
facultad de informática

universidad politécnica de madrid

Using Global Analysis, Par t ia l
Specifications, and an Extensible
Assertion Language for Program

Validation and Debugging

M. Hermenegildo

G. Puebla

F. Bueno

Using Global Analysis, Partial Specifications,
and an Extensible Assertion Language for

Program Validation and Debugging

Authors

M. Hermenegildo, G. Puebla, F. Bueno
{herme,german,buen.o}@f i .upm.es
Department of Computer Science
Technical University of Madrid (UPM)

http://upm.es

Abstract

We discuss a framework for the application of abstract interpretation as an aid during pro-
gram development, rather than in the more traditional application of program optimization.
Program validation and detection of errors is first performed statically by comparing (partial)
specifications written in terms of assertions against information obtained from (global) static
analysis of the program. The results of this process are expressed in the user assertion lan-
guage. Assertions (or parts of assertions) which cannot be checked statically are translated into
run-time tests. The framework allows the use of assertions to be optional. It also allows using
very general properties in assertions, beyond the predefined set understandable by the static
analyzer and including properties defined by user programs. We also report briefly on an im-
plementation of the framework. The resulting tool generates and checks assertions for Prolog,
CLP(R), and CHIP/CLP(fd) programs, and integrates compile-time and run-time checking in
a uniform way. The tool allows using properties such as types, modes, non-failure, determinacy,
and computational cost, and can treat modules separately, performing incremental analysis.

Contents

1 Introduction 1

2 Overall Framework Architecture and Operation 3

2.1 Check Assertions 3

2.2 Run-time checking of assertions 4

2.3 Compile-time checking of assertions 4

3 The Assertion Language 5

3.1 Assertions on Success States 6

3.2 Assertions Restricted to a Subset of the Calis 7

3.3 Assertions on Cali States 7

3.4 Assertions on the Computation of Predicates 7

4 Defining Properties 8

4.1 Writing Properties of Execution States: Compatibility Vs. Instantiation Proper-

ties 9

4.2 Writing Properties of Computations 11

5 A Simple Run-time Checking Scheme 11

5.1 Properties 11

5.2 Success Assertions 12

5.3 Calis Assertions 13

5.4 Comp Assertions 13

6 Compile-Time Checking 14

7 A Sample Debugging Session with the CIAO System 16

8 A Preliminary Experimental Evaluation 20

9 Discussion 21

References 23

1 Introduction

•

•

As (constraint) logic programming systems mature further and larger applications are built,
an increased need arises for advanced development and debugging environments. Such envi-
ronments will likely comprise a variety of co-existing tools ranging from declarative debuggers
to execution visualizers (see, for example, [1] for a more comprehensive discussion of tools and
possible debugging scenarios). In this paper we concéntrate our attention on the particular issue
of program validation and debugging via direct static and/or dynamic checking of user-provided
assertions [17, 18, 8, 6, 30, 2]. Classical examples of assertions are the type declarations used
in languages such as Gódel [24] or Mercury [36] (and in functional languages). But here, and
encouraged by the capabilities of the currently available abstract interpreters, we depart in
several ways from the traditional approaches.

We start by recalling some classical definitions (see, e.g., [10]) in program validation and
debugging. Given a program P , we denote by I the intended semantics for P , Le., the specifi-
cation for P. We denote by ¡PJ the actual semantics of the current implementation of program
P. We say that

• P is partially corred w.r.t. I iff ¡PJ C I.

P is complete w.r.t. I iff I C ¡PJ.

P is incorrect w.r.t. I iff ¡PJ <¿ I.

• P is incomplete w.r.t. I iff I ^ ¡PJ.

Performing these validation tasks can result in the validation of P w.r.t. I, Le., proving that
P is partially correct and/or complete w.r.t. I, or in the detection of incorrectness and/or
incompleteness symptoms, which would flag the existance of errors in P, and in which case a
process of diagnosis should be started to lócate such errors.

There are many ways in which the validation task can be performed [3, 4, 16, 19, 38]. In
general, direct application of the previous definitions is not practical for different reasons.
First, providing the entire and exact intended semantics I may be a tedious task. Also, the
actual semantics ¡PJ of P may be an infinite object and it is often more convenient to use
approximations of it. In the framework we propose, as in most existing debugging frameworks,
we concéntrate on partial correctness 1 debugging, Le., we try to detect incorrectness symptoms
or to prove that they do not exist.

We assume that the starting point for correctness validation and debugging is a set of user-
provided assertions. At the same time, we would like our system to be as general as possible.
First, we would like the assertions to be optional: specifications may be given only for some
parts of the program (Le., assertions may be given for only some procedures or program points),
and even for those parts the information given may be incomplete (e.g., for a predicate we may
perhaps have the type of one argument, the mode of another, and no information on other
arguments). Also, we are interested in supporting assertions which are much more general than
traditional type declarations, and such that it may be statically undecidable whether they hold
or not for a given program. Finally, we would like the system to genérate assertions, especially

1For brevity, we will usually write correctness/incorrectness when referring to partial correctess/incorrectness.

Figure 1: A Combined Framework for Program Development and Debugging

for parts of the program for which there are no check assertions. These assertions will have
the status t r u e and can be visually inspected by the user for checking correctness.2

As a consequence of our assumptions, the overall framework needs to deal throughout with
approximations [10, 14, 22]. Thus, while the system can be complete with respect to statically
decidable properties (e.g., certain type systems), it cannot be complete in general, and analysis
may or may not be able to prove in general that a given assertion holds. The overall operation of
the system will be sometimes imprecise but must always be safe. This means that all violations
of assertions flagged by the system should indeed be violations, but perhaps there are assertions
which the system cannot statically determine to hold or not. This means that the compiler
cannot in general reject a program because it has not been able to prove that the complete
specificiation holds. In order to limit the impact of this and at the same time detect as many
errors as possible, we would like to design the framework and the assertion language in such
a way that dynamic checking of assertions (run-time tests) is supported in addition to static
checking. Furthermore, we would like to use (to the extent possible) the source language to
perform such run-time tests, so that (at least conceptually) the addition of run-time tests to a
program can be viewed as a source to source transformation.

Our approach is strongly motivated by the availability of powerful and mature static analyzers
for (constraint) logic programs, generally based on abstract interpretation [14]. These analyzers
have proved quite effective in statically inferring a wide range of program properties accurately
and efficiently, for realistic programs (see, e.g., [23, 28, 11, 20, 21, 25, 8, 9] and their references).
Such properties can range from types and modes to determinacy, non-failure, computational
cost, independence, or termination, to ñame a few. Traditionally the results of static analyses
have been applied primarily to program optimization: parallelization, partial evaluation, low
level code optimization, etc. However, here we are interested instead in the applications of
static analysis in program development (see, e.g., [5, 10, 22]), and, in particular in validation
and error detection.

2Note however that if check assertions exist for such parts of the program, such checking is automated in the
system by either compile-time or run-time checking.

2 Overall Framework Architecture and Operation

Figure 1 depicts the overal architecture of the proposed framework. Hexagons represent the
different tools involved and arrows indicate the communication paths among the different tools.
It is a design objective of the framework that most of such communication be performed also in
terms of assertions. This has the advantage that at any point in the debugging process the in-
formation is easily readable by the user. Also, rather than having different assertion languages
for each tool, we propose the use of a common assertion language for all of them, since this
facilitates the above mentioned communication among the different tools, enables easy reuse of
information (Le., once a property has been stated there is no need to repeat it for the different
tools), and facilitates understanding by the user, who only needs to learn a single assertion
language. Note that not all tools need to be capable of dealing with all properties expressible
in the assertion language. Rather, each tool only makes use of the part of the information given
as assertions which the tool "understands" (this being allowed by the approximation-based
approach used throughout the system). We now provide an overview of some of the charac-
teristics of the assertion language used to describe the (partial) specification, we discuss how
such assertions are used to perform run-time and compile-time program correctness validation
and debugging, and we provide pointers to the rest of the paper, where each individual topic is
informally discussed in more detail.

2.1 Check Assertions

As mentioned before, we assume that the user provides a set of assertions (the assertion
language itself will be introduced in sections 3 and 4). All these assertions (and those which
will be mentioned later) are written in the same syntax, with a prefix denoting their status.
Because the user assertions are to be checked we say that such assertions have status "check"
and refer to them as "check assertions" (see Figure l) .3 The fact that an assertion has check
status may be made explicit by prepending the check keyword to it, but check is the default
assertion status and is therefore not required.

