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Abstract: Shade-grown coffee (shade coffee) is an important component of the forested tropics, and is

essential to the conservation of forest-dependent biodiversity. Despite its importance, shade coffee is

challenging to map using remotely sensed data given its spectral similarity to forested land. This

paper addresses this challenge in three districts of northern Nicaragua, here leveraging cloud-based

computing techniques within Google Earth Engine (GEE) to integrate multi-seasonal Landsat 8

satellite imagery (30 m), and physiographic variables (temperature, topography, and precipitation).

Applying a random forest machine learning algorithm using reference data from two field surveys

produced a 90.5% accuracy across ten classes of land cover, with an 82.1% and 80.0% user’s and

producer’s accuracy respectively for shade-grown coffee. Comparing classification accuracies

obtained from five datasets exploring different combinations of non-seasonal and seasonal spectral

data as well as physiographic data also revealed a trend of increasing accuracy when seasonal data

were included in the model and a significant improvement (7.8–20.1%) when topographical data were

integrated with spectral data. These results are significant in piloting an open-access and user-friendly

approach to mapping heterogeneous shade coffee landscapes with high overall accuracy, even in

locations with persistent cloud cover.

Keywords: shade-grown coffee; dry tropics; Nicaragua; land-cover classification; multi-temporal

data; Landsat 8; random forest algorithm; Google Earth Engine

1. Introduction

Shade-grown coffee (shade coffee) production is an important component of the forested

tropics [1–4]. This is particularly true of smallholder shade coffee systems characterized by complex

and structurally diverse shade management practices [5–7]. In contrast to sun-grown coffee (sun

coffee) or coffee grown under sparse shade, complex rustic shade coffee agroforests are associated with

a diversity of provisioning ecosystem services [6] and a high diversity of associated fauna, including

mammals, arthropods, ants, butterflies, and bees [7,8]. Given their structural and biological similarity

to forested lands, rustic shade coffee lands also provide habitat connectivity for forest-dependent

species navigating fragmented landscapes [9]. Over the past two decades, there have thus been a

number of studies that have aimed to produce spatially explicit maps of shade coffee production using

remote sensing technologies [10–13].

Accurately detecting shade-grown coffee using satellite imagery, however, has long proven

challenging. Analysts have reported particularly low accuracy in distinguishing between shade
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coffee and young and mature woodland or forest, limiting an understanding of coffee production

in relation to other forested and agricultural land covers (e.g., 37.5–58.7% in an early effort by the

authors of [10]; see also References [11–15]). Most shade coffee is also produced in plots of land

smaller than the resolution of openly accessible satellite data (e.g., MODIS) under a canopy of forest

trees [12]. Resulting rustic shade coffee systems thus closely resemble adjacent patches of forested land

in visible/near-infrared wavelengths [15–17]. Topographical effects (e.g., shadows) and chronic cloud

cover compound mapping challenges in the mountainous regions where most coffee is grown [11,13].

A number of recent studies have explored how refined classification algorithms and

high-resolution passive spaceborne and airborne data might be used to improve smallholder coffee

classification. In one study, QuickBird imagery (0.6–2.4 m spatial resolution) was combined with

a neural network classifier to predict the distribution of shade coffee trees with 96.9% accuracy in

New Caledonia [12]. Another study integrated aerial orthoimagery (0.25 m spatial resolution) with

existing maps of forest cover, elevation data, and expert knowledge in a Bayesian predictive model to

classify coffee with 87% overall accuracy in Rwanda [18]. Analysts have also explored classification

using open-access Landsat data (30 m) [19], often integrating Landsat data with physiographic

variables. The authors of [11], for example, showed how data on land surface temperature from Landsat

ETM+ thermal imagery can help detect subtle differences in leaf and canopy density, morphology,

biomass, species composition, and canopy water status in shade coffee lands (see also Reference [20]).

By integrating these data with visible and infrared bands and a post-classification stratification model

using elevation and precipitation data, these authors achieved a producer and user accuracy of 91.8%

and 61.1% respectively for shade coffee in Costa Rica’s highlands. Elsewhere, the role of multi-temporal

Landsat data in accurately mapping shade coffee has been explored [13,17]. By integrating three

Landsat ETM+ scenes from various seasons, for example, one study from El Salvador differentiated

between coffee plantations and non-mangrove forest with 81.6% accuracy [13].

Outside the coffee sector, multi-temporal or seasonal spectral features or indices are now

commonly used to identify otherwise difficult-to-classify agricultural and forested lands [21–25].

Such approaches are capable of exploiting information on intra-annual variation in dominant crops

or vegetative covers [25–27]. Multi-temporal spectral datasets have been particularly effective in

achieving high classification accuracy when satellite imagery is integrated with physiographic or

textural variables [22,28,29]. The authors of [28], for example, obtained an 86% overall accuracy across

14 land-cover classes in a heterogeneous landscape in southern Spain by combining seasonal imagery

with digital terrain measures and textural data. The authors of [22] mapped larch plantations in China

with 91.9% accuracy by combining multi-seasonal Landsat 8 imagery and bivariate textural features in

a random forest (RF) classification model.

Historically, the cost of satellite imagery precluded such approaches, particularly discouraging

their application across broad spatial scales and/or in regions marked by high cloud coverage [30,31].

