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Abstract

The large-time behavior of solutions to the Burgers equation with small viscosity is described using
invariant manifolds. In particular, a geometric explanation is provided for a phenomenon known as
metastability, which in the present context means that solutions spend a very long time near the family
of solutions known as diffusive N-waves before finally converging to a stable self-similar diffusion wave.
More precisely, it is shown that in terms of similarity, or scaling, variables in an algebraically weighted
L2 space, the self-similar diffusion waves correspond to a one-dimensional global center manifold of
stationary solutions. Through each of these fixed points there exists a one-dimensional, global, attractive,
invariant manifold corresponding to the diffusive N-waves. Thus, metastability corresponds to a fast
transient in which solutions approach this “metastable” manifold of diffusive N-waves, followed by a
slow decay along this manifold, and, finally, convergence to the self-similar diffusion wave.

1 Introduction

The study of stable, or stationary, states of a physical system is a well established field of applied math-
ematics. Less well known or understood are “metastable” states. Such states are not fixed points of the
underlying equations of motion but are typically a family of states which emerge relatively quickly, dom-
inate the evolution of the system for long times, and then ultimately give way to the asymptotic state of
the system (from which they are typically distinct). Their presence is a signal that multiple time scales
are important in the problem – for instance, one time scale might be associated with the emergence of the
metastable state, one associated with the evolution along the family of such states, and one associated with
the emergence of the asymptotic states. (There may, of course be additional intermediate time scales.)

An important class of physical systems in which metastable states play a significant role is two-dimensional
fluid flows. In three dimensional turbulent fluids, energy typically flows from large scale features through
increasingly smaller length scales until ultimately it is dissipated by viscous processes in the fluid. In
two-dimensions this process is reversed and energy flows from small scales to large, leading to the so-called
“inverse cascade” of energy. This leads rapidly to the emergence of large scale structures or “vortices” in
the system, and the evolution and interaction of a relatively small number of these vortices then dominates
the flow for a very long time until viscous effects finally lead to the emergence of the asymptotic state.

Two-dimensional viscous fluids are described the by Navier-Stokes equations, a system of nonlinear partial
differential equations, which describe the evolution of the velocity of the fluid (or equivalently, the evolution

1



Figure 1: Evolution of the vorticity, ω, for the two-dimensional Navier-Stokes equation with periodic
boundary conditions as computed by Yin, Montgomery and Clercx, [YMC03, Figure 5]. Reproduced with
permission.

of its vorticity). The emergence of the metastable states in such flows is well illustrated in the numerical
solution of these equations [MSM+91, YMC03]. For instance, in Figure (1) (reproduced with permission
from [YMC03, Figure 5]), one sees that already after a time t = 100, the system has converged to a set of
two vortices of opposite sign which then persist for a very long time. Note that the time scale t ∼ O(102) on
which these vortices appear is much, much shorter that the viscous time scale determined by the viscosity
parameter which in these computations was µ−1 = 5000.

To date, there is no rigorous understanding of the emergence of these metastable states in the Navier-
Stokes equation, nor an explanation for the time scale on which they appear. However, in this paper we
will explore a similar phenomenon in Burgers equation. Burgers equation was proposed as a simplified
model of turbulence by Burgers [Bur48] because, like the Navier-Stokes equation, it combines diffusive
effects with a transport term. However, Burgers equation is much simpler both due to its one-dimensional
character, as well as the fact that it is explicitly solvable via the Cole-Hopf transformation.

A key aspect of the development of metastable structures in equations like the Navier-Stokes equation is the
interplay between viscous and inviscid effects and much work has gone into understanding the relationship
between the solutions for zero and nonzero viscosities. For an overview, see, for example, [Daf05, Liu00].
With regard to the Burgers equation, one key property is the following. If uµ = uµ(x, t) denotes the solution
to the Burgers equation with viscosity µ and u0 = u0(x, t) denotes the solution to the inviscid (µ = 0)
equation, then it is known that uµ → u0 in an appropriate sense for any fixed t > 0 as µ → 0. However,
for fixed µ, the large-time behavior of uµ and u0 is quite different, and they converge to solutions known
as diffusion waves and N-waves, respectively. Thus, the limits µ→ 0 and t→∞ are not interchangeable.

Metastability has recently been investigated in the Burgers equation with small viscosity on an unbounded
domain [KT01]. In [KT01], the authors observe numerically that solutions spend a very long time near a
family of solutions known as “diffusive N-waves” before finally converging to the stable family of diffusion
waves. See Figure (2) (reproduced with permission from [KT01, Figure 1]). The diffusive N-wave appears
at time τ = 2, whereas the diffusion wave does not emerge until time τ = 100. Note that, for µ = 10−2,
these times correspond to log(µ) and 1/µ, respectively.
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Figure 2: Evolution of the solution to Burgers equation in terms of similarity variables for µ = 0.01 (see
((2.2) - (2.3)) below – the s above corresponds to τ in those equations) as computed by Kim and Tzavaras,
[KT01, Figure 1]. Reproduced with permission.
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This terminology1 is due to the fact that the diffusive N-waves are close to inviscid N-waves. In [KT01]
this is proven in a pointwise sense. Furthermore, in terms of scaling, or similarity, variables, they compute
an asymptotic (in time) expansion for solutions to the Burgers equation with small viscosity. They find
that the stable diffusion waves correspond to the first term in the expansion, whereas the diffusive N-waves
correspond to taking the first two terms. Thus, by characterizing the metastability in terms of these
diffusive N-waves, they provide a way of understanding the interplay between the limits µ→ 0 and t→∞.

The theory of invariant manifolds has been a great aid in understanding the qualitative behavior of dynam-
ical systems. The presence of stable, unstable or center manifolds in a system provides both a geometric
picture of the possible asymptotic behaviors of the system, as well as being a powerful computational tool.
For instance, the presence of a center manifold can often be used near a bifurcation point to reduce reduce
the effective dimensionality of the system from infinity (in the case of a partial differential equation) to
just one or two.

In this paper, we show that the metastable behavior in the viscous Burgers equation, described in [KT01],
can be viewed as the approach to, and the motion along, a normally attractive, invariant manifold in
the phase space of the equation. In terms of the similarity variables, we show that one has the following
picture. There exists a global, one-dimensional center manifold of stationary solutions corresponding to
the self-similar diffusion waves. Through each of these fixed points there exists a global, one-dimensional,
invariant, normally attractive manifold corresponding to the diffusive N-waves. At the fixed point in the
center manifold which represents the diffusion wave governing the long-time asymptotics of the solution,
this “metastable manifold” is tangent to the eigenspace of the eigenvalue closest to zero (the zero eigenspace
corresponds to motion along the center manifold) as would be expected for the leading order term in an
asymptotic expansion of the long-time behavior of the solution. For almost any initial condition, the
corresponding solution of the Burgers equation approaches one of the diffusive N-wave manifolds on a
relatively fast timescale: τ = O(| logµ|). Due to attractivity, the solution remains close to this manifold
for all time and moves along it on a slower timescale, τ = O(1/µ), toward the fixed point which has the
same total mass. Note that this corresponds to an extremely long timescale t ≈ O(e1/µ) in the original
unscaled time variable. This scenario is illustrated in Figure (3).

In Burgers equation, the metastable states (diffusive N-waves) are closely related to solutions of the inviscid
equation (N-waves). A similar scenario is generally believed to be true also for the 2D Navier–Stokes
equation. The metastable states in that context, which are given by solutions consisting of multiple
localized, well-separated vortices, are very similar to certain stationary solutions of the Euler equation,
which is the inviscid limit of the Navier–Stokes equation. Although this has not been rigorously justified,
there are results in that direction. See, for example, [CPR08, CPR09, Gal10].

Another similarity between Burgers equation and the 2D Navier–Stokes equation is apparent when one
studies them from the point of view of dynamical systems. In [GW05] it was proved that there exists a
one-dimensional center manifold of stationary solutions, similar to that depicted in Figure (3), for the 2D
Navier–Stokes equation. (See section (6) for more details.) Thus, it is possible that one could obtain a
similar geometric understanding of metastability in 2D Navier–Stokes.