Intuitively, check assertions are just necessary conditions for the program to be correct. Le.,
if they do not hold then the program is definitely incorrect. However, and as we do not require
that check assertions encode a complete specification of P, the fact that all check assertions
hold does not necessarily mean that the program is correct w.r.t. the semantics the user has
in mind, much in the same way that a type correct program may produce incorrect results.
Another way of looking at these assertions is as integrity constraints: if they do not hold then
something is definitely wrong. Such assertions may be included in the program itself or provided
separately.

We make a conceptual distinction between the notions of property and assertion. Properties
are logic predicates, in the sense that the evaluation of each property either succeeds or fails
(returns the valué true or the valué false). Properties are used to say that "X is a list of
integers," "Y is ground," "p(X) does not fail," etc. The truth valué of the assertion is that
obtained by combining the truth valúes of the individual properties. Each individual assertion
is constructed as a logic formula in a restricted syntax (to be described later) whose components
are properties. The language of assertions we propose is structured around a relatively small and

3In addition, the user may optionally provide additional information to the analyzer by means of "entry"
assertions (which describe the external calis to a module) and " t ru s t " assertions (which provide abstract infor-
mation on a predícate that the analyzer can use even if it cannot prove such information to be true) [8, 31].

fixed set of (classes of) assertions (which will be discussed in more detail in Section 3). The use
of one or another class of assertion will indicate in which sets of execution states the assertion
is applicable, such as for example: the success states or the cali states of a predicate, the states
corresponding to a program point between two clause body literals, the whole computation of a
given cali, etc. A program P is correct w.r.t. an assertion A if in all execution states reachable
from valid input valúes for P either A is not applicable or the truth valué of A is true. The
assertion language leaves open the set of properties which may be used. The properties of
interest may differ from one case to another and we allow the user to define such properties.
There are two main kinds of properties: properties of execution states and properties of a
computation. Such properties will be discussed in Section 4.

2.2 Run-time checking of assertions

The above mentioned assertions can then be checked at run-time, in the classical way, Le.,
run-time tests will be added to the program which encode in some way (parts of) the given
assertions. In the proposed framework, this is performed by the run-time test annotator module
(Figure 1). This module takes the program and the check assertions as input (we assume for
now that the comparator module of Figure 1 simply passes the check assertions through). The
transformation (discussed in Section 5) must be such that, whenever the transformed program
is executed, the assertions are checked for the data actually being explored by the program
during execution, and this is done at the execution points that the assertions refer to. If the
checking of any of the assertions fails, this implies that the assertion is f a l se . Thus, a concrete4

incorrectness symptom has been detected and some kind of error message is given to the user
(and a procedure for localizing the cause of the error, such as standard or declarative diagnosis
can be started).5 Correctness of the transformation requires that the transformed program only
produce an error if the specification is in fact violated.

2.3 Compile-time checking of assertions

Even though run-time checking can be very useful for detecting violations of specifications,
it also has important drawbacks. First, run-time checking clearly introduces overhead into
program execution. Also, it requires test cases (sample input data), which typically have an
incomplete coverage of the program execution paths. Also, run-time checking cannot be used
in general for proving that a program is correct w.r.t. an assertion, Le., that the assertion is
checked, as this would require testing the program with all possible input valúes, which is in
general unrealistic.

Compile-time checking of assertions allows proving automatically at compile-time that (parts
of) such assertions are implied by the program (Le., that they hold in the program model, in the
case of declarative properties) or that they hold for all possible program executions (Le., in all
SLD trees, for operational properties). This can also be viewed as computing at compile-time
the results of run-time checking of assertions for all possible executions. Compile-time checking
of assertions also allows proving that some assertions are violated without having to run the
program.

Compile-time checking of assertions is performed in our framework (see Figure 1) by a program

4 As oppossed to abstract incorrectness symptoms, which are the ones detected by compile-time checking.
6It is out of the scope of this paper to discuss how program diagnosis should be performed. However,

techniques such as declarative debugging [35, 6, 17, 18] or abstract debugging [12, 13] may be applied.

analyzer (the abstract interpreter) and an assertion comparator. Properties of the program are
automatically derived by the analyzer module (the kind of analysis performed may be selected
by the user or determined automatically based on the properties used in the current checked
assertions). The derived properties are also expressed using assertions. They have the status
"true," since they express properties which have been proved to hold. The t rue assertions are
then compared against the given check assertions. The result might be that the assertion is
validated (in which case the corresponding assertions are rewritten as "checked" assertions)
or it is proved not to hold, in which case abstract symptoms are detected, the corresponding
assertions are rewritten as "f a l se" assertions, and error messages are presented to the user.
Once again, diagnosis should be started (for example using abstract diagnosis [12, 13]) in order
to detect the cause of the error. It is also possible that a (part of the) assertion cannot be
proved ñor disproved. In this case some assertions (or part of them) remain in check status
(and possibly warning messages are presented to the user).

Note that it may also be interesting to implement analysis in a demand-driven way, so that
information is inferred only for the program points which include assertions. The advantage
of this approach is that it may be more efncient. However, three other considerations should
be weighted against this. First, for many properties it is not possible to isolate the analysis
of a given program point, and a global fixpoint has to be reached in any case, which requires
analyzing at least the whole module involved. Also, the results of analysis are typically useful
in other stages of compilation (e.g., to perform program specialization or other optimizations).
Finally, in our experience bugs can often be detected by visual inspection of the assertions
containing the information inferred by the analyzer, sometimes for program points which are
"distant" from the user-provided check assertions. Compile-time checking is discussed further
in Section 6.

3 The Assertion Language

Assertions may be used in different contexts and for different purposes. In run-time checking,
assertions are traditionally used to express conditions which should hold at run-time. A usual
example is to check that the valué of a variable remains within a given range at a given program
point. In declarative debugging [35], assertions have been used in order to replace the oracle
by allowing the user expressing properties of the intended behaviour of the program [17, 18, 6].
Assertions can also be used to express properties about the program to be checked at compile-
time. An example of this are type declarations (e.g., [24, 36], functional languages, etc.),
which have been shown to be useful in debugging. Assertions have also been used to provide
information to an optimizer in order to perform additional optimizations during code generation
(e.g., [36], which also implements checking). Assertions have also been proposed as a means of
providing additional information to the analyzer, which it can use both to increase the precisión
of the information it infers and/or to perform additional optimizations during code generation
[39, 37, 26, 25]. Also, assertions can be used to represent analysis output in source form and for
communication between different modules of the compiler which deal with analysis information
[8].

The assertion language used in our framework has been designed with the aim of being useful
in all the contexts mentioned above. With this objective in mind, we depart from previous
proposals in allowing more general properties to be expressed. Each tool in each of the contexts
will then use the properties which are relevant to it. Assertions are provided to specify the
program points to which the properties are "attached." In this sense they work as schemas.

:- calis qsort(A.B) : list(A). '/, Al

:- success qsort(A.B) : list(A) => list(B). '/, A2

:- comp qsort(A,B) : (list(A),var(B)) + does_not_f ail. '/, A3

qsort([X|L] ,R) :-

partition(L,X,Ll,L2),

qsort(L2,R2), qsort(Ll,R1),

append(Rl , [X |R2] ,R) .

qsor t ([] , []) .

Figure 2: An example predícate definition with assertions

Due to space limitations, we do not present here the complete assertion language, but rather we
concéntrate on a subset of it which suffices for illustrating the main concepts involved in compile-
time and run-time checking of assertions. In particular, we will focus on predícate assertions
rather than on program point assertions. A more detailed description of the assertion language
can be found in [31, 30].

Predícate assertions relate properties to the invocations of a predícate. Three kinds of predi-
cate assertions are provided; they relate properties to the execution states at the time of calling
the predícate, at the time of its success, and to the whole of its computation. More than one
predícate assertion (of the same or different kinds) may be given for the same predícate. In such
a case, all of them should hold and composition of predícate assertions should be interpreted
as their conjunction.