Since 2008, however, open-access to the entire Landsat imagery archive has resolved this challenge,

in effect creating the world’s largest openly accessible library of geospatial information at 30-m

resolution [30]. The development of Google Earth Engine (GEE) and other cloud-based computing

techniques, in turn, has allowed analysts to process and analyze dense stacks of satellite imagery

on the fly. GEE, for example, hosts the entire Landsat archive, provides tools and an application

program interface for summoning, processing, and mosaicking this imagery, and runs all analyses in

parallel across many machines in Google’s cloud-based processing platform [32]. As prior work has

illustrated, these developments enable analyses at high computational efficiency even when relying

on multi-temporal image mosaics [23,33,34]. The authors of [33], for example, used >650,000 Landsat

scenes and >1 million central processing unit (CPU) hours to produce annual maps of tree cover

gain and loss, performing these computations in just several days. New cloud-based computational

capacities also enable the efficient use of “ensemble” classifiers such as RF which average across

hundreds of individual decision trees to ensure unbiased land-cover classifications [22,35].
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This study draws on these advancements to develop an open-access and multi-temporal approach

to mapping not only shade coffee but also overall land cover with high accuracy, here piloting this

approach in three districts of northern Nicaragua. While there are multispectral spaceborne sensors

with higher temporal (e.g., planet CubeSats) and spatial (e.g., WorldView-2/3/4) resolutions that

might be used to enhance coffee and overall land-cover classifications, much of these data remain

proprietary and/or have insufficient accuracies for time-series analysis, precluding their extension

to other production contexts. For example, the authors of [36] used WorldView-2 to classify coffee

fields in Hawai’i with 81% overall accuracy; these data, however, are not freely available and therefore

cannot be used for our study in Nicaragua. The high temporal and spatial resolution of Planet CubeSat

data (coupled with non-commercial access for academic research) makes this an appealing solution for

land-cover classification applications. However, the absence of a cloud mask, large geolocation errors,

and poor cross-platform radiometric calibrations render these data difficult to use in time-series-based

spectral analyses [37]. Open-access approaches to mapping shade coffee based on Landsat data,

in contrast, have often been limited by issues of cloud cover or by poor classifier performance across

non-coffee land-cover classes (e.g., a 30% and 50% user’s and producer’s accuracy for non-woody

land covers in Reference [11]), inhibiting an understanding of the landscape “matrix” [38] within

which shade coffee and associated forest-dependent biodiversity are situated. For example, in the

northern Nicaragua study area that we focused on, smallholder shade-coffee plots are typically

interspersed with pine stands, pine-oak forests, semi-humid broadleaf tropical forest, and significant

quantities of mixed-use pasture, integrated corn and bean production (or, “milpa”), and vegetable

production [39]. Informed by the above developments, and to address these challenges, we pursued

two primary objectives:

(1) Developing an open-access and multi-temporal approach to classifying both shade coffee and

overall land cover with high accuracy in northern Nicaragua.

(2) Assessing the relative value of various spectral and ancillary data combinations in enabling shade

coffee and overall land-cover classification accuracy in this context.

2. Materials and Methods

Figure 1 illustrates the full approach we adopted, while Table 1 details the open-access datasets

on which we relied. We began by using dense stacks of Landsat 8 imagery within GEE to develop

relatively gap-free (i.e., <5%) image mosaics for three distinct seasons in the northern Nicaragua

study area: dry hot season months (January–April), rainy season months (May–October), and dry

cool season months (November–December). We also developed a non-seasonal composite produced

from all imagery spanning these months with the goal of more explicitly assessing how separate

seasonal spectral variables may improve classification accuracy. Next, we applied a Kauth–Thomas

(KT) linear transformation (or a tasseled cap-like transformation) to each image mosaic [40–42],

reducing spectral data to three spectral features with known values in capturing seasonal differences

in vegetative growth and soil moisture: brightness, wetness, and greenness [28,40]. Finally, we used

an RF algorithm [36,43,44] to build classification models for five distinct combinations of spectral and

ancillary data, training and validating each RF model with reference data collected during two field

surveys. We describe each of these methods and research treatments in greater detail below.
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Figure 1. Overview of the classification approach. Red shading indicates primary datasets used in this

analysis. *NS refers to non-seasonal data (brightness, wetness, greenness, and temperature); S refers

to multi-seasonal data (rainy/dry hot/dry cool brightness, wetness, greenness, and temperature);

T refers to elevation, slope, and aspect data; and P refers to the correlation matrix between precipitation

and normalized difference vegetation index (NDVI). Treatments are described in greater detail in

Section 2.8.

Table 1. Datasets Used in Land-Cover Classification.

Dataset Use Resolution Source

Landsat 8 TOA Reflectance
Spectral indices; land surface

temperature data; NDVI trajectories
Spatial: 30 m

Date range: 2014–2017
USGS/NASA

CHIRPS Precipitation Data
Construction of NDVI-precipitation

correlation matrix
Spatial: 0.05◦

Date range: 2014–2017
Funk et al. (2014)

Shuttle Radar Topography Mission Digital Elevation Raster Spatial: 30 m STRM, NASA

Tree Canopy Coverage Data validation
Spatial: 30 m

Date range: 2010
Sexton et al. (2013)

Notes: Acronyms are as follows: TOA, Top of Atmosphere; CHIRPS, Climate Hazards Group InfraRed Precipitation
with Station data; NDVI, Normalized Difference Vegetation Index; USGS, United States Geological Survey; NASA,
National Aeronautics and Space Administration; STRM, Shuttle Radar Topography Mission.

