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ABSTRACT

Motivation: Functional analyses based on the association of Gene

Ontology (GO) terms to genes in a selected gene list are useful

bioinformatic tools and the GOstats package has been widely used

to perform such computations. In this paper we report significant

improvements and extensions such as support for conditional testing.

Results: We discuss the capabilities of GOstats, a Bioconductor

package written in R, that allows users to test GO terms for over or

under-representation using either a classical hypergeometric test or a

conditional hypergeometric that uses the relationships among GO

terms to decorrelate the results.

Availability: GOstats is available as an R package from the

Bioconductor project: http://bioconductor.org

Contact: sfalcon@fhcrc.org

1 INTRODUCTION

Version 2.0 of the Bioconductor package GOstats has substantial

improvements for testing the association between Gene Ontology

(GO) terms, see GO Consortium (2000); and a given gene list. We

have implemented a conditional hypergeometric test that uses

the relationships among the GO terms, similar to that presented

in Alexa et al. (2006), to address concerns that arise due to the

hierarchical structure of GO. Many other substantial improvements

have also been made that make the software easier to use and the

results more informative.

In this paper we briefly describe the preprocessing steps required

to construct inputs for the testing function, followed by a presenta-

tion of the algorithms used, and the structure of the return value. We

demonstrate capabilities of the GOstats package using a micro-

array dataset Chiaretti et al. (2004) from a clinical trial in acute

lymphoblastic leukemia (ALL). More details on the analysis of

this dataset are available in the GOstats package vignette.

2 INPUTS

To perform an analysis using the hypergeometric-based tests, one

needs to define a ‘gene universe’ (usually conceptualized as the

number of balls in an urn) and a list of selected genes from that

universe. While it is clear that the selected gene list determines the

results of the analysis, the fact that the universe has a large effect

on the conclusions is, perhaps, less obvious and correct specification

of the universe is important.

For microarray data, one can use the unique gene identifiers

assayed in the experiment as the gene universe. However, some

arrays, such as those from Affymetrix, attempt to include probes for

as much of the genome as possible and often contain multiple probes

corresponding to a single gene. The multiple probe issue should be

resolved so that each gene is represented only once. One might also

want to consider reduction of the universe to exclude genes that are

not expressed, if such a determination can be made, since arguments

can be made against maintaining objects in the universe that cannot

be selected.

The next step is to identify the subset of the universe that is

considered interesting. In many applications, this set is constructed

by finding differentially expressed genes. One might use a t-test,
or an receiver operating characteristic (ROC) curve, or any of a

large number of methods to identify such genes. Other methods for

finding sets of interesting genes can also be used.

2.1 Non-specific filtering

To obtain the universe we often use the following procedure.

First we estimate the variability across samples using the the

inter-quartile range, or a similar statistic. We remove probes without

sufficient variability across samples to be informative; probes with

little variability across samples are inherently uninteresting as they

provide no discriminatory power. We remove probes that are

missing either Entrez Gene identifiers or do not map to any GO

terms. Finally, we refine the universe to ensure that each Entrez

Gene identifier maps to exactly one probe by selecting the probe

with the largest IQR when two or more probes map to the same

Entrez Gene ID.

There are many valid approaches to non-specific filtering that

might be quite different from the procedure described above.

However, it is important to avoid double counting genes. In our

approach, a gene is represented by an Entrez Gene ID and so we

must ensure that each Entrez Gene ID is represented by at most

one probe.

2.2 Parameters

Often one wishes to perform many similar analyses using slightly

different sets of parameters. The main interface to the Hypergeo-

metric tests, hyperGTest, facilitates this pattern of use by taking

a single parameter object as its argument. This parameter is an

instance of class GOHyperGParams. Using a parameter class�To whom correspondence should be addressed.
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instead of individual arguments makes it easier to organize and

execute a series of related analyses. For example, one can create

a list of GOHyperGParams instances and perform the hypergeo-

metric test on each using R’s lapply function:

resultList  lapply(lisOfParamObjs, hyperGTest)

Below, we create a parameter instance by specifying the gene

list, the universe, the name of the annotation data package, and the

GO ontology we wish to interrogate. For the example analysis,

we have stored the vector of Entrez Gene identifiers making up

the gene universe in entrezUniverse. The selected genes are

stored in selectedEntrezIds. In addition, users can specify a

P-value cutoff, whether the conditional hypergeometric calculation

should be used, and whether the test should evaluate over or under-

representation of GO terms.

> hgCutoff  0.001

> params  new(‘‘GOHyperGParams’’,

+ geneIds ¼ selectedEntrezIds,

+ universeGeneIds ¼ entrezUniverse,

+ annotation ¼ ‘‘hgu95av2’’, ontology ¼ ‘‘BP’’,
+ PvalueCutoff ¼ hgCutoff, conditional ¼ FALSE,

+ testDirection ¼ ‘‘over’’)

3 GOstats CAPABILITIES

In the hypergeometric model, each term is treated as an independent

classification. Each gene is classified according to whether or not it

has been selected and whether or not it is annotated at a particular

term. A hypergeometric probability is computed to assess whether

the number of selected genes associated with the term is larger than

expected.

The hyperGTest function provides an implementation of the

commonly applied hypergeometric calculation for over or under-

representation of GO terms in a specified gene list. This computa-

tion ignores the structure of the GO terms and treats each term as

independent from all other terms.

Often an analysis for GO term associations results in the iden-

tification of directly related GO terms with considerable overlap

of genes. This is because each GO term inherits all annotations from

its more specific descendants. To alleviate this problem, we have

implemented a method which conditions on all child terms that are

themselves significant at a specified P-value cutoff. Our approach is
similar to that propsed in GO consortium (2000). Given a subgraph

of one of the three GO ontologies, we test the leaves of the graph,

that is, those terms with no child terms. Before testing the terms

whose children have already been tested, we remove all genes

annotated at significant children from the parent’s gene list. This

continues until all terms have been tested.

4 OUTPUTS

The hyperGTest function returns an instance of class

GOHyperGResult. Printing the result at the R prompt provides

a brief summary of the test performed and the number of significant

terms found.

> hgOver hyperGTest(params)

> conditional(params) TRUE

> hgCondOver hyperGTest(params)

> hgOver

Gene to GO BP test for over-representation

1217 GO BP ids tested (22 have P < 0.001)

Selected gene set size: 582

Gene universe size: 2915

Annotation package: hgu95av2

The GOHyperGResult instance returned by hyperGTest

contains the P-value, odds ratio, expected gene count, and actual

gene count for each term tested along with the vector of gene

identifiers annotated at each term. It is also possible to retrieve a

graph instance representing the GO DAG for further computation.

All result components can be accessed programatically using

accessor functions (see the manual page for the GOHyperGResult

class for details). Calling summary on the result produces a

data.frame summarizing the results which can optionally be

limited to a user-specified minimum P-value and/or minimum

gene count for the terms. To make it easy for non-technical

users to review the results, the htmlReport function generates an

HTML file that can be viewed in any web browser. The output

generated by htmlReport as called below is available at http://

bioconductor.org/docs/papers/2006/GOstats

> htmlReport(hgCondOver, file ¼ ‘‘ALL_hgco.html’’)
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