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Abstract

Background Observational field audits are recommended

for public health research to collect data on built environment

characteristics. A reliable, standardized alternative to field

audits that uses publicly available information could provide

the ability to efficiently compare results across different study

sites and time.

Purpose This study aimed to assess inter-rater reliability of

built environment audits conducted using Google Street View

imagery.

Methods In 2011, street segments from St. Louis and Indian-

apolis were geographically stratified to ensure representation

of neighborhoods with different land use and socioeconomic

characteristics in both cities. Inter-rater reliability was assessed

using observed agreement and the prevalence-adjusted bias-

adjusted kappa statistic (PABAK).

Results The mean PABAK for all items was 0.84. Ninety-

five percent of the items had substantial (PABAK≥0.60) or

nearly perfect (PABAK≥0.80) agreement.

Conclusions Using Google Street View imagery to audit

the built environment is a reliable method for assessing

characteristics of the built environment.
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Background

Advocates of physical activity promotion have recog-

nized that interventions must address not only

individual-level factors (e.g., lack of time or motivation)

but also interpersonal (e.g., social support), community

or environmental (e.g., improving sidewalks), and policy

(e.g., land use planning) factors [1–4]. Public health

researchers and practitioners recognize that interventions

at the environmental or policy level provide opportuni-

ties, support, and cues to help people engage in physical

activity and have the potential to benefit the population

exposed to the environment, as potential complements

to more individually focused interventions [4–6].

Observational field audits are one method used in

public health research to collect data on built environ-

ment characteristics that affect health-related behaviors

and outcomes, including physical activity [7]. However,

field audits are time and resource intensive because they

require auditors to travel to each location that must be

observed. This limits practicality of implementing field

audits across large or geographically dispersed areas

(e.g., local, regional, national, or international study
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sites); for example, in support of nationally representa-

tive studies.

New technologies using high-resolution omnidirectional

imagery provide a visual record of built environment char-

acteristics that may support more efficient and extendable

alternatives to field-based methods. Omnidirectional camera

systems, like those used for Google Street View (http://

maps.google.com/help/maps/streetview/), collect imagery

in multiple directions to create panoramic views. Image users

can observe characteristics included on built environment

audit instruments by virtually “driving” through a community.

Google Street View is the most commonly accessible form of

omnidirectional imagery, providing coverage in all major US

cities, thousands of miles of roads in smaller towns and rural

areas, and in international locations including much of Europe

and selected areas in Australia, South America, Africa, and

eastern Asia (http://gmaps-samples.googlecode.com/svn/

trunk/streetview_landing/streetview-map.html).

Recent studies have shown accurate and consistent

agreement between observational field audits and

image-based interpretation using Google Street View

[8–11]. In the largest of these studies, our group dem-

onstrated that the average prevalence-adjusted, bias-

adjusted kappa (PABAK) statistic of all items was

0.81 when comparing field audits to audits conducted

using Google Street View, indicating substantial to near-

ly perfect agreement [8]. However, we are aware of no

prior studies that have reported inter-rater reliability

results for omnidirectional image-based audits. Inter-

rater reliability is important to ensure consistency in

measurements across different auditors.

The purpose of this study was to assess inter-rater reli-

ability of built environment audits derived from interpreta-

tion of Google Street View imagery using The Active

Neighborhood Checklist (i.e., the Checklist), an instrument

that assesses the presence or absence of features and con-

ditions of the built environment [12]. Assessing inter-rater

reliability of image-based audits is important because this

method offers potential to more efficiently implement audits

across large or geographically dispersed areas. Imagery may

be archived, allowing for the potential to assess temporal

changes in built environment characteristics in support of

longitudinal studies.

Methods

The study was conducted in suburban and urban areas in

Indianapolis, Indiana, and St. Louis, Missouri. Street seg-

ments (i.e., both sides of a street between two intersections)

were selected in both cities using a geographically stratified

sampling design to ensure representation of neighborhoods

with different land use and socioeconomic characteristics.

GIS data were used to classify census block groups sepa-

rately in both cities (St. Louis and Indianapolis) based on

two poverty classes (≥ or < than 20 % population in pover-

ty), two race classes (≥50 % African American or ≥50 %

white population) and above or below the median percent-

age of commercial land use in the block groups. This strat-

ification created eight categories of block groups; we

randomly selected 50 street segments within each category

(Table 1).