1These diffusive N-waves are also discussed in [Whi99, section 4.5], where they are referred to simply as N-waves. Here, as

in [KT01], we reserve the term N-wave for solutions of the inviscid equation and diffusive N-wave for solutions of the viscous

equation.
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Figure 3: A schematic diagram of the invariant manifolds in the phase space of the Burgers equation,
((2.3)), and their role in the metastable behavior. The solution trajectory experiences an initial fast
transient of τ = O(| logµ|) before entering a neighborhood of the manifold of diffusive N-waves. It then
remains in this neighborhood for all time as it approaches, on the slower timescale of τ = O(1/µ), a point
on the manifold of stable stationary states. The horizontal axis corresponds to the eigenfunction, ϕ0,
associated with the zero eigenvalue, and the vertical axis corresponds to the directions orthogonal to it.

It is interesting to note that the timescales in Figure (3) are in some sense unexpected. Often metastability
is associated with the presence of eigenvalues that are asymptotically small with respect to the small
parameter - in this case the viscosity µ. However, the relevant linear operator that appears in the present
analysis has spectrum independent of the viscosity, and the leading eigenvalues appear at 0,−1/2,−1, . . . .
However, the asymptotic decay towards the center manifold is not given by terms like O(e−τ/2), O(e−τ ),
. . . . Instead, the appropriate timescales are µ-dependent. We believe this is related to large coefficients
that appear in the eigenfunction expansion of solutions. This could result from nonlinear effects, or possibly
also from effects of the pseudo-spectrum, which is a property of many non-self-adjoint linear operators that
can result in long transients in the dynamics of the system [TE05, GGN09].

The phenomenon of metastability occurs not just in the Burgers equation and the 2D Navier–Stokes
equation, but in a wide variety of contexts. Some of the previous work that is closely related to that of
this paper can be described as follows. In the setting of shocks in viscous conservation laws and fronts
in gradient-type systems, such as Allen–Cahn and Cahn–Hilliard, all with small viscosity, the metastable
behavior often manifests itself as the slow motion of thin transition layers. Much like the vortex patches for
Navier–Stokes, these transition layers coalesce on very large timescales, until only a single transition for the
shock/front solution remains. It was first noted in [KK86] that the convergence toward the viscous shock
in the Burgers equation on a bounded domain can be very slow. Work toward understanding the dynamics
of the transition layers in gradient systems on bounded domains was begun in [FH89, CP89, CP90], and a
general result can be found in [OR07].

Further work includes asymptotic analysis for the motion of the transition layers and, in particular, the
effect of the boundary conditions on this motion. For bounded domains, see [RW95b, RW95a, SW99, LO99].
On semi-infinite domains, asymptotic analysis can be found in [WR95], with rigorous justification in [LY97].

On unbounded domains, the analysis in [Che04] for gradient systems rigorously characterizes the metastable
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behavior by breaking it down into four stages. Particularly relevant for this paper is the result in [Che04]
that the timescale of the initial transient is O(| logµ|). We obtain a similar result for the Burgers equation.
See Theorem (1).

The Burgers equation on unbounded domains has been analyzed in [KT01], which was mentioned above,
and also in [KN02]. In the latter, the authors focus largely on obtaining sharp decay rates for the conver-
gence of solutions of the Burgers equation to the diffusion waves and diffusive N-waves. This is accomplished
by adding some additional parameters into the diffusion waves and diffusive N-waves related to the center
of mass of the initial data. Although the decay rates are not stated in terms of the size of the viscosity
coefficient, in [KN02, sections 4 and 5] the authors do relate their results to the metastability observed
in [KT01] through some illustrative calculations and numerical simulations. We also mention the related
work [Sac87, Figure 5.9], in which slow decay of the diffusive N-waves was observed numerically.

On the surface, it seems that the mechanism creating the metastability in gradient systems, like Allen–
Cahn, and in conservation laws, such as Burgers and Navier–Stokes, could be different. For example, in
gradient systems, the stable, limiting states can be thought of as minimizers of some appropriate energy
functional and metastable states as states that lie along the bottom of a steep-sided, but with gently
sloping bottom, valley of that functional. Furthermore, in equations of the form ut = µuxx − f ′(u), like
those studied in [CP89, Che04], the zero-viscosity equation is just an ODE. Thus, well-posedness of the
limiting equation is not an issue. For conservation laws, it is not clear that there is an appropriate way to
formulate the dynamics in terms of the minimization of energy. Furthermore, the corresponding inviscid
equation is still a PDE and one that is not well-posed in the same sense as the viscous one.

In addition, as mentioned above, logarithmic timescales are observed in the metastability of the Burgers
equation in this work and also in gradient systems [Che04]. However, we believe the mechanism is different.
For the latter, an ODE governs the dynamics, to leading order, until gradients ofO(µ) develop. This process
takes place exponentially fast in time, which leads to the logarithmic timescale. However, for the former,
the leading order dynamics are governed by an inviscid conservation law, and so the formation of gradients
is controlled only by motion along the characteristics, which is linear. The logarithmic timescale appears
only in terms of the similarity variables, which induce exponential growth on the characteristics. Thus,
in terms of the original (x, t) variables, the timescales for the Burgers equation and the gradient systems
studied in [Che04] are actually different.

On the other hand, there are reasons to believe there could be important mathematical connections between
the two settings. For example, in the gradient setting, the energy functional plays an important role. When
the Burgers equation and Navier–Stokes are written in terms of similarity variables, in some sense there is an
energy functional associated with those equations, as well. For Navier–Stokes it is the entropy functional,
and it was used in [GW05] in analyzing the global stability of the Oseen vortex. See also [DM05]. A
similar entropy functional exists for the Burgers equation, via the Cole–Hopf transformation. However,
these functionals are defined only for everywhere positive (or negative) solutions. Since the metastable
states are sign-varying, it is not clear that these functionals could be used to understand metastability for
such systems.

A connection could also be made between metastability in Burgers and 2D Navier-Stokes and certain types
of stochastic differential equations. For example, in that context, long time scales are associated with first
order phase transitions. Roughly speaking, this refers the time it takes for a particle that is trapped in a
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local minimum of a potential to jump to another local minimum, when subjected to random perturbations.
Under certain assumptions, logarithmic timescales appear in that setting, as well [BG10].

The remainder of the paper is organized as follows. In section (2) we state the equations and function spaces
within which we will work, as well as some preliminary facts about the existence of invariant manifolds in
the phase space of the Burgers equation. We also precisely formulate our results, Theorems (1) and (2). In
sections (3), (4), and (5) we prove Lemma (2.3), Theorem (1), and Theorem (2), respectively. Concluding
remarks are contained in section (6). Finally, the appendix contains a calculation that is referred to in
section (2) and that originally appeared in [KT01].

2 Set-up and statement of results

We now explain the set-up for the analysis and some preliminary results on invariant manifolds. Our main
results are precisely stated in section (2.3).

2.1 Equations and scaling variables

The scalar, viscous Burgers equation is the initial value problem

∂tu = µ∂2
xu− uux,

u|t=0 = h, (2.1)

where ∂t = ∂/∂t, ∂x = ∂/∂x, u = u(x, t) : R×R+ → R, and we assume the viscosity coefficient µ is small:
0 < µ� 1. For reasons described below, it is convenient to work in so-called similarity or scaling variables,
defined as

u(x, t) =
1√

1 + t
w

(
x√

1 + t
, log(t+ 1)

)
,

ξ =
x√

1 + t
, τ = log(t+ 1). (2.2)

In terms of these variables, ((2.1)) becomes

∂τw = Lµw − wwξ,
w|τ=0 = h, (2.3)

where Lµw = µ∂2
ξw + 1

2∂ξ(ξw).