2.1. Study Area

This study focused on a 7080 km2 area spanning the administrative districts of Estelí, Madriz, and

Nueva Segovia in the central highlands of Nicaragua [45] (Figure 2). These districts have three

mountain ranges running east to west with considerable topographical variation, ranging from

plateaus at ~800 m above sea level (masl), and mountain peaks along the border with Honduras

reaching 1600 masl, to valleys outside the urban areas of Condega and Estelí at ~700 masl [46].

The central highland region we focused on also typically experiences a drier and cooler climate than

the hot, dry Pacific coast, or the humid, rainy, and mostly forested Atlantic coast [47]. The region

receives an average of 1357 mm of rain annually, more than 70% of which falls during the rainy

season (May–October) or the dry cool season months (November–December). Dry hot season months
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(January–April) are characterized by almost no rainfall with average temperatures of 2–5 ◦C warmer,

which triggers leaf loss among obligatory deciduous tree species [46].

Figure 2. Overview of the study area in northwest Nicaragua. (A) Nicaragua in a Central American

regional context. (B) Primary climate zones (grey) with study areas noted using thick district boundary

lines. The specific study districts included Esteli, Madriz, and Nueva Segovia. (C) Field photo

of discussion about participatory mapping approaches in a structurally complex shade-coffee plot.

(D) Field photo of “milpa” croplands adjacent to pine stands.

2.2. Land-Cover Classification Categories

Based on existing classifications of land covers and forest ecosystems in the study area [39,45],

and participatory dialogue and initial data sharing with local primary cooperatives, we selected ten

land-cover classes for analysis (Table 2). These 10 classes exhibited different patterns of intra-annual

changes in vegetation, based on the seasonality of smallholder livelihoods, differences in the vegetative

composition of these land covers, and differences in their elevation gradients (see Table 2). We exploited

these distinctions in our classification approach (see Figure 1). The three cultivated coffee species

(Coffea arabica, Coffea canephora, and Coffea liberica) grown globally are typically found in one of five

different formations: rustic polyculture, traditional polyculture, commercial polyculture, shaded

monoculture, and sunned monoculture [2,3]. In the northern Nicaragua study districts, nearly all

smallholder coffee corresponds to “rustic coffee systems”, wherein coffee trees are planted under a

thin layer of planted or naturally occurring forest and evergreen shade trees.

Table 2. Land-Cover Classes.

Class Description

“Milpa” (1)
Open area seasonally covered by rotational corn and bean crops (first cycle:
May–August, second cycle: September–November)

Multi-Use Pasture (2)
Open area predominantly covered by grass species though some woody
tree species, including Pinus species, are occasionally present (<30% cover)

Pine Stands (3) Forested area predominantly covered by Pinus species (>30% cover)

Pine-Oak Forests (4)
Forested area predominantly covered by mixed Pinus species and Querus
species (>30% cover)

Semi-Humid Broadleaf Forests (5)
Forested area (>30% cover) typically found at higher elevations; can consist
of as much as 75% facultative deciduous species
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Table 2. Cont.

Class Description

Deciduous Dry Forest (6)
Forested area (>30% cover) typically found at lower elevations; consists of
75–100% deciduous species

Shade Coffee (7)
Agroforested area (>30% tree cover) predominantly covered by coffee
production, and diverse deciduous and evergreen shade trees

Built (8) Urban area, roads, other constructed settlement areas

Water (9) Water bodies

Wet Rice (10) Irrigated rice fields

2.3. Landsat Imagery

This study used open-access Landsat 8 Top of Atmosphere (TOA) reflectance data hosted within

GEE to construct satellite image mosaics (see Table 1). Many available Landsat images within GEE are

already processed to a relatively high level of geometric and terrain accuracy. Landsat 8 TOA reflectance

data from the Collection 1 Tier 1 collection represent the highest possible quality imagery available in

the Landsat 8 collection [48]. Scenes in the Tier 1 collection are consistently geo-registered, meaning

that all images are corrected for displacement using ground control points and digital elevation model

data. Within the Tier 1 collection, all images are registered with a root-mean-square error (RMSE)

≤12 m [48]. This geometric registration ensures the pixel-to-pixel correspondence necessary for the

integration of multi-temporal imagery [23].

In addition to geometrically registered datasets, radiometric normalization is necessary when

using multi-temporal imagery; this normalization ensures that spectral-radiometric properties are

consistent across observations taken on different days or by different sensors [49]. Radiometric

calibration involves converting raw and unprocessed digital numbers (DN) for each spectral band

contained within a given Landsat scene into at-sensor radiance values that account for the specificities

of the sensor that acquired the imagery, including measurement changes, mechanical malfunctions,

or deterioration in sensor quality [49,50]. We elected to use the Tier 1 collection because all images in

this collection were already radiometrically calibrated using well-established methods to ensure their

consistency with other scenes [48].

After radiometric normalization, at-sensor reflectance also needs to be converted to a planetary

reflectance value. Imagery can be converted into either Top of Atmosphere (TOA) or Surface

Reflectance (SR) values [51]. We selected the TOA collection rather than SR reflectance data because

initial tests suggested that a Kauth–Thomas (KT) linear transformation, described below, greatly

improved classification accuracy. Currently, KT coefficients for Landsat 8 data are best established

for TOA data [52–54]. TOA data have also consistently been used to produce multi-temporal image

mosaics that resulted in high-accuracy land-cover classifications, particularly when spectral indices or

transformations have been used to enhance spectral signals [23,25,31,55,56]. TOA reflectance values for

the Tier 1 collection were computed using well-established calibration coefficients from Reference [49].