We first illustrate the use of this kind of assertions with an example. Figure 2 presents (part
of) a CIAO [7] program which implements the quicksort algorithm for sorting lists in ascending
order. The predícate qsor t is annotated with predícate assertions which express properties
which the user expects to hold for the program.6 Three assertions are given for predícate qsor t
(Al, A2, and A3), the meaning of which is explained below.

3.1 Assertions on Success States

They are similar in nature to the postconditions used in program verification. They can be
expressed in our assertion language using the assertion schema ': - success Pred => Postcond.'
It should be interpreted as "for any cali of the form Pred which succeeds, on success Postcond
should hold." For example, we can use the following assertion in order to require that the
output of a procedure (qsort) for sorting lists be a list:

: - s u c c e s s qsort (A,B) => l i s t (B) .

Note that, in contrast to other programming paradigms, in (C)LP, calis to a predícate may

6Both for convenience, i.e., so that the assertions concerning a predícate appear near its definition in the
program text, and for historical reasons, i.e., mode declarations in Prolog or entry and trust declarations in
PLAI [8] we write predícate assertions as directives. Depending on the tool different choices could be imple-
mented, including for example putting assertions in sepárate files or incremental addition of assertions in an
interactive environment.

either succeed or rail. The postcondition stated in a success assertion only refers to successful
executions.

3.2 Assertions Restricted to a Subset of the Calis

Sometimes we are interested in properties which refer not to all invocations of a predicate,
but rather to a subset of them. With this aim we allow the addition of preconditions (Precond)
to predicate assertions as follows: lPred : Precond.' For example, success assertions can be
restricted and we obtain an assertion of the form ' : - success Pred : Precond => Postcond,'
which should be interpreted as "for any cali of the form Pred for which Precond holds, if the cali
succeeds then on success Postcond should also hold." Note that ': - success Pred => Postcond'
is equivalent to ' : - success Pred : t r u e => Postcond.'

For example, the assertion A2 in Figure 2 requires that if qsor t is called with a list in the
first argument position and the cali succeeds, then on success the second argument position
should also be a list.

3.3 Assertions on Cali States

It is also possible to use assertions to describe properties about the calis for a predicate which
may appear at run-time. This is useful for at least two reasons. If we perform goal-dependent
analysis, (a variation of) c a l i s assertions, namely entry assertions (see [8]), may be used for
improving analysis information.7 They can also be used to check at run-time whether any of
the calis for the predicate is not in the expected set of calis (the "inadmissible" calis of [29]). An
assertion of the kind ': - c a l i s Pred : Cond' must be interpreted as "all calis of the form Pred
should satisfy Cond." An example of this kind of assertion is Al in Figure 2 which expresses
that in all calis to predicate qsor t the first argument should be a list.

3.4 Assertions on the Computation of Predicates

Many properties which refer to the computation of the predicate (rather than the input-
output behaviour) are not expressible with the assertions presented above. In particular, no
property which refers to (a sequence of) intermediate states in the computation of the predicate
can be (easily) expressed using c a l i s and success predicate assertions only. Examples of
properties of the computation which we may be interested in are: non-failure, termination,
determinacy, non-suspension, etc. In our language this sort of properties are expressed by an
assertion of the kind ' : - comp Pred : Precond + Comp-prop,' which is interpreted as "for any
cali of the form Pred for which Precond holds, Comp-prop should also hold for the computation
of Pred." Again, the field ': Precond' is optional. For example, A3 in Figure 2 requires that all
calis to predicate qsor t with the first argument being a list and the second a variable do not
fail.

The entry (and trust) declarations are also instrumental in incremental modular analysis.

4 Defining Properties

Whereas each kind of assertion indicates when, Le., in which states or sequences of states, to
check the given properties, the properties themselves define what to check. As mentioned before,
properties are used to say things such as "X is a list of integers," "Y is ground," "p(X) does
not fail," etc. and in our framework they are logic predicates, in the sense that the evaluation
of each property either succeeds or fails. The failure or success of properties typically needs
to be determined at the time when the assertions in which they appear are checked. As also
mentioned previously, assertions can be checked both at compile-time and at run-time. In order
to simplify the discussion, in this section we will concéntrate exclusively on run-time checking
(the role of properties during compile-time checking will be discussed in Section 6).

In order to make it possible to check a property at run-time, some code must exist somewhere
in the system that performs this check. If the set of properties were fixed, the code to be used
when performing the run-time tests could be contained in a predefined library. However, we
would like to allow the user to define new, quite general properties. Since our properties
are predicates, and we have assumed that our source language is a logic and/or constraint
programming language (in which it is natural to define predicates and which typically offers
extended meta-programming facilities), we choose to allow the user to write the definitions of
properties in the source language. Writing the definition of a property in the source language
has the advantage that in principie no special run-time support is then needed for checking
properties at run-time, since it suffices to compile the predicate that defines the property with
the rest of the program and simply cali it at run-time in the appropriate places.8

A property may be a built-in predicate or constraint (such as integer(X) or X>5, and
including extra-logical properties such as var(X)), an expression built using conjunctions of
properties,9 or, in principie, any predicate defined by the user, using the full underlying CLP
language. As an example consider defining the predicate sorted(B) and using it as a postcon-
dition to check that a more involved sorting algorithm such as qsort(A,B) produces correct
results.

However, while we would like to allow writing properties that are as general as allowed by the
full source language syntax, some limitations are useful in practice. Essentially, we would not
like the behaviour of the program to change in a fundamental way depending on whether the
run-time tests are being performed or not. While we can tolérate a degradation in execution
speed, turning on run-time checking should not introduce non-termination in a program which
terminates without run-time checking. To this end, we require that the user ensure that the
execution of properties terminate for any possible initial state. Also, checking a property should
not change the answers computed by the program or produce new side-effects: we will require
that the definition of the property does not further instantiate its input arguments and does
not perform input/output, add/delete clauses, etc. The responsibility of determining that
properties meet these conditions is given to the user, whom we require to identify in a special
way the predicates which he or she have determined to be legal properties. This is done by
means of a declaration of the form " : - prop predicate/arity.,,w

Given the classes of assertions presented previously, there are two fundamental classes of

8Also, this allows using the standard program optimization tools (e.g., the program specializer) to avoid the
run-time overhead of checking properties when they can be proven statically to hold.

9Although disjunctions are also supported, we restrict our attention to only conjunctions in our presentation.
10Nevertheless the compiler performs some basic checks on properties and flags properties which can be

detected with these checks to viólate the required conditions.

properties. The properties used in the Cond of c a l i s assertions, Postcond of success assertions,
and Precond of success and comp assertions refer to a particular execution state and we refer
to them as properties of execution states. The properties used in the Comp-prop part of comp
assertions refer to a sequence of states and we refer to them as properties of computations.

4.1 Writing Properties of Execution States: Compatibility Vs. Instantiation Properties

Consider a definition of the predicate string_concat which concatenates two character
strings (we assume that strings are represented as lists of ASCII codes):

str ing_concat ([] ,L,L) .

s t r ing_concat([X|Xs] ,L,[X|NL]):- string_concat(Xs,L,NL)•

Assume that we would like to state in an assertion that each argument "is a list of integers."
However, we must decide which one of the following two possibilities we mean exactly: "the ar-
gument is instantiated to a list of integers" (let us cali this property i rLstant ia ted_to_int l i s t) ,
or "if any part of the argument is instantiated, this instantiation must be compatible with it
being a list of integers" (we will cali this property compatible_with_intl ist) . For example,
i n s t a n t i a t e d _ t o _ i n t l i s t should succeed for calis with argument [] and [1 ,2] , but should
fail for X, [a ,2] , and [X,2]. In turn, compatible_with_intl ist should succeed for calis with
argument [] , X, [1 ,2] ,and [X, 2] , but should fail for [X | l] , [a ,2] , and 1. We refer to prop-
erties such as in s t a i i t i a t ed_ to_ in t l i s t above as instantiation properties and to those such as
compatible_with_intl ist as compatibility properties (corresponding to the traditional notions
of "instantiation types" and "compatibility types").

It turns out that both of these notions are quite useful in practice. In the example above, we
probably would like to use compatible_with_intl ist to state:

: - success string_concat(A,B,C) => (compat ible_with_int l is t (A) ,

compat ib le_with_int l i s t (B) ,

compatible_with_int l is t(C)) .