We will study the evolution of (2.3) in the algebraically weighted Hilbert space

L2(m) =
{
w ∈ L2(R) : ‖w‖2L2(m) =

∫
(1 + ξ2)m|w(ξ)|2dξ <∞

}
.

It was shown in [GW02] that, in the spaces L2(m) with m > 1/2, the operator Lµ generates a strongly
continuous semigroup, and its spectrum is given by

σ(Lµ) =
{
−n

2
, n ∈ N

}
∪
{
λ ∈ C : Re(λ) ≤ 1

4
− m

2

}
. (2.4)
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This is exactly the reason why the similarity variables are so useful. Equation ((2.4)) shows that the
operator Lµ has a gap, at least for m > 1/2, between the continuous part of the spectrum and the
zero eigenvalue. As m is increased, more isolated eigenvalues are revealed, allowing one to construct the
associated invariant manifolds (see below for more details). In contrast, the linear operator in ((2.1)), in
terms of the original variable x, has a spectrum given by (−∞, 0], which prevents the use of standard
methods for constructing invariant manifolds.

For future reference, we remark that the eigenfunctions associated to the isolated eigenvalues λ = −n/2
are given by

ϕ0(ξ) =
1√
4πµ

e
− ξ

2

4µ , ϕn(ξ) = (∂nξ ϕ0)(ξ). (2.5)

See [GW02] for more details. Smoothness and well-posedness of ((2.1)) and ((2.3)) can be dealt with using
standard methods, for example, information about the linear semigroups and nonlinear estimates using
variation of constants.

2.2 Invariant manifolds

We now present the construction, in the phase space of (2.3), of the explicit, global, one-dimensional
center manifold that consists of self-similar stationary solutions. We remark that this is similar to the
global manifold of stationary vortex solutions of 2D Navier–Stokes equations analyzed in [GW05]. First,
note that stationary solutions satisfy

∂ξ

(
µwξ +

1
2
ξw − 1

2
w2

)
= 0.

They can be found explicitly by integrating the above equation and rewriting it as

∂ξ(eξ
2/(4µ)w)

(eξ2/(4µ)w)2
=

1
2µ
e−ξ

2/(4µ).

Integrating both sides of this equation from −∞ to ξ leads to the following self-similar stationary solution
for each α0 ∈ R:

w(ξ) =
α0e
−ξ2/(4µ)

1− α0
2µ

∫ ξ
−∞ e

−η2/(4µ)dη
.

Note that (2.3) preserves mass, and we can therefore characterize these solutions by relating the parameter
α0 to the total mass M of the solution. We have

M =
∫ ∞
−∞

w(ξ)dξ = α0

∫ ∞
−∞

e−ξ
2/(4µ)

1− α0
2µ

∫ ξ
−∞ e

−η2/(4µ)dη
dξ = −2µ log

(
1− α0

√
π

µ

)
,

where we have made the change of variables θ = 1− α0
2µ

∫ ξ
−∞ e

−η2/(4µ)dη. Therefore, we define

AM (ξ) =
α0e
−ξ2/(4µ)

1− α0
2µ

∫ ξ
−∞ e

−η2/(4µ)dη
, α0 =

√
µ

π
(1− e−M/(2µ)). (2.6)

These solutions are often referred to as diffusion waves [Liu00].

For m > 1/2, the operator Lµ has a spectral gap in L2(m). By applying, for example, the results of
[CHT97], we can conclude that there exists a local, one-dimensional center manifold near the origin. In
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addition, because each member of the family of diffusion waves is a fixed point for (2.3), they must be
contained in this center manifold. Thus, this manifold is in fact global, as indicated by Figure (3).

Remark 2.1. Another way to identify this family of asymptotic states is by means of the Cole–Hopf
transformation, which works for the rescaled form of the Burgers equation as well as for the original form
(2.1). If w is a solution of (2.3), define

W (ξ, τ) = w(ξ, τ)e−
1
2µ

R ξ
−∞ w(y,τ)dy = −2µ∂ξ exp

(
− 1

2µ

∫ ξ

−∞
w(y, τ)dy

)
. (2.7)

A straightforward computation shows that W satisfies the linear equation

∂τW = LµW. (2.8)

Conversely, let W be a solution of (2.8) for which 1− 1
2µ

∫ ξ
−∞W (y, τ)dy > 0 for all ξ ∈ R and τ > 0. Then

the inverse of the above Cole–Hopf transformation is

w(ξ, τ) = −2µ∂ξ log
(

1− 1
2µ

∫ ξ

−∞
W (y, τ)dy

)
. (2.9)

The family of scalar multiples of the zero eigenfunction, β0ϕ0(ξ), where ϕ0 is given in ((2.5)), is an invariant
manifold (in fact, an invariant subspace) of fixed points for (2.8). Thus, the image of this family under
(2.9) must be an invariant manifold of fixed points for (2.3). Computing this image leads exactly to the
family ((2.6)), where β0 =

√
4πµα0.

Remark 2.2. One can prove that this self-similar family of diffusion waves is globally stable using the
entropy functional

H[w](τ) =
∫

R
w(ξ, τ)e−

1
2µ

R ξ
−∞ w(y,τ)dy log

w(ξ, τ)e−
1
2µ

R ξ
−∞ w(y,τ)dy

e
− ξ2

4µ

 dξ.
This is just the standard entropy functional for the linear equation ((2.8)) with potential ξ2/(4µ), in
combination with the Cole–Hopf transformation. For further details regarding these facts, see [DiF03].

We next construct the manifold of diffusive N-waves. Recall that, by ((2.4)), if m > 3/2, then both the
eigenvalue at 0 and the eigenvalue at −1/2 are isolated. The latter will lead to a one-dimensional stable
manifold at each stationary solution.

To see this, define w = AM + v and obtain

vτ = AMµ v − vvξ,
AMµ v = Lµv − (AMv)ξ, (2.10)

where AMµ is just the linearization of ((2.3)) about the diffusion wave with mass M . One can see explicitly,
using the Cole–Hopf transformation, that the operators Lµ and AMµ are conjugate with the conjugacy
operator given explicitly by

AMµ U = ULµ,

U = ∂ξ

[(∫ ξ

−∞
·
)
e

1
2µ

R ξ
−∞ AM (y)dy

]
, U−1 = ∂ξ

[(∫ ξ

−∞
·
)
e
− 1

2µ

R ξ
−∞ AM (y)dy

]
.
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Thus, one can check that the spectra of the operators AMµ and Lµ are equivalent in L2(m). Furthermore,
we can see explicitly that the eigenfunctions of AMµ are given explicitly by

Φn(ξ) = ∂ξ

 ∫ ξ
−∞ ϕn(y)dy

1− α
2µ

∫ ξ
−∞ e

− η2
4µ dη

 ,

where ϕn is an eigenfunction of Lµ. Notice that, up to a scalar multiple, Φ1 = ∂ξAM . If we choose
m > 3/2, by ((2.4)) we can then construct a local, 2D center-stable manifold near each diffusion wave.
We wish to show that, if the mass is chosen appropriately, then this manifold is actually one-dimensional.
Furthermore, we must show that this manifold is a global manifold.

To do this, we appeal to the Cole–Hopf transformation. Using ((2.7)), we define

V (ξ, τ) = v(ξ, τ)e−
1
2µ

R ξ
−∞ v(y,τ)dy

and find that V solves the linear equation

∂τV = AMµ V.

Thus, the 2D center-stable subspace is given by span{Φ0,Φ1}. The adjoint eigenfunction associated with
Φ0 is just a constant. Therefore, if we restrict ourselves to initial conditions that satisfy∫

R
V (ξ, 0)dξ = 0, (2.11)

then the subspace will be one-dimensional and will be given by solutions of the form

V (ξ, τ) = α1Φ1(ξ)e−
τ
2 .

One can check that condition ((2.11)) is equivalent to∫
R
v(ξ, 0)dξ = 0.

Since w = AM +v, we can ensure that this condition is satisfied by choosing the diffusion wave that satisfies

M =
∫

R
AM (ξ)dξ =

∫
R
w(ξ, 0)dξ.