2.4. Development of Multi-Seasonal and Non-Seasonal Image Composites

Cloud cover is a persistent challenge in mapping land-cover types with Landsat data, particularly

in mountainous regions of the tropics. Persistent clouds or shadows over certain pixels can also distort

multi-temporal image mosaics, reducing accuracy. We addressed this challenge by first filtering the

entire Landsat 8 TOA Tier 1 collection by date and cloud cover, selecting only those images spanning

the years 2014–2017 with <80% cloud cover. Through this process, we identified a total of 52, 64,

and 27 Landsat scenes for dry hot, rainy, and dry cool season months, respectively (143 scenes in total,

see Supplemental Materials, Table S1). These Landsat scenes were then pre-processed using cloud-

and shadow-masking algorithms made openly-accessible through the GEE user community. These

approaches rely on a simpleCloudScore() function within the GEE, which produces a cloud mask based
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on several indicators of cloudiness, as well as a shadow-masking function that identifies dark outliers

by comparing single-date observations with pixel-based statistics based on time-series data [57].

Following the application of cloud- and shadow-masking techniques, a median pixel value

was taken across all observations spanning the three-year study period. Elsewhere, analysts used

this approach to produce relatively gap-free image mosaics, even in areas of persistent cloud

coverage [34,58,59]. Though analysts previously used shorter durations of time to construct image

mosaics (given challenges linked to inter-annual land use and cover changes, e.g., References [58,59]),

a three-year period was necessary to achieve relatively gap-free image mosaics given particularly high

cloud coverage in the study area. Note that a median pixel value was extracted not only from all

pre-processed imagery specific to each season (dry hot, rainy, and dry cool), but also from imagery

spanning all seasons to produce a non-seasonal composite. We produced this latter composite for the

explicit sake of assessing the relative value of isolating seasonal spectral features.

2.5. Kauth–Thomas Linear Transformation

Following image processing, a Kauth–Thomas (KT) linear transformation was applied to the three

seasonal and one non-seasonal image mosaics. The KT transformation was originally developed using

Landsat data for agricultural applications [40], and converts original Landsat bands into a new set

of bands which disaggregate pixels into brightness, greenness, and wetness components, reducing

the number of spectral features for classification [28,29,60]. The resulting brightness band measures

soil brightness as a weighted sum of all bands and is particularly well suited to capturing urban

areas. The greenness band captures the contrast between the near-infrared bands and visible bands

and is typically highest in areas of high vegetative biomass and photosynthetically active vegetation.

The wetness band contrasts visible and near-infrared bands with longer-infrared bands and provides an

index of either soil or surface moisture (alternatively, the amount of dead/dried vegetation) [28,41,61].

We applied a KT linear transformation, given its successful application in other complex and

heterogeneous systems, and because it is well established as a means of compressing spectral

data and reducing the correlation between spectral features with minimal information loss [52,61].

The KT linear transformation is also considered a particularly relevant tool in capturing phenological

differences throughout the year given its capacity to represent physical features of the landscape [62].

We considered this helpful to our analysis given our emphasis on exploiting potential distinctions in

the seasonality of modeled land-cover types. KT linear transformations of Landsat imagery are reliant

on sensor- and data-specific (e.g., radiance and reflectance) coefficients [40,41]. We used coefficient

values tailored to Landsat 8 TOA reflectance data provided by Reference [52].

2.6. Land Surface Temperature, Topography, and Precipitation

Non-seasonal and multi-seasonal brightness, greenness, and wetness bands were then merged

with gridded land surface temperature, topography, and precipitation data, given the established value

of these inputs in earlier approaches to mapping coffee [11,13,18] (Figure 3). Median values of land

surface temperature available from the initial pre-processed Landsat 8 image composites were used for

land surface temperature data. All topographical data layers (elevation, aspect, and slope) were then

derived from the Shuttle Radar Topography Mission (STRM) Digital Elevation Data product provided

by NASA/USGS/JPL-Caltech available within GEE at a 30-m resolution [63] (see Table 1). This dataset

contains one band for elevation. By applying a hillshade function to this band made available through

GEE and NASA SRTM values for aspect and slope were also derived.

In prior approaches to mapping shade coffee, data on precipitation were used as part of a

post-classification stratification model that ensured classified coffee lands were only mapped within

seemingly appropriate environmental contexts [11]. In this analysis, we explored the value of

integrating precipitation data into the classification model, here assessing how information on the

correlation between precipitation and changes in vegetation on a 30-day time lag could contribute

to classification accuracy [64]. We included these data at the pixel scale using openly accessible
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Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) pentad precipitation data [65].

The goal of modeling the relationship between precipitation and Normalized Difference Vegetation

Index (NDVI) was to explore if the differentiated responses to rainfall (e.g., impervious roads vs.

rain-fed croplands) also improved classification accuracy. Vegetation greenness was modeled using

derived NDVI values for all cloud-masked Landsat 8 TOA images. NDVI is a common measure

of vegetation productivity, and takes advantage of contrasting effects of vegetation on red and

near-infrared reflectance [66,67].

Figure 3. (A–D) Datasets used for land-cover classification. (A) Seasonal image composite spanning

dry hot months (January–April), visualized using derived brightness, greenness, and wetness bands.

(B) Seasonal image composite spanning dry cool months (November–December), visualized in natural

color composite using red, green, and blue spectral bands. (C) Correlation matrix of precipitation

and NDVI on a 30-day lag. (D) Hillshade derived from Shuttle Radar Topography Mission (SRTM)

data. Data are presented for the three study districts. Coordinates from west to east: −86.8◦ to −85.8◦.