With this assertion, no error will be flagged for a cali to s t r ing_concat such as s t r ing_concat ([20] , L, R),
which produces string_concat ([20] ,L, [20 |L]) on success, but a cali string_concat ([] ,a,R)
would indeed flag an error.

On the other hand, and assuming that we are running on a Prolog system, we would probably
like to use i n s t a n t i a t e d _ t o _ i n t l i s t for sumlist as follows:

: - c a l i s sumlist(L,N) : i n s t a n t i a t e d _ t o _ i n t l i s t (L) .

sumlist ([] ,0) .

sumlist([X|R],S) : - sumlist(R,PS), S i s PS+X.

to describe the type of calis for which the program has been designed.

The property i n s t a n t i a t e d _ t o _ i n t l i s t might be written as follows (again, for running on
a Prolog system):

:- prop instantiated_to_intlist/l.

instantiated_to_intlist(X) :-

nonvar(X), instantiated_to_intlist_aux(X).

i n s t a n t i a t e d _ t o _ i n t l i s t _ a u x ([]) .

ins tan t i a t ed_ to_ in t l i s t_aux([X IT]) : -

in teger(X) , i n s t a n t i a t e d _ t o _ i n t l i s t (T) .

(Recall that the Prolog builtin in teger itself implements an instantiation check, failing if called
with a variable as the argument.)

The property compatible_with_intl ist might in turn be written as follows (also in Prolog):

: - prop compa t ib le_wi th_ in t l i s t / l .

compatible_with_intlist(X) :-

var(X) .

compatible_with_intlist(X) :-

nonvar(X), compatible_with_intlist_aux(X).

compat ib le_wi th_in t l i s t_aux([]) .

compatible_with_intl ist_aux([X|T]) : -

int(X), compatible_with_intlist(T).

int(X) :- var(X) .

int(X) :- nonvar(X), integer(X).

Note that these predicates meet the criteria for being properties and thus the prop declaration
is correct.

Ensuring that a property meets the criteria for "not affecting the computation" can sometimes
make its coding somewhat tedious. In some ways, one would like to be able to write simply:

i n t l i s t ([]) .
intlist([X|R]) :- int(X), in t l i s t (R) .

but note that (independently of the definition of in t) the definition above is not the correct
instantiation check, since it would succeed for a cali such as i n t l i s t (X). In fact, it is not correct
as a compatibility property either, because, while it would fail or succeed as expected, it would
perform instantiations (e.g., if called with i n t l i s t (X) it would bind X to []). In practice, it is
convenient to provide some run-time support to aid in this task.

As we will see in Section 5, the run-time support of the framework ensures that the execution
of properties is performed in such a way that properties written as above can be used directly
as instantiation checks. Thus, writing:

: - c a l i s sumlist(L,N) : i n t l i s t (L) .

has the desired effect. Also, the same properties can often be used as compatibility checks by
writing them in the assertions as compat (Property) (which should be interpreted as "Property
holds in the current execution state or it can be made to hold by adding bindings (or constraints)
to the current execution state"). Thus, writing:

:- success string_concat(A,B,C) => (compat(intlist(A)),

compat(intlist(B)),

compat(intlist(C))).

also has the desired effect. As a general rule, the properties that can be used directly for
checking for compatibility should be downwards closed, Le., once they hold they will keep in
holding in every state accessible in forwards execution. There are certain predicates which are
inherently instantiation checks and should not be used as compatibility properties ñor appear
in the definition of a property that is to be used with compat. Examples of such predicates (for
Prolog) are ==, ground, nonvar, in teger , atom, >, etc. as they require a certain instantiation
degree of their arguments in order to succeed.

4.2 Writing Properties of Computations

Properties which appear in comp assertions refer to the entire execution of the predícate
that the assertion refers to. It is therefore assumed that one of its arguments (the first
one) is precisely the given cali to which the property refers. For example, in assertion A3
of Figure 2 for qsort(A,B), the property does_not_fail (with 0 parameters) really means
does_not_fail(qsort(A,B)). For this property, which should be interpreted as "execution
of the predícate either succeeds at least once or loops," we can use the following predícate
does_not_f a i l of arity 1 for run-time checking:

does_not_fai l (Goal) : -

i f (ca l i (Goa l) ,

t r u e , '/,'/, then

warning(Goal)) . '/,'/, e l se

where the warning predícate simply prints a warning message.

In this simple case, implementation of the predícate is not very difficult using the if builtin
predícate present in many Prolog systems. However, it is not so easy to code predicates which
check other properties of the computation and we may in general need to program a meta-
interpreter for this purpose.

5 A Simple Run-time Checking Scheme

In this section we provide a possible scheme for translation of a program with assertions
into code which will perform run-time checking. Our aim herein is not to provide the best
possible transformation (ñor the best definition of auxiliary predicates used by it), but rather
to present simple examples with the objective of showing the feasibility of the implementation
and hopefully clarifying the approach further.

5.1 Properties

In general, run-time testing assertions implies checking whether the properties contained in
them hold or not. If they hold, computation should continué as usual. If they do not hold, an
error message should usually be issued to the user. The following definition of predícate check

can be used for this purpose (we assume tha t conjunctions and sets are implemented by means

of lists):

c h e c k ([]) .

c h e c k ([C o n d | C o n d s]) : -

n o t (i n s t _ p r o p (C o n d)) , ! , e r r o r (C o n d) , c h e c k (C o n d s) .

c h e c k ([_ C o n d | C o n d s]) : - c h e c k (C o n d s) .

where the e r r o r predicate simply prints a message informing about an assertion which does not

hold. Thus, unless otherwise stated by the user (by enclosing a property in a compat meta-cali)

the checking of each individual property is performed by means of the predicate i n s t _ p r o p ,

which represents the instantiation check introduced in Section 4.1. As an example, a possible

implementation (for Prolog) of the i n s t _ p r o p check is:

i n s t _ p r o p (C o n d) : -

copy_term(Cond,NCond), c a l l (N C o n d) , v a r i a n t (N C o n d , C o n d) .

where v a r i a n t checks tha t its arguments are identical up to variable renaming. This guarantees

tha t NCond has not been further instantiated during run-time checking, Le., tha t Cond is not

only compatible, but also implied by the calling substitution. In a CLP setting, the i n s t _ p r o p

check needs to test this implication (Le., it is an entailment tes t) .

Alternatively, if the property is to be checked for compatibility (Le., it is enclosed in a compat

meta-cali), the corresponding test may be done by simply calling the property, allowing tha t

the variables be further instantiated, Le., tha t additional constraints be placed on the store.

However, we do not want this possible further instantiation to be "propagated" to the rest of

the execution. This can be ensured for example by using backtracking to undo things, e.g.

(recalling tha t compatibility properties are wrapped around a compat meta-cali):

c o m p a t (C o n d) : - n o t (n o t (C o n d)) .

5.2 Success Assertions

A possible translation scheme for s u c c e s s assertions into run-time tests is the following.

Let A(J>/TL) represent the set of current assertions for predicate p of arity n. Let S be the set

{Postcond s.t. ' : - s u c c e s s p(Xl,...,Xn) => Postcond' £ A(p/n)}. Then the translation is:

p(Xl Xn) : - p _ i n t (X l Xn) , check(S) .

A possible translation scheme for s u c c e s s assertions with a precondition follows. Let RS
be the set {(Precond, Postcond) s.t. ' : - s u c c e s s p(XÍ, ...,Xn) : Precond => Postcond' £

A(p/n)}. Then the translation is:

p(Xl Xn):-

collect_valid_postc(RS,S),
p_int(Xl Xn) , check(S).

The predícate col lect_val id_postc/2 collects the postconditions of all pairs in RS s.t. the
precondition holds. Note that those assertions whose precondition does not hold are directly
discarded. A possible implementation of such predícate is given below:

c o l l e c t _ v a l i d _ p o s t c ([] , []) .
co l l ec t_va l id_pos t c ([(P re ,Pos t) |Cs] ,PC) : -

n o t (n o t (i n s t _ p r o p (P r e))) , ! ,
PC = [PostlPCs], collect_valid_postc(Cs,PCs).

collect_valid_postc([_ I Cs] , PC) : -
collect_valid_postc(Cs,PC).