Thus, near each diffusion wave of mass M , there exists a local invariant foliation of solutions with the same
mass M that decay to the diffusion wave at rate e−

1
2
τ .

To extend this to a global foliation, we simply apply the inverse Cole–Hopf transformation ((2.9)), as in
Remark (2.1), to the invariant subspace

{V (ξ, τ) = α1Φ1(ξ)} = {V (ξ, τ) = α1∂ξAM}.

This leads to the global stable invariant foliation consisting of solutions to ((2.10)) of the form

vN (ξ, τ) =
α1e
− τ

2A′M (ξ)
1− α1

2µe
− τ

2AM (ξ)
.
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Using the relationship between v and w, this foliation leads to a family of solutions of ((2.3)) of the form

w̃N (ξ, τ) = AM (ξ) + vN (ξ, τ) = AM (ξ) +
α1e
− τ

2A′M (ξ)
1− α1

2µe
− τ

2AM (ξ)
. (2.12)

Below it will be convenient to use a slightly different formulation of this family, which we now present.

The subspace span{ϕ0, ϕ1}, corresponding to the first two eigenfunctions in ((2.5)), is invariant for ((2.8)).
Therefore, as in Remark (2.1), by using the inverse Cole–Hopf transformation ((2.9)) we immediately
obtain the explicit, two parameter family

wN (ξ, τ) =
β0ϕ0(ξ) + β1e

− τ
2ϕ1(ξ)

1− β0

2µ

∫ ξ
−∞ ϕ0(y)dy − β1

2µe
− τ

2ϕ0(ξ)
, (2.13)

where
β0 =

√
4πµα0 = 2µ(1− e−M2µ ). (2.14)

Based on the above analysis, ((2.13)) and ((2.12)) are equivalent. Note that, although the method used
to produce ((2.13)) is much more direct than that of ((2.12)), we needed to use the operator AM and
its spectral properties to justify the claim that this family does in fact correspond to an invariant stable
foliation of the manifold of diffusion waves.

We now explain why solutions of the form ((2.13)) are referred to as the family of diffusive N-waves. As
mentioned in section 1, this terminology was justified in [KT01] by showing that each solution wN is close
to an inviscid N-wave pointwise in space. Since we are working in L2(m), we need to prove a similar result
in that space.

Recall some facts about the N-waves, which can be found, for example, in [Liu00]. Define

p = −2 inf
y

∫ y

−∞
u(x)dx, and q = 2 sup

y

∫ ∞
y

u(x)dx, (2.15)

which are invariant for solutions of ((2.1)) when µ = 0. (Note that our definitions of p and q differ from
those in [KT01] by a factor of 2.) The mass satisfies M = (q − p)/2. We will refer to q as the “positive
mass” of the solution and p as the “negative mass” of the solution. The associated N-wave is given by

Np,q(x, t) =

 x
t+1 if −√p(t+ 1) < x <

√
q(t+ 1),

0 otherwise,

which is a weak solution of ((2.1)) only when µ = 0. When 0 < µ� 1 it is only an approximate solution
because the necessary jump condition associated with weak solutions is not satisfied. One can check that
its positive and negative masses are given by q and p. In terms of the similarity variables ((2.2)), this gives
a two parameter family of stationary solutions

Np,q(ξ) =

ξ if −√p < ξ <
√
q,

0 otherwise

of ((2.3)) when µ = 0.
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We now relate the quantities β0 and β1 in ((2.13)) to the quantities p and q. These calculations closely
follow those of [KT01, section 5]. Using ((2.14)) and the fact that M = (q − p)/2, we see that

β0 = 2µ(1− e−
(q−p)

4µ ) =

2µ+ exp if q > p,

−2µe−
(q−p)

4µ +O(µ) if q < p,
(2.16)

where exp = O(e−C/µ) for some C > 0. Using the calculation in the appendix, one can relate the quantity
β1 in ((2.13)), for any fixed τ , to the quantities p and q via

β1e
− τ

2 = −4µ3/2√πep/(4µ) − 1
√
µ√
π

+O(µ) for 0 < q < p, (2.17)

and a similar result holds for q > p > 0. Two key consequences of this, which will be used below, are as
follows:

• The quantities β0 and β1 are related via
β0

β1
= exp.

• The values of p and q for the diffusive N-waves change on a timescale of τ = O( 1
µ). (Recall that they

are invariant only for µ = 0.)

This second property, which can be seen by differentiating ((2.17)) with respect to τ , will lead to the slow
drift along the manifold of diffusive N-waves (see below for more details).

The following lemma, which will be proved in section (3), states precisely that there exists an N-wave
that is close in L2(m) to each member of the family wN , at least if the viscosity is sufficiently small, thus
justifying the terminology “diffusive N-wave.”

Lemma 2.3. Given any positive constants δ, p, and q, let wN (ξ, τ) be a member of the family ((2.13)) of
diffusive N -waves such that, at time τ = τ0, the positive mass of wN (·, τ0) is q and the negative mass is p.
There exists a µ0 > 0 sufficiently small such that, if 0 < µ < µ0, then

‖wN (·, τ0)−Np.q(·)‖L2(m) < δ.

2.3 Statement of main results

We have seen above that the phase space of ((2.3)) does possess the global invariant manifold structure that
is indicated in Figure (3). To complete the analysis, we must prove our two main results, which provide
the fast timescale on which solutions approach the family of diffusive N-waves and the slow timescale on
which solutions decay, along the metastable family of diffusive N-waves, to the stationary diffusion wave.

Theorem 1 (the initial transient). Fix m > 3/2. Let w(ξ, τ) denote the solution to the initial value
problem ((2.3)) whose initial data has mass M , and let Np,q(ξ) be the inviscid N-wave with values p and
q determined by the initial data w(ξ, 0) = h(ξ) ∈ L2(m). Given any δ > 0, there exist a T > 0, which is
O(| logµ|), and a µ sufficiently small so that

12



||w(T )−Np,q||L2(m) ≤ δ.

This theorem states that, although the quantities p and q are determined by the initial data w(ξ, 0), w is
close to the associated N-wave, Np,q, at a time τ = T = O(| logµ|). The reason for this is that p = p(τ) and
q = q(τ) change on a timescale of O(1/µ), which can be seen using ((2.17)) and is slower than the initial
evolution of w. The rate of change of p and q also determines the rate of motion of solutions along the
manifold of diffusive N-waves, as illustrated in Figure (3). Note that this theorem states that the solution
will be close to an inviscid N-wave after a time T = O(| logµ|). By combining this with Lemma (2.3), we
see that the solution is also close to a diffusive N-wave.

We remark that the timescale O(| logµ|) is similar to the timescale obtained in [Che04] when analyzing
metastability in gradient systems. Furthermore, this timescale corresponds well with the numerical obser-
vations of [KT01, Figure 1], where one can see that, for µ = 0.01, the solution looks like a diffusive N-wave
at time 2 and a diffusion wave at time 100.

Remark 2.4. To some extent, this fast approach to the manifold of N-waves can be thought of in terms of
the Cole–Hopf transformation ((2.7)), which depends on µ. For small µ, this nonlinear coordinate change
can reduce the variation in the solution for |ξ| large. This is illustrated in Figure 5.1 of [KN02]. If µ is
small enough, the Cole–Hopf transformation can make the initial data look like an N-wave even before any
evolution has taken place.

Theorem 2 (local attractivity). There exists a c0 sufficiently small such that, for any solution w(·, τ) of
the viscous Burgers equation ((2.3)) for which the initial conditions satisfy

w|τ=0 = w0
N + φ0,

where w0
N is a diffusive N -wave and ‖φ0‖L2(m) ≤ c0, there exists a constant Cφ such that

w(·, τ) = wN (·, τ) + φ(·, τ),

with wN the corresponding diffusive N -wave solution and

‖φ(·, τ)‖L2(m) ≤ Cφe−τ .