Coordinates from south to north: 12.8◦ to 14.1◦

2.7. Training and Validation Data

Training data are an important input into supervised classification approaches, with the structure

of training data particularly important to the RF classifier we drew on here [36,68,69]. One study,

for example, showed that using proportionally weighted training samples for each class reduces the

likelihood of the RF model over-classifying under-represented classes, while using balanced training

samples reduces the likelihood of under-represented classes being omitted from the model [69]. This

study relied on a balanced sample of 200 training points for all ten land-cover classes collected during

two in situ surveys (10–21 July 2017; 9–19 December 2017). We collected 200 points for each class,

reflecting established understandings that data points between 10p and 30p were needed for each class,

where p = the number of spectral bands included in the input dataset [70]. We used a balanced sample
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given our emphasis on achieving not only high shade-coffee mapping accuracy but also high overall

classification accuracy.

In our case, it was impossible to fully randomize the collection of training data given limitations in

field time and the participatory nature of the research project. We relied on a systematic random sample

based on two primary sources of data: (i) a community-based mapping exercise where specific land

parcels where tied to particular land covers, and (ii) six roughly two-hour transects that were walked

alongside community leaders. Data from community-based maps were subsequently used within GEE

to pull a random sample of points. Within walking transacts, data on land covers were also collected at

20 m intervals using a consumer grade handheld global positioning system (GPS). Transects spanned

diverse land-cover types, including known sites of shade coffee, semi-humid broadleaf forest, “milpa”,

multi-use pasture, and deciduous dry forest. Visual interpretation of non-seasonal Landsat image

composites was also used to collect training data for water and built areas.

All validated field data were then randomly shuffled and re-ordered within R software. Classes

with more than 200 training points were under-sampled to create a balanced training set for

classification, and values for all predictor variables were extracted from the multi-band composite

at each data point using the .sampleRegions() algorithm within GEE. A balanced 20% subset of this

dataset (N = 400) was reserved for use in validating all RF models.

2.8. Classification with Random Forest

To address our second research objective, we next developed five datasets for comparison

and classification (Table 3). As noted above, we included the non-seasonal image mosaic as one

of these treatments to better evaluate the specific role of isolated seasonal spectral variables in

enabling accurate classifications. We began by constructing an RF model for all multi-seasonal

brightness, greenness, and wetness variables, and physiographic variables (S+TP), using the RF

statistical package within the R software [71]. We then constructed RF models for non-seasonal

predictor variables, and for multi-seasonal and non-seasonal brightness, greenness, and wetness

bands, with and without topographical information. We compared the accuracy obtained by the

full S+TP model with the accuracy obtained from four other models: (i) non-seasonal brightness,

greenness, wetness, and temperature data (NS); (ii) non-seasonal brightness, greenness, wetness,

and temperature data + topographical information (NS+T); (iii) multi-seasonal brightness, greenness,

wetness, and temperature data (S); and (iv) multi-seasonal brightness, greenness, wetness, and

temperature data + topographical information (S+T).

Table 3. Datasets for Comparison and Classification.

Dataset Bands Data Layers

NS 4 Non-seasonal brightness, greenness, wetness, and land surface temperature data

NS+T 7 NS dataset; elevation, slope, and aspect data

S 12
All seasonal (dry hot, rainy, and dry cool) brightness, greenness, wetness,
and land surface temperature data

S+T 15 S dataset; elevation, slope, and aspect data

S+TP 16 S+T dataset; precipitation-NDVI correlation matrix

Classification models currently available within GEE include maximum entropy models, support

vector machines with linear, polynomial, and Gaussian kernels, classification and regression trees,

and naïve Bayes [72]. We elected to use an RF classification model, given initial classification tests

and a growing body of evidence highlighting the value of RF and other “ensemble” models in

enabling fine-scale classifications on the basis of marginal spectral differences between land-cover

classes [28,29,73–75]. Ensemble classifiers, such as RF, were shown to effectively distinguish between
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spectrally similar agricultural and forested land-cover types by building multiple trees from provided

input and training data [35].

RF algorithms work by growing a user-specified number of random trees (N) to full depth,

using only a randomly selected subset of predictor variables (mtry) to search for the best split at each

node [35]. RF algorithms also apply a bagging approach (i.e., randomly resampling subsets of the

training data and predictor variables with no deletion of data), allowing for the creation of numerous

relatively unbiased models which can later be averaged [35,76–78]. Our approach to determining

the optimal mtry value for each subset of predictor variables involved creating a large number of RF

models for each dataset, and selecting that which produced the highest accuracy for a given dataset [78].

Supplemental Materials Table S2 provides an illustration of this approach for the full RF model. All RF

models were constructed by setting N = 500, as error rates for all models stabilized before this point.

2.9. Accuracy and Variable Importance Assessments

The accuracy of all constructed RF models was assessed in a number of ways. We relied primarily

on error matrices (Supplemental Materials Table S3) displaying RF model predictions relative to

validated reference data. The diagonal elements in such matrices indicated the number of samples

for which predictions matched reference data, while off-diagonal elements in rows and columns

captured errors of commission and omission (pixels mistakenly committed to or omitted from a class).

These matrices were used to estimate user’s accuracy (the accuracy of classification despite errors

of commission) and producer’s accuracy (the accuracy of classification despite errors of omission).