The double negation by failure around inst_prop(Pre) is not extrictly required. However it
is introduced for reducing the memory-usage overhead introduced by run-time checking.

5.3 Calis Assertions

Let C be the set {Cond s.t. ' : - c a l i s p(Xl, ...,Xn) : Cond1 £ A(p/n)}. A possible trans-
lation scheme for c a l i s assertions into run-time tests is:

p(Xl Xn):- check(C), p _ i n t (X I , . . . , X n) .

5.4 Comp Assertions

A possible translation scheme of comp assertions into run-time tests is the foUowing. Let
RC be the set {(Prec,Comp-prop) s.t. ' : - comp p(XÍ, ...,Xn) : Prec + Compjprop'' £
A(p/n)}. Then the translation is:

p(Xl Xn):-
col lect_val id_postc(RC,C),
add_arg(C,p_ in t (Xl , . . . ,Xn) ,C1) ,
(Cl == [] ->

c a l l (p _ i n t (X l , . . . ,Xn)) '/„'/„ then
; c a l l _ l i s t (C l)) . '/„'/„ e l se

c a l l _ l i s t ([]) .
c a l l _ l i s t ([C | C s]) : - c a l l (C) , c a l l _ l i s t (C s) .

where the predícate add_arg adds the goal p_int(Xl Xn) as the first argument to any
property of the computation, Le.:

add.arg ([] , _ , []) .
add_arg([CICs],Goal,[NCINCs]) : -

C=. . [F |Args] , NC=..[F,Goal |Args], add_arg(Cs,Goal,NCs).

Note that both success and c a l i s assertions are in a sense special cases of comp assertions,
since properties of cali and success states can also be formalized as properties of the compu-
tation. For example consider the foUowing predicates which could be used for checking c a l i s
and success properties at run-time:

c a l i s (G o a l , P r o p) : - success(Goal ,Prop) : -
(ca l i (Prop) -> ca l i (Goa l) ,

t r u e (ca l i (Prop) ->
; er ror(Prop)) , t r ue
ca l i (Goa l) . ; error(Prop)) .

the assertion ' : - c a l i s p(X) : ground(X)'couldbe wri t ten ' : - comp p(X) + cal is(ground(X)) .
Thus, an assertion language with only the comp predicate assertion would suffice. However,
c a l i s and success assertions appear very often in program debugging and their treatment (at
least for run-time checking) is much simpler than that of the more general comp assertion. As
a result, it is interesting to have a dedicated predicate assertion for them and only use comp
assertions when the specification is not expressible as c a l i s or success assertions.

6 Compile-Time Checking

We now turn our attention to compile-time checking of assertions. As mentioned before,
and motivated by the availability of practical global static analyzers supporting a number of
abstract domains, our approach is to compare the information generated during global analysis
with the check assertions present in the program. Because we typically support properties
which are statically undecidable, the information available at compile-time will not always
allow determining whether a given assertion will hold at run-time or not. This case may also
arise because the analysis itself is not accurate enough. We accept the fact that the approach
will be weaker in general than that offered by, e.g., strong type systems. On the other hand,
the same results obtained with a strong type system can be achieved by selecting an analysis
that uses the same type system as abstract domain and providing sufficient (type) assertions
in the program.

Informally, the actual checking of the assertions at compile-time is performed as follows
(precise details on how to reduce assertions at compile-time can be found in [32]). The properties
which appear in the user-provided check assertions are compared one by one with the properties
inferred by the analysis. An assertion is validated if all its properties are implied by the analysis
results (preconditions require special consideration in this process). On the other hand, errors
are detected if any property specified is incompatible with the analysis results. If it is not
possible to prove ñor to disprove an assertion, then such assertion is left as a check assertion,
for which run-time checks might be generated. However, if some properties are implied but
others cannot be proved ñor disproved, the assertion as a whole can be simplifted, in the sense
of reducing the number of properties which have to be checked at run-time.

For example, assume that we have the following user-provided assertions:

: - check success p(X,Y) => (in t l i s t (X) ,g round(Y)) .
: - check comp p(X,Y) + (does_not_fa i l , t e rmina tes) .

and that we are running a mode and non-failure analysis which has inferred the following
information:

: - t r u e success p(X,Y) => (var(X),ground(Y)).
: - t r u e comp p(X,Y) + does_not_fa i l .

Then, the user-provided assertions could be transformed into:

: - check success p(X,Y) => i n t l i s t (X) .
: - check comp p(X,Y) + t e rmina tes .

With this compile-time simplification process in mind, we discuss further the nature of the
properties which may appear in assertions and their treatment. In traditional systems which
focus on compile-time checking (e.g., type systems), the properties allowed are usually restricted
to those for which the available analyzer (e.g., the type checker) can decide whether they hold
or not at compile-time. Conversely, in traditional systems which focus on run-time checking,
usually only properties which are executable are considered. While most systems using asser-
tions focus on either run-time or compile-time checking, in the framework we propose both
techniques are combined. As a result, compile-time checking must be able to deal (at least
safely) with properties that have perhaps been written with run-time checking in mind or for
which no specific analysis is available. Conversely, the run-time checking machinery must also
be able to deal correctly with properties that are primarily meant for compile-time checking.

Let us divide properties into classes, from the point of view of a given analysis. First, we will
cali native properties those which are directly "understood" (abstracted) by this analysis. This
is the case for example of properties like ground or var for a mode analysis, does_not_fail
for a non-failure analysis, te rminates for a termination analysis, or a predicate defining a
(regular) type for a regular type analysis, etc. These native properties can be recognized when
appearing in an assertion either by ñame (as with ground, var, etc.) or by syntax (e.g., for
regular types [40, 15], which in our case are defined by a regular (puré) logic program, and this
can be recognized at compile-time).

If a property appearing in an assertion is native of an analysis then it is often possible to
either prove it or disprove it, provided that the analysis is accurate enough and the "direction"
of approximation performed by the analysis is the appropriate one [32, 10] (this is the case of the
properties var and does_not_fail in the example above). Also, if the analysis is p rec i se (in
the sense that the abstract operations do not lose information beyond the abstraction implied by
the abstraction function used [14]), then whether such properties hold or not will be decidable
in ail cases. However, since there may in general be cases in which properties remain for run-
time checking (and because in our framework the definition properties can be called from user
programs) we require that there be an executable definition of ail properties available in the
system.

On the other hand, note that there are properties which can be proved (or disproved) at
compile-time by a given analyzer but for which no accurate definition can be written in the
underlying language. An extreme example of this is the property terminates , for which it is
obviously not possible to define a run-time test which will give a warning if it does not hold.
For these properties, an approximate definition may be given, and this approximation should be
correct in the usual sense that ail errors flagged should be errors, but there may be errors that go
unchecked. For example terminates may simply be over-approximated as terminates (_), and
the user should obviously not expect non-termination problems to be detected at run-time with
this definition. In summary, it is not necessary that the executable definition of ail properties
be an exact implementation of a given property, but the user must provide (or import) some
code for each property and understand and take into account the impact of approximation
being performed in the property definition when using these properties in assertions.

Conversely, and again for a given analysis, there may properties which are defined precisely

and are perfectly executable at run-time, but which may not be native for that analysis. For
them, the analysis may not be capable of obtaining an exact representation (abstraction).
However, a useful approximation (usually an over-approximation) of such property can be
obtained by directly analyzing the code which defines the property. As an example, consider the
code for the property i n t l i s t (as defined in Section 4). By simply analyzing this code the
mode analyzer can abstract it (in its use as an instantiation property) as ground.

The fact that the resulting internal representation in the analyzer of a non-native property is
itself an approximation must be taken into account. For example, if an over-approximation of
the property definition is performed (as in the example above), and the analysis is itself an over-
approximating analysis, an occurrence of the property in an assertion cannot be proved to hold.
However, it can be proved that the such property occurrence does not hold, if the information
inferred by the analysis is incompatible, thus detecting an incorrectness symptom. In fact, in
the example above it would be detected that the i n t l i s t (X) (Le., ground(X)) requirement on
success is incompatible with the inferred information var(X), statically detecting the presence
of an error.