By combining these results, we obtain a geometric description of metastability. Theorem (1) and Lemma
(2.3) tell us that, for any solution, there exists a T = O(| logµ|) at which point the solution is near a
diffusive N-wave. By using Theorem (2) with this solution at time T as the “initial data,” we see that the
solution must remain near the family of diffusive N-waves for all time. As remarked above, the timescale
of O(1/µ) on which the solution decays to the stationary diffusion wave is then determined by the rates
of change of p(τ) and q(τ) within the family of diffusive N-waves. In other words, near the manifold
of diffusive N-waves, w(ξ, τ) = wN (ξ, τ) + φ(ξ, τ), where φ(ξ, τ) ∼ e−τ and wN (ξ, τ) is approaching a
self-similar diffusion wave on a timescale determined by the rates of change of p(τ) and q(τ), which are
O(1/µ).

We remark that it is not the spectrum of Lµ that determines, with respect to µ, the rate of metastable
motion. Instead, this is given by the sizes of the coefficients β0 and β1 in the spectral expansion and their
relationship to the quantities p and q.
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3 Proof of Lemma (2.3)

We now prove Lemma (2.3).

In [KT01], Kim and Tzavaras prove that the inviscid N-wave is the pointwise limit, as µ → 0, of the
diffusive N-wave. Here we extend their argument to show that one also has convergence in the L2(m)
norm. For simplicity we will check explicitly the case in which 0 < q < p; the case in which q is larger
than p follows in an analogous fashion. However, we note that we do require that both p and q be nonzero,
which is why we stated in the introduction that our results hold only for “almost all” initial conditions.
See Remark (3.1) below.

Using ((2.12)) we can write the diffusive N-wave with positive and negative mass given by q and p at time
τ0 as

wN (ξ, τ0) =
β0ϕ0(ξ) + β1e

−τ0/2ϕ1(ξ)

1− β0

2µ

∫ ξ
−∞ ϕ0(y)dy − β1

2µe
−τ0/2ϕ0(ξ)

=
β0ϕ0(ξ) + β̃1ϕ1(ξ)

1− β0

2µ

∫ ξ
−∞ ϕ0(y)dy − β̃1

2µϕ0(ξ)
,

where for notational simplicity we have defined β̃1 = β1e
−τ0/2. If we now recall that ϕ1(ξ) = − ξ

2µϕ0(ξ),
we can rewrite the expression for the wN as

wN (ξ, τ0) =
ξ − 2µβ0

β̃1

1− 2µ

β̃1ϕ0(ξ)
{1− β0

2µ

∫ ξ
−∞ ϕ0(y)dy}

. (3.1)

We need to prove that ∫ ∞
−∞

(1 + ξ2)m(wN (ξ, τ0)−Np,q(ξ))2 < δ2.

We will give the details for ∫ ∞
0

(1 + ξ2)m(wN (ξ, τ0)−Np,q(ξ))2 < δ2/2.

The integral over the negative half axis is entirely analogous.

Break the integral over the positive axis into three pieces—the integral from [0,
√
q − ε], the integral from

[
√
q − ε,√q + ε], and the integral from [

√
q + ε,∞). Here ε is a small constant that will be fixed in the

discussion below. We refer to the integrals over each of these subintervals as I, II, and III, respectively,
and bound each of them in turn.

The simplest one to bound is the integral II. Note that, using ((2.14)) and ((2.17)), the denominator in
((3.1)) can be bounded from below by 1/2 and, thus, the integrand can be bounded by C(1+(

√
q+ ε)2)mq.

Therefore, if ε <
√
q, we have the elementary bound

II ≤ Cεq(1 + 4q)m.

Next consider term III. For ξ >
√
q, Np,q(ξ) = 0, and so

III =
∫ ∞
√
q+ε

(1 + ξ2)m(wp,q(ξ, τ0))2dξ.

To estimate this term we begin by considering the denominator in (3.1). Using ((2.16)) and ((2.17)), we
have

1− β0

2µ

∫ ξ

−∞
ϕ0(y)dy = e

1
4µ

(p−q) +
β0

2µ

∫ ∞
ξ

ϕ0(y)dy.
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Thus, the full denominator in (3.1) has the form

1− 2µ
β̃1ϕ0(ξ)

{
e

1
4µ

(p−q) +
β0

2µ

∫ ∞
ξ

ϕ0(y)dy
}

= 1− 4
√
πµ3/2

β̃1

e
1
4µ

(p−q)
eξ

2/(4µ) +
β0

β̃1

∫∞
ξ ϕ0(y)dy

ϕ0(ξ)

= 1 +
4
√
πµ3/2

1
√
πµ3/2ep/(4µ) +O(

√
µ)
e

1
4µ

(p−q)
eξ

2/(4µ) + exp

= 1 +

(
e

1
4µ

(ξ2−q)

1 +O(µ−1e−p/(4µ))

)
+ exp,

where exp denotes terms that are exponentially small in µ (i.e., contain terms of the form e−p/(4µ) or
e−q/(4µ)), uniformly in ξ. Note that, in the above, the term

∫∞
ξ ϕ0(y)dy/ϕ0(ξ) was bounded uniformly in

µ using the estimate ∫ ∞
x

e−
s2

2 ds ≤ 1
x
e−

x2

2 for x > 0,

which can be found in [KS91, Problem 9.22]. But with this estimate on the denominator of wN , we can
bound the integral III by

III ≤ C
∫ ∞
√
q+ε

(1 + ξ2)m
(
ξ − 2µβ0

β̃1

)2

(1 + e
1
4µ

(ξ2−q))−2dξ,

where the constant C can be chosen independently of µ for µ < µ0 if µ0 is sufficiently small. This integral
can now be bounded by elementary estimates, and we find

III ≤ Ce−ε
√
q/2µ,

where the constant C depends on q but can be chosen independently of µ.

Finally, we bound the integral I. Note that for 0 < ξ <
√
q, Np,q(ξ) = ξ, and so

wp,q(ξ, τ0)−Np,q(ξ) =
−2µβ0

β̃1
+ ξe

1
4µ

(ξ2−q) + ξexp

(1 + e(ξ2−q)/4µ + exp)
.

However, using our expressions for β0,1 in terms of p and q and the fact that in term I ξ2 − q < −ε√q,
we see that all of these terms are exponentially small. Since the length of the interval of integration is
bounded by

√
q, we have the bound

I ≤ Cqe−ε
√
q/(4µ) + exp.

Combining the estimates on the terms I, II, and III, we see that if we first choose ε� δ and then µ� ε,
the estimate in the lemma follows. This completes the proof of Lemma (2.3).

Remark 3.1. The calculation in the appendix shows that β1 = 0 if and only if p = 0 or q = 0. Therefore,
in that case, wN is really just a diffusion wave, and so there is no metastable period in which it looks like
an inviscid N-wave.
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4 Proof of Theorem (1)

In this section we show that for arbitrary initial data in L2(m), m > 3/2, the solution approaches an
inviscid N-wave in a time of O(| logµ|), thus proving Theorem (1).

Remark 4.1. Here we will use a different form of the Cole–Hopf transformation than that given in ((2.7)).
In particular, we will use

U(x, t) = e
− 1

2µ

R x
−∞ u(y,t)dy. (4.1)

Equation ((2.7)) is essentially the derivative of ((4.1)), and both transform the nonlinear Burgers equation
into the linear heat equation. Each is useful to us in different ways. Equation ((2.7)) preserves the
localization of functions, for example, whereas ((4.1)) leads to a slightly simpler inverse, which will be
easier to work with in the current section.