The Checklist includes 89 items across several sec-

tions and subsections (Table 2). The Checklist has six

main sections assessing presence or absence of land use

characteristics; public transportation; street characteris-

tics; quality of the environment for pedestrians; side-

walks and related features; and shoulders and bike

lanes. This tool has demonstrated strong inter-rater reli-

ability when using observational field audits [12]. The

Checklist is available online at http://activelivingresearch.org/

node/12715.

Four undergraduate and graduate student research assis-

tants participated in a 4-h training session (before conducting

any audits) following the protocol of Hoehner and colleagues

[12] that included conducting practice audits in the field and

using Google Street View. Following this training, two audi-

tors independently assessed the same street segments using

Google Street View imagery, blinded to results of the other

auditor. Auditors did not audit streets in their own city (i.e., St.

Louis auditors viewed Indianapolis streets and vice versa).

Inter-rater reliability was assessed using Cohen's kappa (a

measure of inter-rater agreement) and PABAK statistics.

Importantly, unlike the traditional kappa coefficient,

PABAK accounts for systematic differences between data

sources and the distribution of each audit item (i.e., when

variability is low) [13]. We followed the commonly used

adjectival ratings of Landis and Koch to interpret the

Table 1 Sampling of streets (n0288)

Commercial land use area above median Commercial land use area below median

≥20 % poverty <20 % poverty ≥20 % poverty <20 % poverty

≥50 % African American 31 (11 %) 36 (13 %) 38 (13 %) 40 (14 %)

≥50 % White 34 (12 %) 39 (14 %) 32 (11 %) 38 (13 %)

Percentages are of the total number of segments (n0288)
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PABAK inter-rater agreement results: 0.80 to 1.00 (al-

most perfect agreement), 0.60 to 0.79 (substantial agree-

ment), 0.40 to 0.59 (moderate agreement), 0.20 to 0.39

(fair agreement), and 0.00 to 0.19 (poor agreement)

[14]. All Checklist items were dichotomized as present

or absent to be consistent with how the Checklist was

reported in previous studies [8, 12]. Items that required

the auditor to indicate if something was present on one

side of the street, both sides of the street, or not present

were dichotomized as present (on one or both sides) vs.

absent. Ordinal items (e.g., flat, moderate, or steep for

slope) were characterized as present (e.g., moderate or

steep) vs. absent (e.g., flat). A total of 75 checklist

items were included in the analysis. Fourteen items

were excluded due to lack of variability across street

segments (less 1 % of streets had each of these items).

For example, zero audited streets had an outdoor pool.

Results

Based on the availability of Google Street View imagery, we

audited 288 of 400 street segments sampled (149 segments

in Indianapolis and 139 segments in St. Louis). At the time

of this study, 28 % of selected streets were not captured by

Google Street View and were excluded. The number of

audited segments in each of the eight stratification classes

ranged from 31 to 40. The mean PABAK statistics for all

items in the Checklist was 0.84 (Table 2). Table 2 summa-

rizes average kappa and PABAK statistics by different sec-

tions and subsections of the Checklist (representing 75

items). Ninety-five percent (71) of the items had substantial

or nearly perfect agreement. When comparing items in the

land use subsections, PABAK values ranged from 0.60 to

0.97, with parking facilities being the least reliable items

(ranging from 0.51 to 0.72) and recreational uses the most

Table 2 Google Street View inter-rater reliability for active neighborhood checklist items (n075)

Agreement Number of items in Landis and Koch value rangea

Audit tool sectionb Kappa mean (range) PABAK mean (range) <0.39, fair 0.40–0.59,

moderate

0.60–0.79,

substantial

0.80–1.00,

nearly perfect

Land use (42/50)

Types of land use (3/4) 0.67 (0.60, 0.74) 0.76 (0.66, 0.88) 0 0 2 1

Predominant uses (8/9) 0.40 (0.13, 0.69) 0.85 (0.74, 0.96) 0 0 2 6

Residential uses (7/8) 0.41 (0.00, 0.75) 0.89 (0.83, 0.99) 0 0 0 7

Parking (4/4) 0.32 (0.23, 0.47) 0.60 (0.51, 0.72) 0 2 2 0

Recreational (4/7) 0.40 (0.00, 0.66) 0.97 (0.94, 0.99) 0 0 0 4

Non-residential (16/18) 0.51 (0.00, 1.00) 0.93 (0.69, 1.00) 0 0 1 15

Public transportation (2/2) 0.52 (0.44, 0.59) 0.90 (0.83, 0.97) 0 0 0 2

Street Characteristic (10/10) 0.62 (0.24, 0.82) 0.91 (0.63, 0.99) 0 0 1 9

Quality of environment (6/9) 0.35 (0.19, 0.57) 0.73 (0.46, 0.97) 0 1 3 2

Sidewalk characteristics (8/11)