In general, typical analyzers obtain over-approximations of properties, Le., they succeed for
a superset of the cases in which the exact property would succeed. However, for the case
of properties in preconditions of success or comp assertions, under-approximations (Le., the
approximation succeeds for a subset of the cases in which the exact property would succeed)
rather than over-approximations should be considered. Otherwise, the preconditions cannot
be guaranteed to hold, and therefore it would not be possible (in general, although there are
some exceptions) to guarantee that the preconditioned assertion is applicable (since the exact
precondition could possibly not be applicable, even though its approximation is implied). More
details on the use of approximations for program debugging can be found in [10, 32].

7 A Sample Debugging Session with the CIAO System

We now illustrate some uses of the proposed framework by means of a sample session with
ciaopp, the CIAO system preprocessor, which is currently a part of the programming environ-
ment, and which is directly based on the proposed approach.11 ciaopp uses as analyzers both
the LP and CLP versions of the PLAI abstract interpreter [28, 9, 21] and adaptations of Gal-
lagher's type analysis [20], and works on a large number of abstract domains including moded
types, definiteness, freeness, and grounding dependencies (as well as more complex properties,
such as bounds on cost, determinacy, non-failure, etc., for Prolog programs).

We consider the program in Figure 3. Note that the program is a module (which helps
performing precise global analysis). Also, note that properties can be defined in the module
itself (e.g., sorted_mim_list) or imported from other modules (e.g., l i s t) , and they can also

11 We have implemented the schema of Figure 1 as a generic framework. This genericity means that different
instances of the tools involved in the schema can be incorporated in a straightforward way. Currently, two
different experimental debugging environments have been developed using this framework: ciaopp, the CIAO
system preprocessor, developed by UPM, and íd types , an assertion-based type inferencing and checking tool
developed by Pawel Pietrzak at the U. of Linkóping, in collaboration with UPM. Also, an assertion-based
preprocessor for ProloglV has been developed by Claude Lai of ProloglA extending the work of [38], which
is based on the same overall design, but separately coded and using simpler analysis techniques. These three
environments share the same source language (ISO-Prolog + flnite domain constraints) and the same assertion
language [31], so that source and output programs (annotated with assertions and/or run-time tests) can be
easily exchanged. ídtypes has been interfaced by Cosytec with the CHIP system (adding a graphical user
interface) and is currently under industrial evaluation.

:- module(qsort, [qsort/2], [assertions]).
:- use_module(library(lists),[list/2]).

:- entry qsort(A,B) : (list(A, num), var(B)).

:- calis qsort(A,B) : list(A, num). % Al
:- success qsort(A,B) => (ground(B), sorted_num_list(B)). % A2

qsort([X|L],R) :-
partition(L,Ll,X,L2),
qsort(L2,R2), qsort(Ll,R1),
append(R2,[X|R1],R).

qsort ([] ,[]).

:- calis partition(A,B,C,D) : (ground(A), ground(B)). % A3
:- success partition(A,B,C,D) => (list(C, num),ground(D)). % A4

partition([] ,_B, [],[]).
partition([E|R],C,[E|Leftl],Right):-

E < C, !, partition(R,C,Leftl,Right).
partition([E|R],C,Left,[ElRightl]):-

E >= C, partition(R,C,Left,Rightl).

a p p e n d ([] , X , X) .

a p p e n d ([H | X] , Y , [H | Z]) : - append(X ,Y ,Z) .

:- prop sorted_num_list/l.

s o r t e d _ n u m _ l i s t ([]) .

s o r t e d _ n u m _ l i s t ([X]) : - number(X) .

s o r t e d _ n u m _ l i s t ([X , Y | Z]) : -

number(X) , number(Y) , X<Y, s o r t e d _ n u m _ l i s t ([Y | Z]) .

Figure 3: A tentative qsort program

be "builtins" (i.e., in modules loaded by default, such as va r , ground, num, etc.). The e n t r y

declaration informs the analyzer tha t in all calis to q s o r t , the first argument will be a list of

numbers and the second a free variable. This will aid goal-dependent analysis in order to obtain

more accurate information (and will also allow program optimizations). Al uses the parametric

type l i s t (A, num) which means tha t A is (or should be) a list of numbers. A2 combines a mode

property (ground) with a user-defined property (so r t ed_num_l i s t) . The code defming such

property is included in the program in Figure 3. A3 only contains mode properties while A4

contains a combination of type and mode properties. Note tha t none of the assertions included

in the program is compulsory and tha t properties natively understood by different analysis

domains may be combined in the same assertion.

Using type and mode analysis, the assertions Al to A4 are simplified at compile-time into:

: - checked c a l i s qsort (A.B) : l i s t (A , n u m) . % Al

: - check s u c c e s s qsort (A.B) => s o r t e d _ n u m _ l i s t (B) . % A2

: - f a l s e c a l i s p a r t i t i o n (A , B , C , D) : ground (A) , ground (B) . */, A3

: - checked s u c c e s s p a r t i t i o n (A , B , C , D) => (l i s t (C , n u m) , ground(D)) . % A4

Assertion A3 has been detected to be false. This is a (compile-time, or abstract) incorrectness
symptom, indicating that the program does not satisfy the (partial) specification given because
the predicate p a r t i t i o n will not be called in the right way. At this point, (possibly abstract)
diagnosis should start in order to detect the cause of the error. The obvious thing to do is to
check the calis to p a r t i t i o n and inspect its arguments. By doing this, the user could easily
detect that in the definition of qsor t , p a r t i t i o n is called with the second and third arguments
reversed. By correcting this bug we obtain the following definition of qsor t :

qsor t ([X | L] ,R) : -

p a r t i t i o n (L , X , L l , L 2) ,

q s o r t (L 2 , R 2) , q s o r t (L l , R 1) ,

append(R2,[X|R1] ,R) .

qsor t ([] , []) .

With this new versión of the program, we proceed to perform compile-time checking of the
assertions once more. This time, the obtained status of assertions is as follows:

: - checked c a l i s qsort (A.B) : l i s t (A , n u m) . % Al

: - check s u c c e s s qsort (A.B) => s o r t e d _ n u m _ l i s t (B) . % A2

: - checked c a l i s p a r t i t i o n (A , B , C , D) : ground(A).ground(B) . % A3

: - checked s u c c e s s p a r t i t i o n (A , B , C , D) => (l i s t (C , num) , ground(D)).' / , A4

No assertion is now detected to be false. Thus, we cannot conclude that the specification
does not hold. Moreover, assertions Al, A3, and A4 have been detected to hold in the program.
However, A2 has not been statically proved. We can see that it has been simplified, and this
is because the mode analysis has determined that on success the second argument of qsor t is
ground, and thus this does not have to be checked at run-time. On the other hand the analyses
used in our session (types and modes) do not provide enough information to prove that the
output of qsor t is a sortea list of numbers. While this property could be captured by including
a more refined domain such as constrained types, it is interesting to see what happens with the
analyses selected.12

Assuming that we stay with the analyses selected previously, the following step in the devel-
opment process is to compile the program obtained above with the "genérate run-time checks"
option. In the current implementation of ciaopp we obtain the following code for predicate
qsor t (the code for p a r t i t i o n and append remain the same as there is no other assertion left
to check):

qsort(A.B) :-

1 2Whether the property sorted_num_list holds in A2 is undecidable with only (over approximations) of mode
and regular type information. However, it may be possible to prove that it does not hold (another example
of how properties which are not natively understood by the analysis can also be useful for detecting bugs at
compile-time): while the regular type analysis cannot capture perfectly the property sorted_num_list, it can
still approximate it (by analyzing the definition) as l i s t (B , num). If type analysis for the program were to
genérate a type for B not compatible with l i s t (B , num), then a defmite error symptom could be detected.

'qsort/int'(A,B),

postc([qsort(C.D) : true => sorted(D)], qsort(A.B)).

'qsort/int'([XIL],R) :-

partition(L,X,Ll,L2),

qsort(L2,R2), qsort(Ll,R1),

append(R2,[X|R1],R).

' q s o r t / i n t ' ([] , []) .

sorted_num_list ([]) .

sor ted_num_l is t ([_]) .

sor ted_num_lis t ([X,Y|Z]) : -

X<Y, sorted_num_list([Y|Z]) .

where poste is the built-in predicate in charge of checking posteonditions of predicates - it
accepts a list of assertions whose posteondition must be checked. The reason for using this
predicate instead of check (which only receives the posteondition as argument), introduced in
Section 5, is that if an error is detected, a more informative message can be printed than if only
the posteondition responsible for the error is available.

