal kriging and scan

statistics?

The continuous incidence surface represents the estimate

of the incidence rate of campylobacteriosis in populated

places in the Czech Republic during every week of the

study period. On one hand, it expresses the incidence rate

also in places without any recorded case of the disease.

Contrarily, the interpolation can suitably describe the state

of the situation and the progress of the disease distribution

simultaneously in space and time. However, it is always

necessary to count with the certain amount of inaccuracy

of results due to the expert estimation of interpolation pa-

rameters. The incidence surface confirmed several well-

known facts; e.g. more stable estimates are gained in

densely populated areas; peaks of the disease occurrence

usually appear during summer months and others. It also

helped to identify locations with opposite trend or loca-

tions with more than one peak. It is necessary to notice

that the computation of both, spatio-temporal variogram

and kriging interpolation, are very computationally de-

manding. The computation of spatio-temporal variogram

took 35.4 hours (Intel Core i7-3770 CPU 3.90 GHz, 8 GB

RAM). Firstly, the calculation of the kriging was not pos-

sible to proceed to the entire area of the country, but the

usage of looping functions with sets of reduced areas

allowed the interpolation, which lasted 13.7 hours. The

output raster dataset was then clipped by the layer of pop-

ulated areas in the Czech Republic, which was based on

the CORINE land cover dataset [49].

The spatio-temporal scan statistics [39], which is com-

monly used for spatio-temporal cluster analysis, has sev-

eral advantages: it conforms to the population density and

confounding variables such as age and sex, and there is no

pre-selection bias because groups are searched without

prior assumptions about their location period, size or time

[50]. This statistical method takes into account multiple

testing; allowing us to obtain a single p-value, and it lo-

cates and specifies the occurrence of the clusters. Unfortu-

nately, the influence of the parameters settings in SaTScan

is explored only partially so the maximum spatial cluster

size, time window as well as adjustments were selected ex-

perimentally but with regard to findings of previous stud-

ies [40,51]. We also tested the alternative scan statistics

settings of scan statistics in order to compare the validity

of results. Various combinations of population in risk (3%,

5%, 10% and 50%), maximum cluster size (30 days, 105

days and 50% of time period) and temporal trend adjust-

ments but the results did not differ significantly. Logically,

the number of clusters was different – the higher popula-

tion in risk, the lower number of larger clusters. However,

the locations of main clusters were very similar as well as

the period of their appearance.

Conclusions
The analysis of spatio-temporal data often happens con-

ditionally, meaning that either first the spatial aspect is

analysed, after which the temporal aspects are analysed,

or vice versa, but not in a joint, integral modelling ap-

proach, where space and time are not separated [52].

The presented study combines results of truly spatio-

temporal methods evaluates mutual interactions in both

dimensions (space and time) and their visualisation in

Google Earth™ that provides the suitable environment

for geovisual analytics. By means of usage Google Earth™

as visualisation medium for results, we gained the add-

itional value to all analyses performed. The results in-

corporate not only spatial component as it is common,

but also the time dimension, both at once. Hence, it is

desirable to explore them in fully-fledged environment

as Google Earth™ that allows seamless browsing through

space and time. Using the KML files as the basis for geo-

visual analysis, analyst can provide results and their pos-

sible interpretations in an attractive and self-explaining

form that is accessible not only to specialized re-

searchers, but also to wider audience without any add-

itional specific knowledge. Google Earth™ is presented in

the study as a tool that allows perceiving the expected

and discovering the unexpected patterns in space and

time. To be more specific, we provided (1) visualisation

of surveillance data in three-dimensional bubble chart

map; (2) visualisation of spatio-temporal interpolation of

incidence rate in the form of time slices suitable for

animations; and (3) visualisation of identified spatio-

temporal clusters. We could have explored time trends

of disease behaviour in individual localities visually. We

also could have compared a group of localities in space

(in different time slices) and in time (using 3D view on
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selected zoom level in a certain locality). All analyses

and their results visualised in Google Earth™ proved

themselves as efficient tools for the exploration of the

spatio-temporal patterns of disease distribution, which

may help researchers to identify sources, outbreaks and

progress of particular diseases. We can suggest Google

Earth™ as the platform that is usable for the geovisual

analytics, nevertheless it is still needed to combine it

with pre-processing tools that prepare the data into a

form suitable for the geovisual analytics itself.

The results of the geovisual analytics identified period-

ical patterns in the behaviour of the disease with an in-

creased incidence during summer months in both,

hinterland areas of regional centres and areas used for

the recreation. On the other hand, it also identified sec-

ondary peaks of the incidence during the winter in the

foothills of mountains. The spatio-temporal scan statis-

tics recognized fourteen clusters of municipalities with

increased vulnerability (RR ≥ 1.50) to the campylobacter-

iosis and sixteen clusters of healthier municipalities (RR

≤ 0.80). Detected clusters divided the Czech Republic

into two dissimilar geographical units – more affected

Moravia (eastern part of the Czech Republic) and less

affected Bohemia (western part).

Future steps of the work will involve the modelling of

the disease distribution using socio-economic and envir-

onmental factors focusing mainly on areas identified as

high rates clusters. We also want to incorporate of the

subsequent visualisation of modelling results in the

geovisual analytics procedure.
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