Sidewalk present (1/2) 0.89 0.90 0 0 0 1

Sidewalk continuity (2/2) 0.82 (0.79, 0.86) 0.83 (0.79, 0.86) 0 0 1 1

Sidewalk width (2/2) 0.47 (0.18, 0.76) 0.70 (0.59, 0.81) 0 1 0 1

Curb cuts (1/1) 0.38 0.63 0 0 1 0

Buffer (2/2) 0.80 (0.75, 0.84) 0.82 (0.80, 0.84) 0 0 0 2

Alignment/obstruct (2/2) 0.19 (0.00, 0.39) 0.73 (0.62, 0.83) 0 0 1 1

Shoulder characteristics (5/7)

Bike route or sign (1/1) 0.44 0.97 0 0 0 1

Shoulder present (1/3) 0.55 0.85 0 0 0 1

Shoulder width (1/1) 0.43 0.93 0 0 0 1

Shoulder continuity (1/1) 1.00 1.00 0 0 0 1

Shoulder obstruct (1/1) 1.00 1.00 0 0 0 1

Total (75/89) 0 4 14 57

aLandis and Koch value range assessed using prevalence-adjusted bias-adjusted kappa (PABAK)
bNumbers in parentheses are counts of items included from each section of the Checklist/total possible items
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reliable (ranging from 0.94 to 0.99). Mean reliability of items

assessing access to public transit, street characteristics, and

quality of environment ranged from 0.73 to 0.91, with tree

shade and presence of litter being the least reliable among the

18 items in these sections (PABAK00.46 and 0.66, respec-

tively). Mean reliability of sidewalk characteristics ranged

from 0.63 to 0.90 with curb cuts (PABAK00.63), sidewalk

width (PABAK00.70), and alignments/obstructions

(PABAK00.73) being the least reliable subsections and pres-

ence of sidewalks the most reliable (PABAK00.90). Mean

reliability for the section shoulder characteristics ranged from

0.85 to 1.00, with presence of a shoulder the least reliable item

(PABAK00.85) and shoulder continuity and obstructions the

most reliable (PABAK01.00).

When inter-rater reliability was assessed across the dif-

ferent environmental stratifications (e.g., race, poverty, and

land use), the pattern of results was essentially identical

suggesting that Google Street View is reliable regardless

of the racial composition, the poverty level, or the land use

mix of the neighborhood.

Discussion

Previous studies suggest that omnidirectional imagery, as

exemplified by Google Street View, offers a viable alterna-

tive to field audits that can improve efficiency and expand

the geographic and temporal scope of and reduce resources

required for conducting audits [8–11]. This study builds on

previous work by demonstrating substantial inter-rater reli-

ability for most items included on the Checklist when audits

are conducted using Google Street View imagery. Results

suggest Google Street View audits have inter-rater reliability

comparable to observational field audits [12].

Characteristics that demonstrated the lowest reliability

(e.g., on-street parking, tree shade on street, sidewalk width,

and curb cuts) should be assessed with caution. These char-

acteristics were harder to view on the imagery and could be

blocked from view by cars parked along the side of a street.

Additionally, consistent with field audit inter-rater reliability

[12], items pertaining to environmental quality (e.g., amount

of litter) are subject to perceptions and experiences of indi-

vidual auditors and thus had lower inter-rater reliability.

Several limitations should be noted. First, while the imag-

ery may be reliable, it is not available on all streets presently,

although spatial coverage continues to increase over time.

Second, we were unable to examine the potential effect of

certain factors that may impact inter-rater reliability (e.g.,

training method, image clarity, viewing angles, and proce-

dures used to view the imagery). Because all auditors were

trained the same way and used the same image source and

computer program, we could not investigate the potential

effects of training method, viewing program, and image on

reliability. The auditors did view the images on different

screens, which may have resulted in differences in clarity;

however, the substantial to nearly perfect reliability results

suggest that this factor did not play a significant role. Addi-

tionally, while raters were trained using a protocol, there were

no quality control measures conducted throughout the audit-

ing process; however, such quality control mechanisms would

likely improve agreement even more.