Note also that the defmition of predicate sorted_num_list has been optimized by the abstract
specializer [33, 34] by eliminating the number tests. This is possible by taking advantage of type
analysis which tells us that on success the second argument of qsor t is a list of numbers.13

If we run the program with run-time checks in order to sort, say, list [1 ,2] , the CIAO system
generates the following error message:

?- qsort([1,2],L).
ERROR: false success assertion for Goal qsort([1,2], [2,1])
Precondition: true holds, but
Posteondition: sorted_num_list([2,1]) does not hold.

L = [2,1] ?

By observing this error message one can easily realize that there is some problem with qsort ,
as [2,1] is not the result of ordering [1,2] in ascending order. This is a (now, run-time)
incorrectness symptom, which can be used as the starting point of diagnosis, using the previously
mentioned (abstract) declarative diagnosis techniques, standard debugging, etc. The result of
such diagnosis should indicate that the cali to append is the cause of the error and that the
right defmition of predicate qsor t is the one in Figure 2.

13Note that the availability of the abstract specializer allows an alternative implementation of the whole
framework (also using both compile-time and run-time checking of assertions) by first generating in a naive way
a program which performs run-time checking of all assertions and then applying the abstract specializer to this
program. The resulting code would be similar to that obtained with the previous approach (first simplifying
the assertions in a specialized module and then generating code for those which cannot be statically proved).
checked assertions will result in run-time tests that are optimized away, false assertions will result in run-time
tests that are transformed to e r ror , etc. However, we have opted for the first alternative because we have
found that it is easier for the user to understand things in terms of simplified assertions rather by looking at the
run-time tests which remain in transformed code.

Prog

ann
palin
progeom
queen
warplan

Ps

66
6

10
6

31

Types
Props

514
28
58
28

132

Infer

9.64
0.56
0.70
0.23
8.33

Simp

0.55
0.19
0.65
0.09
0.12

Modes
Props

265
15
56
26

71

Infer

1.60
0.18
0.08
0.05
1.83

Simp

1.22
0.02
0.06
0.03
0.07

Aliasing
Props

419
22
57
28
98

Infer

2.22
0.21
0.06
0.04
2.35

Simp

6.57
0.02
0.06
0.04
0.10

Figure 4: Analysis/Checking Performance

8 A Preliminary Experimental Evaluation

The actual evaluation of the practical benefits of these tools is beyond the scope of this
paper, but we are encouraged by our own experiences with the system (and the significant
industrial interest in the prototype shown). It has certainly been observed during use by the
system developers and a few early users that the environment can indeed detect some bugs
much earlier in the program development process than with any previously available tools.
Interestingly, this has been observed even when no specifications (no assertions) are present
in the user program. This is due to the fact that the library modules (such as those defining
the usual system built-ins and standard librarles) often do include a rich set of assertions for
the (exported) predicates defined in these modules. As a result, symptoms in user programs
are often flagged during compilation simply because the analyzer/comparator pair detects that
assertions for the system library predicates are violated by program predicates.

It is also not our current purpose to perform a detailed evaluation of the performance of
the system. However, preliminary results also show that performance is reasonable. Figure 4
presents results for ciaopp, inferring types (using Gallagher's type analyzer [20]), modes (us-
ing a variant of the Sharing+Freeness domain [27]), and variable aliasing (using the standard
Sharing+Freeness). Analysis times are relatively well understood for these domains. The as-
sertion processing time (normalization, simplification, etc.) obviously depends on the number
of assertions in the input program. Given the lack at this point of a standardized set of bench-
marks including assertions, for our preliminary evaluation we have opted for a simple (and with
obvious drawbacks, but at least repeatable) method of generating programs with assertions
automatically: previous to our measurements, we have run the analyzer on each program, pro-
ducing a program annotated with t rue assertions (which express the analysis results) for each
predicate. We have then rewritten such assertions into check assertions, and used the resulting
program again as input to the system. Prog is the program being debugged and Ps the number
of predicates, and, thus, of assertions (analysis variants were collapsed into one per predicate)
in the program. Props is the number of properties which appear in the program assertions.
Infer the analysis time, and Simp the time taken by the comparator to simplify the input
assertions. These times are relative to the time taken by the a standard Prolog compiler (the
SICStus compiler, in this case) to compile the program without assertions. For example, a 2
for Infer means that analysis time is twice a normal Prolog compiler time for the benchmark.

Clearly, in our case all assertions should be proven to be checked statically (and, indeed
ciaopp does so). Figure 5 provides some data on the run-time cost of the assertions eliminated.
It shows the slowdowns incurred when running the programs with the assertions relative to
the running times of the original programs without assertions. Prog and Props are as before.
Obviously, in our stylized case, when running the programs with assertions through ciaopp no

P r o g

ann

palin

progeom

queen

warplan

With Run-time Checks
Types

P r o p s

514

28

58

28

132

S l o w d o w n

2.95

15.0

104

6.10

190

Modes
P r o p s

265

15

56

26

71

S l o w d o w n

3.55

6.00

65.0

6.10

151

Aliasing

P r o p s

419

22

57

28

98

S l o w d o w n

3.50

9.00

66.0

6.10

177

Figure 5: Run-Time Checking Cost

slowdowns occur, since all run-time checks are eliminated.

Again, the purpose of presenting these results is just to give a flavor for the behavior of
the system. Clearly, the results should be contrasted with those obtained in an exhaustive
evaluation, using more realistic, user provided assertions, which is left as future work.

9 Discussion

Software development is a dimcult and error-prone task. Automatic tools for aiding in vali-
dation and debugging of programs are of great importance, especially those which allow finding
problems at compile-time. Type checking is without a doubt one of the most successful tech-
niques for compile-time bug detection. Type systems can be regarded as simple assertion-based
frameworks with a limited property language. These properties (i.e., the types) are defined
using a restricted syntax which (in our terms) guarantees that the resulting expression is na-
tively understood by the analyzer (generally just a checker, see below). In traditional strongly
typed languages, type declarations must exist for each procedure and each declaration must be
as accurate as possible. Then, an emcient type checking algorithm is used. If type checking
succeeds, then the program is guaranteed to be type-correct. This avoids the need for run-time
checking. The type checking algorithm is typically (quasi) decidable in the sense that if the
program is type-correct then the algorithm is able to prove it. Thus, the traditional approach is
to reject those programs which do not pass the type check as they are (almost surely) incorrect
w.r.t. the given type declarations.

In spite of the above mentioned benefits of strongly typed systems, there are many situations
in which such a framework is too restrictive. Examples of this are when we do not wish to impose
having assertions (e.g., type declarations) for all predicates (which would be unnatural for
untyped languages), when the assertions are not as accurate as possible (for example, only some
arguments are described), or, even more importantly, when we are interested in properties which
are more general than types but for which we may not have a complete algorithm for checking
them at compile-time. Nowadays, more and more powerful static analyzers are available which
are capable of inferring non-trivial properties about programs, but which fall in the above
category in that, unlike (traditional) types, these properties are in general not completely
decidable at compile-time. Thus, such analyzers can only perform a safe approximation, i.e., if
analysis concludes that the property holds, then it actually holds. However, analysis may not
be able to conclude that certain property holds when it indeed holds, even if it understands
this property "natively."

One of the main motivations for the framework we propose is to help automate as much as

possible the validation and debugging of programs w.r.t. properties which lay out of traditional
type-systems. Unless we do so, we cannot use in an automatic way the results offered of the
large number of existing and very powerful analyzers which "only" approximate properties.
Also, we believe that the approach we propose is arguably more suitable as an extensión to
untyped languages, such as Prolog and many instantiations of the CLP scheme.

Once we lift the requirement that properties be statically decidable we open up a different
design space beyond that of classical type systems which offers much more flexibility than
traditional strong type systems: assertions are optional, the user can define new properties,
and the approach can deal with properties which type systems simply cannot handle. In order
to achieve this, the framework has to correctly deal throughout with approximations. This
extensión is done knowingly at the expense of completeness, in the sense that there may be
cases in which the program is correct w.r.t. the (partial) specification but we may not be able
to prove it statically. However, this loss of completeness only occurs for the more general cases,
since the traditional "complete" cases (such as decidable type systems) also fall within the
framework (in the form of a particular abstract domain).