For each RF model below, we also provided kappa error (K) matrix statistics, which accounted for the

possibility of chance agreement between predicted values and reference data [13]. Values of K ranged

from 0 (no agreement) to 1 (perfect agreement), with K values >0.80 indicating strong agreement,

and values of 0.40 < K < 0.80 indicating moderate agreement [76].

We relied on two further measures of validation. Firstly, we used a visual assessment of the

land-cover map relative to openly accessible data on percentage tree canopy coverage, for the reference

year 2010, available at 30-m resolution [77]. Secondly, we used variable importance analyses that

provided us an additional means of assessing how specific multi-spectral seasonal and ancillary

predictor variables enabled accuracy improvements in the optimized land-cover classification model.

Below, we present the importance of these variables in terms of percentage decrease in overall accuracy

when that variable was included in the analysis. Within the R software, these measures were developed

using internal RF estimates of prediction errors for all training samples (xi) against all trees that were

not constructed using training sample xi, or an “out-of-bag” (OOB) error. Variable importance analyses

assess how much OOB error increases when a particular predictor variable is removed [71,78].

3. Results

The Distribution of Shade-Grown Coffee in Northern Nicaragua

Running the RF model (N = 500) on the full set of multi-seasonal brightness, greenness, wetness,

and ancillary physiographic bands (S+TP, mtry = 3) produced an overall accuracy of 90.5% across

all classes (kappa index = 0.89), the highest accuracy achieved by any model. This model suggested

that shade-grown coffee is typically grown in mid-range elevations, often adjacent to semi-humid

broadleaf forests, pine-oak forests, and pine stands, while dry deciduous forest, “milpa”, and pasture

lands tend to dominate lowland regions (Figure 4).

Table 4 provides the accuracy estimates for the full model, depicting field-validated reference

data (columns) against RF model predictions (rows). This matrix revealed relatively high user’s and

producer’s accuracy for most woody and non-woody land covers, including “milpa” croplands, shade

coffee, semi-humid broadleaf forests, pasture, pine stands, and pine-oak forests. It also revealed that

confusion between shade coffee and semi-humid broadleaf forest may be the core factor limiting

higher accuracy estimates across these classes. Ten percent of known shade coffee points were falsely
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identified as semi-humid broadleaf forest, while 7.5% of all points classified as shade coffee were

actually semi-humid broadleaf forest. Dry deciduous forest, “milpa” croplands, multi-use pastures,

and built areas were also confused by the final RF model.

Figure 4. Land-cover classifications as compared to data on tree canopy coverage. (A) Land cover

classification produced by the full multi-seasonal and topographical data model (S+TP, mtry = 3,

N = 500) with shade coffee depicted in bright red. (B) Estimated tree canopy coverage for the

reference year 2010, available at 30-m resolution [77]. Coordinates from west to east: −86.8◦ to

−85.8◦. Coordinates from south to north: 12.8◦ to 14.1◦

Table 4. Confusion Matrix of Best Classification Achieved for the 16-Band Full Dataset.

S+TP

ID 1 2 3 4 5 6 7 8 9 10 Total UA PA
1 34 2 0 0 0 1 2 2 0 0 41 82.9 85.0
2 0 33 0 1 0 1 0 2 0 0 37 89.1 82.5
3 1 2 40 0 0 0 1 0 0 0 44 90.9 100
4 0 0 0 38 0 0 1 0 0 0 39 97.4 95.0
5 0 1 0 0 37 0 4 0 0 0 42 88.1 92.5
6 3 2 0 0 0 38 0 2 0 0 45 84.4 95.0
7 1 0 0 1 3 0 32 2 0 0 39 82.1 80.0
8 0 0 0 0 0 0 0 31 1 0 32 96.9 77.5
9 1 0 0 0 0 0 0 0 38 0 39 97.4 97.4
10 0 0 0 0 0 0 0 1 0 40 41 97.6 100

Total 40 40 40 40 40 40 40 40 39 40 361/399 OA: 90.5%

Kappa: 0.89

Notes: Diagonal elements in this matrix indicate the number of samples for which predictions match reference data.
Off-diagonal elements in rows and columns, respectively, capture errors of commission and omission. ID: identifier;
UA: user’s accuracy; PA: producer’s accuracy; and OA: overall accuracy.

Table 5 also presents the results of the full model relative to other tested subsets of predictor

variables. These data depicted a trend of increasing overall land-cover classification accuracy when

multi-seasonal spectral data and ancillary data layers were included in the classification model. They

also revealed a significant improvement (7.8–20.1%) when topographical data were included in the

model. These data showed that RF models typically produced the highest accuracy when relatively

fewer predictor variables were used to make each split (i.e., <50% of predictors, see also Supplemental
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Materials Table S2). Underlying error matrices for all other tested subsets of predictor variables are

provided in Supplemental Materials Table S3.

Table 5. Increases in classification accuracy achieved with multi-seasonal spectral variables,

topographical information, and precipitation data.

Dataset NS NS+T S S+T S+TP

Number of variables 4 7 12 15 16
mtry 3 3 7 3 3
Overall Accuracy (%) 65.6% 85.7% 81.7% 89.5% 90.5%
Kappa Index 0.62 0.84 0.80 0.88 0.89

Notes: Classifications were conducted using random-forest classifiers (N = 500) with optimized numbers of split
variables (mtry) for each subset of predictor variables tests. NS refers to the non-seasonal data (brightness, wetness,
greenness, and temperature); S refers to multi-seasonal data (rainy/dry hot/dry cool brightness, wetness, greenness,
and temperature); T refers to elevation, slope, and aspect data; and P refers to the correlation between precipitation
and changes in NDVI.