Using the Cole–Hopf transformation ((4.1)) and the formula for the solution of the heat equation, we find
that the solution of (2.1) can be written as

u(x, t) =

∫ (x−y)
t e

− 1
2µ( 1

2t
(x−y)2+H(y))dy∫

e
− 1

2µ( 1
2t

(x−y)2+H(y))dy
,

where H(y) =
∫ y
−∞ h(z)dz. If we change to the rescaled variables ((2.2)), this gives the solution to (2.3) in

the form

w(ξ, τ) =
∫

(ξ − η)e−
1
2µ( 1

2
(ξ−η)2+H(eτ/2η))dη∫

e
− 1

2µ( 1
2

(ξ−η)2+H(eτ/2η))dη
. (4.2)

We will prove that, if we fix δ > 0, then there exist a µ sufficiently small and a T sufficiently large
(O(| logµ|) as µ→ 0) such that

‖w(·, T )−Np,q(·)‖L2(m) < δ.

We estimate the norm by breaking the corresponding integral into subintegrals using (−∞,−√p − ε),
(−√p− ε,−√p+ ε), (−√p+ ε,−ε), (−ε, ε), (ε,

√
q − ε), (

√
q − ε,√q + ε), and (

√
q + ε,∞). Note that the

integrals over the “short” intervals can all be bounded by Cε, so we ignore them. We estimate the integrals
over (ε,

√
q − ε) and (

√
q + ε,∞); the remaining two are very similar.

First, consider the region where ξ >
√
q+ ε. In this region, N(ξ) ≡ 0, so we need only to show that, given

any δ > 0, there exist a µ sufficiently small and a T > 0, of O(| logµ|), such that∫ ∞
√
q+ε

(1 + ξ2)m|w(ξ, τ)|2dξ < δ.

Consider the formula for w given in ((4.2)). To bound this, we must bound the denominator from below
and the numerator from above. We will first focus on the denominator.
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We will write the denominator as∫
e
− 1

2µ( 1
2

(ξ−η)2+H(eτ/2η))dη =
∫ −Re−τ/2
−∞

e
− 1

2µ( 1
2

(ξ−η)2+H(eτ/2η))dη

+
∫ ∞
Re−τ/2

e
− 1

2µ( 1
2

(ξ−η)2+H(eτ/2η))dη

+
∫ Re−τ/2

−Re−τ/2
e
− 1

2µ( 1
2

(ξ−η)2+H(eτ/2η))dη

≡ I1 + I2 + I3

for some R > 0 that will be determined later. Consider the first integral, I1. In this region

|H(e
τ
2 η)| =

∣∣∣∣∣
∫ e

τ
2 η

−∞

1
(1 + y2)

m
2

(1 + y2)
m
2 h(y)dy

∣∣∣∣∣
≤ ||h||m

∫ −R
−∞

1
(1 + y2)m

dy

≤ C(R, ||h||m),

(4.3)

where the constant C(R, ||h||m) → 0 as R → ∞ or ||h||m → 0. In addition, note that the error function
satisfies the bounds

z

1 + z2
e−

z2

2 ≤
∫ ∞
z

e−
s2

2 ds ≤ 1
z
e−

z2

2

for z > 0 [KS91, p. 112, Problem 9.22]. Therefore, we have that

I1 ≥ e−
C(R,||h||m)

2µ

∫ −Re τ2
−∞

e
− 1

4µ
(ξ−η)2

dη

≥ e
−C(R,||h||m)

2µ
2µ(ξ +Re−τ/2)

2µ+ (ξ +Re−
τ
2 )2

e
− (ξ+Re

− τ2 )2

4µ

≥ C µ√
q
e
−C(R,||h||m)

2µ e
− (ξ+Re

− τ2 )2

4µ

≥ C µ√
q
e
−C(R,||h||m)

2µ e
−R

2e−τ
2µ e

− ξ
2

2µ ,

(4.4)

where we have used the fact that (a+ b)2 ≤ 2a2 + 2b2. In order to bound I2, we will use that, for η > Re
τ
2 ,

similar to ((4.3)), ∣∣∣∣∣
∫ e

τ
2 η

−∞
h(y)dy

∣∣∣∣∣ =
∣∣∣∣M − ∫ ∞

e
τ
2 η
h(y)dy

∣∣∣∣ ≤M + C(R, ||h||m).

Therefore,

I2 ≥ e−
1
2µ

(M+C(R,||h||m))
∫ ∞
Re−

τ
2

e
− 1

4µ
(ξ−η)2

dη

= e
− 1

2µ
(M+C(R,||h||m))

√
4µ
∫ ξ−Re−

τ
2√

4µ

−∞
e−s

2
ds

≥ Ce− 1
2µ

(M+C(R,||h||m))
√

4µ.

(4.5)

Note that in making the above estimate, we have chosen τ large enough so that |Re− τ2 | < ε/2, and so
ξ −Re−τ/2 > 0. Thus, the error function is bounded from below by

√
π/2.
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Consider I3. We can bound

H(e
τ
2 η) = M −

∫ ∞
e
τ
2 η
h(y)dy ≤M +

q

2
.

Therefore,

I3 ≥ e−
1
2µ

(M+ q
2

)
∫ Re

τ
2

Re−
τ
2

e
− 1

4µ
(ξ−η)2

dη

≥ e− 1
2µ

(M+ q
2

)
e
− ξ

2

2µ

∫ Re−
τ
2

−Re−
τ
2

e
− η

2

2µ dη

≥ e− 1
2µ

(M+ q
2

)
e
− ξ

2

2µ 2Re−
τ
2 e
−R

2e−τ
2µ .

(4.6)

Taking the largest of ((4.4)), ((4.5)), and ((4.6)), we obtain∫
e
− 1

2µ( 1
2

(ξ−η)2+H(eτ/2η)) ≥ C√µe− 1
2µ

(M+C(R,||h||m)). (4.7)

Now, we will bound the numerator in ((4.2)) from above. We will split the integral up into the same three
regions as above and denote the resulting terms by J1, J2, and J3. First, we have

|J1| =
∣∣∣∣∣
∫ −Re− τ2
−∞

(ξ − η)e−
1
4µ

(ξ−η)2
e
− 1

2µ
H(e

τ
2 η)
dη

∣∣∣∣∣
≤
∣∣∣∣∣eC(R,||h||m)

2µ

∫ −Re− τ2
−∞

(ξ − η)e−
1
4µ

(ξ−η)2
dη

∣∣∣∣∣
= e

C(R,||h||m)
2µ 2µe−

(ξ+Re
− τ2 )2

4µ

≤ 2µe
C(R,||h||m)

2µ e
− ξ

2

4µ .

(4.8)

Next, consider J2. We have

|J2| =
∣∣∣∣∫ ∞
Re−

τ
2

(ξ − η)e−
1
4µ

(ξ−η)2
e
− 1

2µ
H(e

τ
2 η)
dη

∣∣∣∣ .
If we now integrate by parts inside the integral and use the fact that H(e

τ
2 η) ≥M − (q/2), we obtain

|J2| ≤ Cµe−
M
2µ e

1
4µ

[q−(ξ−Re−τ/2)2]

+ e
−M

2µ

∣∣∣∣∫ ∞
Reτ/2

e
− 1

4µ
(ξ−η)2

h(eτ/2η)e+ 1
2µ

(M−H(e
τ
2 η))

dη

∣∣∣∣ . (4.9)

We now turn to J3. Again we use the fact that H(e
τ
2 η) ≥M − (q/2). Then

|J3| ≤ 2CRe−
τ
2 e
−M

2µ (ξ +Re−
τ
2 )e

1
4µ

[q−(ξ−Re−τ/2)2]. (4.10)

Combining the estimates for the Ji’s, ((4.8))–((4.10)), and the estimate for the denominator ((4.7)), we

18



have ∫ ∞
√
q+ε

(1 + ξ2)m|w(ξ, τ)|2dξ ≤ C
∫ ∞
√
q+ε

(1 + ξ2)mµe
M
µ e

2
µ
C(R,||h||m)

e
− ξ

2

2µdξ

+ C

∫ ∞
√
q+ε

(1 + ξ2)m
1
µ
e

1
µ
C(R,||h||m)(Re−

τ
2 )2(ξ +Re−

τ
2 )2e

1
2µ

[q−(ξ−Re−τ/2)2]
dξ

+ C

∫ ∞
√
q+ε

(1 + ξ2)mµe
1
µ
C(R,||h||m)

e
1
2µ

[q−(ξ−Re−τ/2)2]
dξ

+ C

∫ ∞
√
q+ε

(1 + ξ2)m
1
µ
e

1
µ
C(R,||h||m)

∣∣∣∣∫ ∞
Re−τ/2

e
− 1

4µ
(ξ−η)2

h(eτ/2η)e+ 1
2µ

(M−H(e
τ
2 η))

dη

∣∣∣∣2 dξ
=: I + II + III + IV .