References

1. A. Aggoun, F. Benhamou, F. Bueno, M. Carro, P. Deransart, W. Drabent, G. Ferrand, F. Goualard,
M. Hermenegildo, C. Lai, J.Lloyd, J. Maluszynski, G. Puebla, and A. Tessier. CP Debugging Tools:
Clarification of Functionalities and Selection of the Tools. Technical Report D.WP1.1.M1.1-2,
DISCIPL Project, June 1997.

2. K. Apt, editor. From Logic Programming lo Prolog. Prentice-Hall, Hemel Hempstead, Hertford-
shire, England, 1997.

3. K. R. Apt and E. Marchiori. Reasoning about Prolog programs: from modes through types to
assertions. Formal Aspects of Computing, 6(6):743-765, 1994.

4. K. R. Apt and D. Pedreschi. Reasoning about termination of puré PROLOG programs. Informa
tion and Computation, 1(106):109-157, 1993.

5. F. Bourdoncle. Abstract debugging of higher-order imperative languages. In Programming Lan-
guages Design and Implementation'93, pages 46-55, 1993.

6. J. Boye, W. Drabent, and J. Maluszynski. Declarative diagnosis of constraint programs:
an assertion-based approach. In Proc. of the Srd. Int'l Workshop on Automated Debugging-
AADEBUG'97, pages 123-141, Linkoping, Sweden, May 1997. U. of Linkoping Press.

7. F. Bueno. The CIAO Multiparadigm Compiler: A User's Manual. Technical Report CLIP8/95.0,
Facultad de Informática, UPM, June 1995.

8. F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Standard Prolog Pro-
grams. In European Symposium on Programming, number 1058 in LNCS, pages 108-124, Sweden,
April 1996. Springer-Verlag.

9. F. Bueno, M. García de la Banda, and M. Hermenegildo. Effectiveness of Abstract Interpreta-
tion in Automatic Parallelization: A Case Study in Logic Programming. ACM Transactions on
Programming Languages and Systems, 1998. In Press.

10. F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszynski, and G. Puebla.
On the Role of Semantic Approximations in Validation and Diagnosis of Constraint Logic Pro-
grams. In Proc. of the Srd. Int'l Workshop on Automated Debugging-AADEBUG'97, pages 155—
170, Linkoping, Sweden, May 1997. U. of Linkoping Press.

11. B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic Abstract Inter-
pretaron Algorithm for Prolog. ACM Transactions on Programming Languages and Systems,
16(1):35-101, 1994.

12. M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Proving properties of logic programs by ab-
stract diagnosis. In M. Dams, editor, Analysis and Verification of Múltiple-Agent Languages, 5th
LOMAPS Workshop, number 1192 in Lecture Notes in Computer Science, pages 22-50. Springer-
Verlag, 1996.

13. M. Comini, G. Levi, and G. Vitiello. Abstract debugging of logic programs. In L. Fribourg
and F. Turini, editors, Proc. Logic Program Synthesis and Transformation and Metaprogramming
in Logic 1994, volume 883 of Lecture Notes in Computer Science, pages 440-450, Berlin, 1994.
Springer-Verlag.

14. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. In Fourth ACM Symposium on
Principies of Programming Languages, pages 238-252, 1977.

15. P.W. Dart and J. Zobel. A regular type language for logic programs. In F. Pfenning, editor, Types
in Logic Programming, pages 157-187. MIT Press, 1992.

16. P. Deransart. Proof methods of declarative properties of defmite programs. Theoretical Computer
Science, 118:99-166, 1993.

17. W. Drabent, S. Nadjm-Tehrani, and J. Maluszyñski. The Use of Assertions in Algorithmic De-
bugging. In Proceedings of the Intl. Conf. on Fifth Generation Computer Systems, pages 573-581,
1988.

18. W. Drabent, S. Nadjm-Tehrani, and J. Maluszyñski. Algorithmic debugging with assertions. In
H. Abramson and M.H.Rogers, editors, Meta-programming in Logic Programming, pages 501-522.
MIT Press, 1989.

19. G. Ferrand. Error diagnosis in logic programming. J. Logic Programming, 4:177-198, 1987.

20. J.P. Gallagher and D.A. de Waal. Fast and precise regular approximations of logic programs.
In Pascal Van Hentenryck, editor, Proceedings of the Eleventh International Conference on Logic
Programming, pages 599-613. The MIT Press, 1994.

21. M. García de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier, G. Janssens, and
W. Simoens. Global Analysis of Constraint Logic Programs. ACM Transactions on Program
ming Languages and Systems, 18(5):564-615, 1996.

22. M. Hermenegildo and The CLIP Group. Programming with Global Analysis. In Proceedings of
ILPS'97, pages 49-52, Cambridge, MA, October 1997. MIT Press, (abstract of invited talk).

23. M. Hermenegildo, R. Warren, and S. K. Debray. Global Flow Analysis as a Practical Compilation
Tool. Journal of Logic Programming, 13(4):349-367, August 1992.

24. P. Hill and J. Lloyd. The Goedel Programming Language. MIT Press, Cambridge MA, 1994.

25. A. Kelly, A. Macdonald, K. Marriott, P. Stuckey, and R. Yap. Effectiveness of optimizing com-
pilation for CLP(R). In Proceedings of Joint International Conference and Symposium on Logic
Programming, pages 37-51. MIT Press, 1996.

26. K. Marriott and P. Stuckey. The 3 R's of Optimizing Constraint Logic Programs: Refmement,
Removal, and Reordering. In 19th. Annual ACM Conf. on Principies of Programming Languages.
ACM, 1992.

27. K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and Freeness of
Program Variables Through Abstract Interpretation. In 1991 International Conference on Logic
Programming, pages 49-63. MIT Press, June 1991.

28. K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable Dependency Using
Abstract Interpretation. Journal of Logic Programming, 13(2/3):315-347, July 1992. Originally
published as Technical Report FIM 59.1/IA/90, Computer Science Dept, Universidad Politécnica
de Madrid, Spain, August 1990.

29. L. Naish. A three-valued declarative debugging scheme. In 8th Workshop on Logic Programming
Environments, July 1997. ICLP Post-Conference Workshop.

30. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Debugging of Constraint
Logic Programs. In Proceedings of the ILPS'97 Workshop on Tools and Environments for (Con
straint) Logic Programming, October 1997.

31. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Debugging of Constraint
Logic Programs. Technical Report CLIP2/97.1, Facultad de Informática, UPM, July 1997.

32. G. Puebla, F. Bueno, and M. Hermenegildo. A Framework for Assertion-based Debugging in
Constraint Logic Programming. In Proceedings of the JICSLP'98 Workshop on Types for CLP,
Manchester, UK, June 1998.

33. G. Puebla and M. Hermenegildo. Implementation of Múltiple Specialization in Logic Programs.
In Proc. ACM SIGPLAN Symposium on Partial Evaluation and Semantics Based Program Manip-
ulation, pages 77-87. ACM Press, June 1995.

34. G. Puebla and M. Hermenegildo. Abstract Múltiple Specialization and its Application to Program
Parallelization. Journal of Logic Programming. Special Issue on Synthesis, Transformation and
Analysis of Logic Programs, 1999. To appear.

35. E. Shapiro. Algorithmic Program Debugging. ACM Distiguished Dissertation. MIT Press, 1982.

36. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury: an efficient purely

declarative logic programming language. JLP, 29(1-3), October 1996.

37. P. Van Roy and A.M. Despain. High-Performace Logic Programming with the Aquarius Prolog
Compiler. IEEE Computer Magazine, pages 54-68, January 1992.

38. E. Vetillard. Utüisation de Declarations en Programmation Logique avec Constraintes. PhD thesis,
U. of Aix-Marseilles II, 1994.

39. R. Warren, M. Hermenegildo, and S. K. Debray. On the Practicality of Global Flow Analysis of
Logic Programs. In Fifth International Conference and Symposium on Logic Programming, pages
684-699. MIT Press, August 1988.

40. E. Yardeni and E. Shapiro. A Type System for Logic Programs. Concurrent Prolog: Collected
Papers, pages 211-244, 1987.