Derived user’s and producer’s accuracies for each class and all models (Table 6) demonstrated the

role of multi-seasonal spectral data in modestly improving the user’s and producer’s accuracy of shade

coffee (5.3% and 5.0%, respectively, when integrated with topographic data). They also suggested the

value of multi-seasonal spectral data in significantly improving the user’s and producer’s accuracy of

“milpa”, semi-humid broadleaf forest, dry deciduous forest, and built and constructed areas. While

data on the correlation between precipitation and NDVI drove a modest improvement in overall

land-cover classification accuracy relative to the multi-seasonal spectral and topographical model

(1%, see Table 5), the inclusion of this data layer decreased user’s accuracy of shade coffee and “milpa”

croplands by 4.4% and 9.2%, respectively. These decreases were offset by increases in the user’s

accuracy of multi-use pasture and built/constructed areas by more than 10% (Table 6). Variable

importance analyses illustrated the importance of elevation data, and dry hot season brightness and

temperature data in enabling high overall classification accuracy in the full model (Figure 5).

Table 6. Changes in Per-Class Sensitivity and Specificity with Multi-Seasonal Spectral Variables,

Topographical Information, and Precipitation Data.

ID Class NS NS+T S S+T S+TP

1 “Milpa” 34.1 (37.5) 81.6 (77.5) 59.5 (62.5) 92.1 (87.5) 82.9 (85.0)
2 Multi-Use Pasture 68.6 (60.0) 75.6 (77.5) 79.4 (67.5) 75.6 (77.5) 89.1 (82.5)
3 Pine Stands 76.0 (95.0) 95.2 (100) 88.9 (100) 95.2 (100) 90.9 (100)
4 Pine-Oak Forests 65.6 (52.5) 94.7 (90.0) 86.8 (82.5) 100 (95.0) 97.4 (95.0)
5 Broadleaf Forest 75.0 (82.5) 81.8 (90.0) 83.3 (87.5) 86.4 (95.0) 88.1 (92.5)
6 Deciduous Forest 52.8 (70.0) 80.9 (95.0) 80.4 (92.5) 83.0 (97.5) 84.4 (95.0)
7 Shade Coffee 77.1 (67.5) 81.2 (75.0) 73.7 (70.0) 86.5 (80.0) 82.1 (80.0)
8 Built/Constructed 68.8 (55.0) 78.1 (62.5) 78.8 (65.0) 84.4 (67.5) 96.9 (77.5)
9 Wet Rice 94.6 (89.7) 97.4 (94.5) 97.4 (94.9) 97.4 (94.9) 97.4 (97.4)

10 Water 51.4 (47.5) 90.5 (95.0) 88.4 (95.0) 95.2 (100) 97.6 (100)

Notes: Values reflect user’s accuracy (true positive; listed first) and producer’s accuracy (listed second).
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Figure 5. Variable importance analyses for the full model (% change in mean accuracy, S+TP, mtry = 3,

N = 500).

4. Discussion

Accurately mapping complex and heterogeneous shade coffee landscapes is a first step in

understanding the dynamics of land use and cover change in coffee-producing regions, including

those linked to changes in smallholder livelihoods, market volatility, hydro-climatic change and

variability, and Coffee Leaf Rust. Results from this study are significant in highlighting the value of

multi-seasonal and open-access approaches in mapping complex and heterogeneous shade coffee

landscapes with high overall accuracy, even in sites of persistent cloud cover. Results are also significant

in showing how such approaches can be used to enable regional-scale (and larger) spatial analysis

when integrated with image mosaicking techniques within GEE, demonstrated here for three districts

in northwest Nicaragua.

The most significant finding from this study is the high shade coffee and overall land-cover

classification accuracy achieved by the full model. Though the producer’s accuracy for shade coffee

achieved by this model is comparable with prior studies reliant on Landsat data, the user’s accuracy for

shade coffee is significantly higher (i.e., 80% vs. the 61% reported in Reference [11]). The 90.5% overall

accuracy reported in this study across all land covers is also considerably higher than the 65% reported

by Reference [11] across all classes, and the 76.7% reported by Reference [13] across woody land-cover

classes. These results also compare favorably with prior analyses of coffee suitability in the region [78]

and with available maps of forest and tree canopy coverage in the area [79]. The exception to this is

the over-classification of water in the southwest and east corners of the land-cover classification. This

distortion was potentially produced by the sensitivity of the RF classifier to spatial autocorrelation in

the training sample, and may reflect the challenges of accurately mapping seasonally inundated water

sources using multi-temporal datasets [68,80].

In this case, high classification accuracy was apparently enabled by combining multi-seasonal

spectral data with topographical information, and information on precipitation-linked changes in

vegetation. The full model produced an improvement in overall land cover accuracy of more than 20.4%

relative to the non-seasonal image composite on its own. Despite persistent confusion between some

classes, multi-seasonal spectral variables also appeared to contribute strongly to overall classification

accuracy by exploiting distinctions in the floristic composition, structure, and intra-annual phenological

variation across common woody and non-woody land-cover classes. In this case, multi-seasonal data

was particularly valuable in driving improvements in the mapping accuracy of “milpa” croplands,

dry deciduous forest, and built/constructed areas. The importance of dry hot seasonal information

on brightness and land surface temperature is logical given the pronounced phenological variegation
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during this point of the year (e.g., leaf senescence in dry deciduous forests, and seasonal fallowing of

“milpa” fields). The importance of elevation information also corresponds with the strong shift (+37%)

in coffee-mapping accuracy previously noted by Reference [18] when elevation data were included in

the classification model.