We now estimate term II. Terms I and III are similar. Define z = ξ −√q − ε ∈ (0,∞). Recalling that τ
has been chosen sufficiently large so that Re−

τ
2 < ε/2, we have

e
1
2µ

[q−(ξ−Re−τ/2)2] ≤ e− 1
2µ
z2
e
− 1

8µ
ε2
e
− 1

2µ
ε
√
q.

Therefore, we have

|II| ≤ C

µ
e

1
µ
C(R,||h||m)

∫ ∞
0

(1 + (z +
√
q + ε)2)m

(
z +
√
q +

3
2
ε

)
e
− 1

2µ
z2
e
− 1

8µ
ε2
e
− 1

2µ
ε
√
q
dz

≤ C(
√
q)2m+1e

− 1
2µ
ε
√
q 1√

µ
e

1
µ
C(R,||h||m)

e
− 1

8µ
ε2 .

This can be made as small as we like (for any q) by choosing R large enough so that C(R, ||h||m) < ε2/16
and µ is sufficiently small.

Term IV can be bound by

|IV | ≤ C 1
µ
e

2
µ
C(R,||h||m)||f(z) ∗ g(z)||2L2 ,

where f(z) = (1 + |z|m)h(eτ/2z) and g(z) = (1 + |z|m)e−
1
4µ
z2 , and we have used the fact that (1 + |ξ|m) ≤

C(1 + |ξ−η|m)(1 + |η|m). Estimating the convolution by the L1 norm of g and the L2 norm of f , we arrive
at

|IV | ≤ Ce−τ/2e 2
µ
C(R,||h||m)||h||2m.

In order to make this term small, we must choose R so that C(R, ||h||m) ∼ µ as µ → 0. One can check
that C(R, ||h||m) ≤ C||h||m/R2m−1. Since we have required that Re−τ/2 < ε/2, this means we must choose
τ large enough so that

τ ≥ C

2m− 1
| log(µ)|.

Term IV will then be small because e−τ/2 is.

Next consider the part of the integral contributing to ‖w(·, τ) −N(·)‖m for ε < ξ <
√
q − ε. We assume,

as above, that Re−τ/2 < ε/2. From (4.2) and the fact that N(ξ) = ξ for ξ in this range, we have

w(ξ, τ)−N(ξ) = −
∫
ηe
− 1

2µ( 1
2

(ξ−η)2+H(eτ/2η))dη∫
e
− 1

2µ( 1
2

(ξ−η)2+H(eτ/2η))dη
.
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As above we will split the denominator up into three pieces, I1–I3, to bound it from below, and split the
numerator up into three pieces, J1–J3, to bound it from above. Many of the estimates are similar to those
above, and so we omit some of the details.

For the denominator, we have

|I1| ≥ e−
1
2µ
C(R,||h||m)

∫ −Re−τ/2
−∞

e
− 1

2µ( 1
2

(ξ−η)2)dη

≥ Cµe− 1
2µ
C(R,||h||m)

e
− ξ

2

4µ .

Also,
|I2| ≥ C√µe−

1
2µ

(M+C(R,||h||m)),

where, as above, we have used the fact that ξ −Re−τ/2 > 0. Finally, we have

|I3| ≥ e−
M
2µ
− q

4µ 2Re−τ/2e−
1
4µ

(ξ−Re−τ/2)2 .

For the numerator, we have

|J1| ≤ e
C(R,||h||m)

2µ

∫ −Re−τ/2
−∞

−ηe− 1
4µ

(ξ−η)2
dη

≤ e
C(R,||h||m)

2µ

∫ ∞
ξ+Re−τ/2

(z − ξ)e− z
2

4µdz

≤ Cµe
C(R,||h||m)

2µ e
− (ξ+Re−τ/2)2

4µ + Cµξe
− (ξ+Re−τ/2)2

4µ

≤ Cµξe− ξ
2

4µ ,

where we have used the fact that ξ > 0. Next,

|J2| ≤ e−
M
2µ e

C(R,||h||m)
2µ

√
4µ
∫ ξ−Re−τ/2√

4µ

−∞
(ξ −

√
4µz)e−z

2
dz

≤ Cµξe−M2µ e
C(R,||h||m)

2µ e
− (ξ−Re−τ/2)2

4µ .

Finally,
|J3| ≤ Ce−

M
2µ e

C(R,||h||m)
2µ (Re−τ/2)2e

− 1
4µ

(ξ−Re−τ/2)2
.

Therefore, we have ∫ √q−ε
ε

(1 + ξ2)m|w(ξ, τ)−N(ξ)|2dξ

≤ C
∫ √q−ε
ε

(1 + ξ2)m

ξe−M2µ eC(R,||h||m)
2µ e

− (ξ−Re−τ/2)2

4µ

√
µe
− 1

2µ
(M+C(R,||h||m))

2

dξ

≤ C 1
µ

∫ √q−ε
ε

(1 + ξ2)m+1e
2
µ
C(R,||h||m)

e
− (ξ−Re−τ/2)2

2µ dξ

≤ C 1
µ
e

2
µ
C(R,||h||m)

∫ √q−2ε

0
(1 + (z + ε)2)me−

ε2

8µ e
− zε

2µ e
− z

2

2µdz

≤ C 1√
µ
e

2
µ
C(R,||h||m)

e
− ε

2

8µ ,

where we have used the change of variables ξ = z + ε. This can be made small by first choosing R large
enough so that 2C(R, ||h||m) < ε2/8, and then taking µ small.
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5 Proof of Theorem (2)

In the previous section we saw that in a time τ = O(| logµ|) we end up in an arbitrarily small (but O(1)
with respect to µ) neighborhood of the manifold of diffusive N-waves. In the present section we show that
this manifold is locally attractive by proving Theorem (2).

Remark 5.1. An additional consequence of the proof of this theorem is that the manifold of diffusive
N-waves is attracting in a Lyapunov sense because the rate of approach to it, O(e−τ ), is faster than the
decay along it, O(e−τ/2). Note that this is not immediate from just spectral considerations since this
manifold does not consist of fixed points. Therefore, the eigendirections at each point on the manifold can
change as the solution moves along it.

Remark 5.2. In [KN02, section 5], the authors make a numerical study of the metastable asymptotics
of the Burgers equation. Their numerics indicate that, while the rate of convergence toward the diffusive
N-wave (e−τ in our formulation) seems to be optimal, the constant in front of the convergence rate (Cφ
in our formulation) can be very large for some initial conditions. In fact, our proof indicates that this
constant can be as large as O(1/µ) max{1, eM/2µ}.
To prove the theorem note that by the Cole–Hopf transformation we know that if w(ξ, τ) = wN (ξ, τ) +
φ(ξ, τ) solves the rescaled Burgers equation, where wN is given in ((2.13)), then

W (ξ, τ) = (wN (ξ, τ) + φ(ξ, τ))e−
1
2µ

R ξ
−∞(wN (y,τ)+φ(y,τ))dy

is a solution of the (rescaled) heat equation:

∂τW = LµW.

We now write W = VN + Ψ, where VN = wN exp(− 1
2µ

∫ ξ
−∞wN (y, τ)dy) = β0ϕ0(ξ) + β1e

−τ/2ϕ1(ξ). That
is, VN is the heat equation representation of the diffusive N-wave, which we know is a linear combination
of the Gaussian, ϕ0, and ϕ1.