Third, this study only assessed urban and suburban

areas and results cannot be generalized to rural environ-

ments. Fourth, information regarding when the images

were obtained is an issue with this technique. At the

time of data collection, time stamps were not available

on images, and it is possible that auditors in this study

assessed imagery taken at different times. However, all

audits were conducted over a short study period (3–

4 months) and it is likely the images had not changed.

After our study was completed, Google started including

month and year of Street View image acquisition (avail-

able at the bottom-left of images when viewed through

http://maps.google.com, but not in Google Earth). Date

stamps allow researchers and practitioners to better

match environmental conditions with temporally concur-

rent behavior and outcome measures. As research on

built environment and physical activity evolves and

potentially identifies other important characteristics of

the built environment or improved measurement scales,

researchers may be able to assess longitudinal changes

in communities if multi-temporal and archived imagery

are made available.

Acknowledgments The authors wish to thank the graduate students

at Saint Louis University and IU-PU for the many hours they contrib-

uted to data collection and entry. Specifically, we would like to thank

Morgan Clennin and Aaron Burgess who helped coordinate this effort.

This research was supported by a grant from the National Cancer

Institute (1R21CA140937-01A2). Additional support was provided

by a grant from the National Institute on Aging (R01 AG010436).

Conflict of Interest The authors have no conflict of interest to

disclose.

References

1. Brownson RC, Ballew P, Dieffenderfer B. Evidence-based inter-

ventions to promote physical activity: What contributes to dissem-

ination by state health departments. Am J Prev Med. 2007; 33(1):

S66-S73. quiz S74-68.

2. Brownson RC, Hagood L, Lovegreen SL, et al. A multilevel

ecological approach to promoting walking in rural communities.

Prev Med. 2005; 41(5–6): 837-842.

3. Brownson RC, Haire-Joshu D, Luke DA. Shaping the context of

health: A review of environmental and policy approaches in the

prevention of chronic diseases. Annu Rev Publ Health. 2006; 27:

341-370.

ann. behav. med. (2013) 45 (Suppl 1):S108–S112 S111



4. Brownson RC, Kelly C, Eyler A, et al. Environmental and policy

approaches for promoting physical activity in the United States: A

research agenda. J Phys Act Heal. 2008; 5: 488-503.

5. King AC, Jeffery RW, Fridinger F, et al. Environmental and

policy approaches to cardiovascular disease prevention

through physical activity: Issues and opportunities. Heal Educ

Q. 1995; 22(4): 499-511.

6. Sallis J, Bauman A, Pratt M. Environmental and policy interven-

tions to promote physical activity. Am J Prev Med. 1998; 15(4):

379-397.

7. Brownson RC, Hoehner C, Day K, et al. Measuring the built

environment for physical activity: State of the science. Am J Prev

Med. 2009; 36(4): S99-S123.

8. Wilson JS, Kelly CM, Schootman M, et al. Assessing the built

environment using omnidirectional imagery. Am J Prev Med.

2012; 42(2): 193-199.

9. Rundle AG, Bader MDM, Richards CA, Neckerman KM, Teitler

JO. Using Google Street View to audit neighborhood environ-

ments. Am J Prev Med. 2010; 40(1): 94-100.

10. Taylor BT, Fernando P, Bauman AE, Williamson A, Craig JC,

Redman S. Measuring the quality of public open space using

Google Earth. Am J Prev Med. 2010; 40(2): 105-112.

11. Badland HM, Opit S, Witten K, Kearns RA, Mavoa S. Can virtual

streetscape audits reliably replace physical streetscape audits? J

Urban Health. 2010; 87(6): 1007-1016.

12. Hoehner CM, Ivy A, Ramirez LK, Handy S, Brownson RC. Active

neighborhood checklist: A user-friendly and reliable tool for assess-

ing activity friendliness. Am J Heal Promot. 2007; 21(6): 534-537.

13. Hoehler FK. Bias and prevalence effects on kappa viewed in terms

of sensitivity and specificity. J Clin Epidemiol. 2000; 53: 499-503.

14. Landis J, Koch G. The measurement of observer agreement for

categorical data. Biometrics. 1977; 33: 159-174.

S112 ann. behav. med. (2013) 45 (Suppl 1):S108–S112