In this study, including information on the correlation between precipitation and vegetation

change decreased, rather than enhanced, mapping accuracy across shade coffee and semi-humid

broadleaf forest classes. This finding is potentially explained by the coarser spatial resolution of the

CHIRPS precipitation data used, which are available at 0.05◦ (or ~5-km resolution) in the study area

vs. the 30-m resolution of Landsat 8 data. This is particularly true given that shade coffee is often

proximal to semi-humid forest. Nonetheless, including these data appeared to modestly contribute to

overall classification accuracy, here improving accuracy by 1% relative to seasonal and topographic

variables on their own. Variable importance analyses and per-class accuracy estimates indicate that

precipitation data played a strong role in driving accuracy in the full model, and played a particularly

strong role in improving “milpa” and multi-use pasture classification accuracy. This is logical given

that seasonal precipitation regimes closely inform the seasonality of smallholder “milpa” plantings.

Future work could explore the possibility of fitting tailored precipitation models to each land-cover

class, as some classes are unlikely to exhibit a simple correlative response to precipitation.

Higher accuracy of shade-grown coffee in this study was limited by apparent trade-offs between

shade-coffee mapping accuracy and overall mapping accuracy. For example, for shade coffee, using

just multi-seasonal and topographical predictors produced an 86.5% and 80.0% user’s and producer’s

accuracy for shade coffee, respectively; these values decreased to 82.1% and 80.0% when data on

precipitation and vegetation change were included in the model. Higher shade coffee mapping

accuracy was also limited by classifier confusion between semi-humid broadleaf forest and shade

coffee. While overall mapping accuracy was enhanced by the inclusion of multi-temporal imagery,

it is possible that patterns of intra-annual phenological changes characteristic of shade coffee do not

differ significantly enough from those characteristic of semi-humid broadleaf forests, particularly in

borderline cases (e.g., where semi-humid broadleaf forest was thinned for timber products, or where

shade-coffee lands exclusively contained shade trees also found in semi-humid broadleaf forests).

One explanation for this is the high intra-class variability across both shade coffee and semi-humid

broadleaf forest in northern Nicaragua, and the common occurrence of broadleaf forest species in

smallholder shade-coffee plots, many of which also have home consumptive value (field observations).

A final notable facet of our analysis was our reliance on image mosaicking techniques and an

RF ensemble classifier within GEE. It is possible that the use of imagery over a three-year period

increased errors in sites of high inter-annual change, and it is also possible that using image mosaicking

muted a signal of seasonality (i.e., by constructing mosaics from images in adjacent months). This

potentially shaped the limited improvements in accuracy observed across shade coffee lands when

using multi-seasonal spectral data, despite prior evidence of distinct patterns of seasonality in shade

coffee plots [13,17]. Nonetheless, this technique allowed us to work around issues of frequent cloud

cover across the study region, even when prioritizing seasonal imagery. Depending on study goals

and desired coverage, the use of single-date images that maximize temporal distance (and differences

in vegetation cover) between time periods may be the best approach. The overall high accuracy of this

approach, however, suggests the value of such techniques across broad spatial scales. Our analysis

also corroborates prior work illustrating the value of RF models in distinguishing between several

vegetation types (e.g., “milpa” vs. multi-use pasture, pine stands vs. pine oak forests, and semi-humid

broadleaf forests vs. shade coffee). Mirroring prior findings, RF models were optimized with small

mtry values, which potentially helped avoid overly correlated individual decision trees [28].

There were at least three limitations to our study. Firstly, the value of these approaches in

other parts of the tropics with shade coffee remains unexplored. The central region of northern

Nicaragua we focused on is shaped by stronger seasonality when compared with other parts of the

country and the tropics, and the study years corresponded with a severe drought [79]. During this
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time of drought, leaf senescence was potentially more accentuated than at other times, accentuating

the value of multi-seasonal spectral variables. Secondly, while this approach enabled a relatively

accurate classification of shade coffee, data were too coarse to be analyzed for information on

floristic composition [81], the number of vegetation strata [82,83], or the diversity of forest canopy

structures [12], which are insights important to a full assessment of biological diversity. Thirdly, these

data do not reveal the socio-political, economic, and cultural dynamics producing this heterogeneous

and complex landscape. These factors not only mediate the distribution of biological diversity. They

also shape the apparent biophysical distinctions in seasonality exploited here (e.g., through the planting

of diverse evergreen shade trees for household fruit consumption in shade-coffee plots, and seasonal

cropping patterns in “milpa” fields). Understanding historical and contemporary land use dynamics

is an important next step in engaging this approach more reflexively.

5. Conclusions

The results presented here are significant in piloting an open-access, accurate, and relatively

gap-free approach for mapping shade-grown coffee and adjacent landscape heterogeneity at a

regional scale. The development of this approach is significant given limitations in land-cover

classification accuracy, and challenges with cloud cover that characterized previous attempts to

map shade-grown coffee landscapes using Landsat data. Accurately mapping shade-grown coffee

and associated landscape contexts provides initial traction in developing understandings of how

these land covers, and corresponding land uses, shift in relation to one another, both historically

and at present. Future work can extend this study by exploring the value of this approach in other

parts of the coffee-producing tropics, and in regions characterized by a greater diversity of coffee

production strategies. Future work can also build on this study by exploring how a more diverse range

of multi-temporal datasets can be leveraged to improve classification approaches in complex forested

and agroforested landscapes.
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