With the aid of the Cole–Hopf transformation we can show that φ decreases with the rate claimed in
Theorem (2). To see this, first note that if we choose the coefficients β0 and β1 appropriately, we can
ensure that ∫

Ψ(ξ, 0) =
∫
ξΨ(ξ, 0)dξ = 0.

This follows from the fact that the adjoint eigenfunctions corresponding to the eigenfunctions ϕ0 and ϕ1,
respectively, are just 1 and −ξ. This in turn means that there exists a constant Cψ such that

‖Ψ(·, τ)‖L2(m) ≤ Cψe−τ ,

at least if m > 5/2. Integrating the Cole–Hopf transformation, we find∫ ξ

−∞
(VN (y, τ) + Ψ(y, τ))dy = −2µ

{
e
− 1

2µ

R ξ
−∞(wN (y,τ)+φ(y,τ))dy − 1

}
(5.1)

and, in the case φ = 0,
∫ ξ
−∞ VN = −2µ{e− 1

2µ

R ξ
−∞WN − 1}. For later use we note the following easy

consequence of (5.1).
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Lemma 5.3. There exists a constant δN > 0 such that for all τ ≥ 0 we have

1−
∫ ξ

−∞

1
2µ

(VN (y, τ) + Ψ(y, τ)) dy = e
− 1

2µ

R ξ
−∞(wN (y,τ)+φ(y,τ))dy ≥ δN .

Proof. For any finite τ the estimate follows immediately because of the exponential. The only thing we
have to check is that the right-hand side does not tend to zero as τ →∞. However, this follows from the
fact that we know (from a Lyapunov function argument, for example) that wN (ξ, τ) + φ(ξ, τ)→ AM (ξ) as
τ →∞, where AM is one of the self-similar solutions constructed in section (1), and hence

e
− 1

2µ

R ξ
−∞(wN (y,τ)+φ(y,τ))dy → e

− 1
2µ

R ξ
−∞ AM (y)

= 1− (1− e−M/2µ)
∫ ξ

−∞
ϕ0(y)dy ≥ min{1, e−M/2µ} > 0.

Next note that by rearranging (5.1) we find∫ ξ

−∞
φ(y, τ)dy = −2µ log

{
1− 1

2µ

∫ ξ
−∞ (VN (y, τ) + Ψ(y, τ)) dy

1− 1
2µ

∫ ξ
−∞ VN (y, τ)dy

}
.

Differentiating, we obtain the corresponding formula for φ, namely,

φ(ξ, τ) = − 1
2µ

Ψ(ξ, τ)
∫ ξ
−∞ VN (y, τ)dy − VN (ξ, τ)

∫ ξ
−∞Ψ(y, τ)dy − 2µΨ(ξ, τ)(

1− 1
2µ

∫ ξ
−∞(VN (y, τ) + Ψ(y, τ))dy

)(
1− 1

2µ

∫ ξ
−∞ VN (y, τ)dy

) .
But now, by Lemma (5.3) the denominator of the expression for φ can be bounded from below by δ2

N , while
in the numerator

∫ ξ
−∞ VN and VN are bounded in time while

∫ ξ
−∞Ψ and Ψ are each bounded by Cψ,Ψe−τ ,

which leads to the bound asserted in Theorem (2).

6 Concluding remarks

Our main motivation for the above analysis was the numerical observation of metastable behavior in
the vorticity formulation of the 2D Navier–Stokes equations [YMC03]. Although there are, of course,
many differences between the 2D Navier–Stokes equations and the Burgers equation, there are also many
similarities between the two, when analyzed from the point of view of dynamical systems. For example,
in [GW05], the dynamical systems viewpoint was successfully used to prove global stability in 2D Navier–
Stokes of a one parameter family of self-similar solutions known as the Oseen vortices. In addition, it
was shown that this family can be thought of as a one-dimensional center manifold in the phase space of
the equation. This is analogous to the globally stable family of self-similar diffusion waves in the Burgers
equation.

In order to carry out the above metastability analysis for the 2D Navier–Stokes equations, one would need
to adapt the analysis so as not to rely on the Cole–Hopf transformation. Cole-Hopf was utilized to extend
the stable foliation of the center manifold to a global foliation and also to give an explicit representation of
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solutions that was used in some of the estimates. It is not at all clear how to construct a global folliation
of the center manifold for Navier–Stokes. Regarding the estimates of the metastable timescales, however,
one possible way to do this without Cole–Hopf is via energy estimates. In other words, prove that if the
solution to 2D Navier–Stokes is near one of the metastable states, which correspond to solutions of the
inviscid Euler equations, then the evolution cannot occur at a rate faster than some slow rate that is given
by energy estimates.

Other than 2D Navier–Stokes, another interesting future direction could be to look at variants of the
Burgers equation, such as the nonplanar Burgers equation [RSR02] or the complex Burgers equation
[LZ95]. Both of these equations are relatively simple and can potentially be analyzed via the self-similar
variables used here. However, the Cole–Hopf transformation does not linearize these equations. We remark
that slow decay of solutions has been observed for the planar Burgers equation in [Sac87, Figure 5.9].

Finally, we remark that in [Liu00] it was shown that the large-time behavior of solutions to a general class
of conservation laws is governed by that of solutions to the Burgers equation. Roughly speaking, this is due
to the marginality of the nonlinearity in the case of the Burgers equation and the fact that any higher order
nonlinear terms in other conservation laws are irrelevant. Therefore, the present analysis for the Burgers
equation could also potentially be used to predict and understand metastability in other conservation laws
with small viscosity, i.e., equations of the form ut = µuxx − f(u)x.

Appendix

We now give the calculation that leads to ((2.17)) and, in a slightly different form, was originally presented
in [KT01]. Using the definition of p in ((2.15)), we find that

p = −2 inf
y

∫ y

−∞
wN (ξ, τ)dξ

= 4µ sup
y

∫ y

−∞
∂ξ log

[
1− β0

2µ

∫ ξ

−∞
ϕ0(y)dy − β1

2µ
e−

τ
2ϕ0(ξ)

]
dξ

= 4µ sup
y

log
[
1− β0

2µ

∫ y

−∞
ϕ0(z)dz − β1

2µ
e−

τ
2ϕ0(y)

]
.

A direct calculation shows that the supremum is achieved at

y∗ =
2µβ0

β1e
− τ

2

.

Substituting this value and rearranging terms, we find

−β1

2µ
e−

τ
2ϕ0(y∗) = e

p
4µ −

(
1− β0

2µ

∫ y∗

−∞
ϕ0(z)dz

)
.

Since
∫ y∗
−∞ ϕ0(z)dz ∈ (0, 1), the value of β0 in ((2.14)) implies that the right-hand side satisfies

e
p
4µ − 1 ≤ e p

4µ −
(

1− β0

2µ

∫ y∗

−∞
ϕ0(z)dz

)
≤ e p

4µ − e−M2µ
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if M > 0, and

e
p
4µ − e−M2µ ≤ e p

4µ −
(

1− β0

2µ

∫ y∗

−∞
ϕ0(z)dz

)
≤ e p

4µ − 1

if M < 0. Because ϕ0(y) ≥ 0 and p ≥ 2|M |, we see that, if µ is sufficiently small, then β1 ≤ 0. Furthermore,
β1 = 0 if p = −M/2; i.e., M < 0 and q = 0. Using the fact that ϕ(y) ≤ 1/

√
4πµ, we see that

−β1e
− τ

2 ≥ 2µ
√

4πµ
[
e
p
4µ −

(
1− c β0

2µ

)]
,

where c ∈ (0, 1). This leads to the estimate ((2.17)), at least when both q 6= 0 and p 6= 0.

We remark that β1 ≤ 0, and the fact that

1− β0

2µ

∫ y

−∞
ϕ0(z)dz = 1− (1− e−M2µ )

∫ y

−∞
ϕ0(z)dz ∈

(e−
M
2µ , 1) if M > 0,

(1, e−
M
2µ ) if M < 0

implies that the denominator in the definition of wN ((2.13)) is never zero.
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