

Using GUI Ripping for Automated Testing of Android

Applications
Domenico Amalfitano, Anna Rita Fasolino,

Porfirio Tramontana, and Salvatore De
Carmine

Dipartimento di Informatica e Sistemistica,
Università Federico II Napoli, Napoli, Italia

{domenico.amalfitano,anna.fasolino,
porfirio.tramontana} @unina.it,
salvatore.de.carmine@alice.it

Atif M. Memon
Department of Computer Science

University of Maryland
College Park, Maryland, USA

atif@cs.umd.edu

ABSTRACT

We present AndroidRipper, an automated technique that tests

Android apps via their Graphical User Interface (GUI).

AndroidRipper is based on a user-interface driven ripper that

automatically explores the app’s GUI with the aim of exercising

the application in a structured manner. We evaluate

AndroidRipper on an open-source Android app. Our results show

that our GUI-based test cases are able to detect severe, previously

unknown, faults in the underlying code, and the structured

exploration outperforms a random approach.

Categories and Subject Descriptors

D.2.5 [Testing and Debugging]: Testing tools

General Terms

Reliability, Verification.

Keywords

Testing Tools, Android, Testing Automation.

1. INTRODUCTION
According to Gartner, Inc., the mobile phone/tablet Android

operating system accounted for 52.5% of smartphone sales in the

third quarter of 2011, more than doubling its market share from

the third quarter of 2010 [8]. Moreover, in December 2011,

Android Market exceeded 10 billion app downloads with a

growth rate of one billion app downloads per month [4]. These

numbers show the great success of this platform and indicate the

necessity for cost-effective approaches for Android app

development. According to Wasserman, an important software

engineering challenge with mobile application development is

that of finding effective solutions for achieving non-functional

qualities in mobile applications and defining suitable techniques

and tools to support their testing [17].

Android application testing represents a challenging activity, with

several open issues, specific problems, and questions. For

example, most developers remain largely unfamiliar with the

Android development platform, leaving their applications prone

to new kinds of bugs. Although Android apps are developed using

Java technologies, they differ from standard Java client-server

applications and traditional event-based desktop applications. The

structure of Android apps centers instead around particular

software components offered by the Android Development

Framework, such as Activity, Service, Content Provider, etc.,

which require specific management rules and a particular lifecycle

[3]. A description of typical bugs encountered in real Android

applications [7] shows that frequent bugs are due to incorrect

management of the ‘Activity’ component lifecycle. This

component provides crucial functions for the application’s user
interface [3] and reacts to events generated by users and other

system components. Incorrect management of these events often

results in wrong or unsatisfactory application behavior.

We present AndroidRipper, an automated technique implemented

in a tool that tests Android apps via their Graphical User Interface

(GUI). We leverage results of recent work on model-based GUI

testing. Some of these models include Event-Sequence Graphs

[5], Event-Interaction-Graphs [12], Event-Flow Graphs [13], and

Finite State Machines [1, 10]. Testing techniques based on these

models perform test generation as a post-model creation step. The

biggest obstacle to adopting these techniques for the Android

platform is model development [10]. While researchers have

developed techniques to reverse engineer (or rip [11]) some

models from the subject system by fully or partially automated

analysis techniques [1, 11], fully automatic analysis remains

challenging for Android GUIs.

AndroidRipper extends previous work on ripping. Its goal is not

to develop a model of the app. Instead, it uses ripping to

automatically and systematically traverse the app’s user interface,
generating and executing test cases as new events are

encountered. Test cases are composed of sequences of events

“fireable” through the widgets of the app’s GUI. Test case

generation is based on the automatic dynamic analysis of the GUI

that is executed in order to find and fire events in the GUI.

Crucial aspects of any GUI dynamic analysis technique include:

the way and order GUI events are found and fired, pre-conditions

of the application and of its running environment at the time

events are fired, the criterion used to stop the exploration of a

given GUI, the app’s initial state, and so on. Depending on the

specific GUI analysis options, test cases with different fault-

detection capabilities are obtained. Consequently, AndroidRipper

is based on a configurable GUI analysis technique, performed by

a GUI ripper whose behavior can be tuned, via some parameters,

according to the specific application under test and specific

 Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’12, September 3–7, 2012, Essen, Germany
Copyright 2012 ACM 978-1-4503-1204-2/12/09 ...$15.00

258

testing aims. AndroidRipper, while exploring the GUI, detects

run-time crashes of the application.

We evaluate the effectiveness of different test suites, output as a

result of various parameter settings, generated by AndroidRipper.

We compare the test suites with respect to their capability to

detect faults and cover code for an open-source Android app

called WordPress. Our results show the feasibility and cost-

effectiveness of the overall approach. Moreover, we compared our

technique against the random testing approach implemented by

Monkey, from the Android Development Tools. Our experimental

data showed that AndroidRipper is more effective than Monkey in

detecting failures and covering code.

2. ASSESSMENT OF CURRENT ANDROID

TESTING TECHNIQUES
Android testing techniques should be able to reveal observable

failures in software applications. Besides the traditional failures

due to application logic bugs, Android applications often show

failures that are specific of their development platform. Some

specific Android bugs are reported in the classification proposed

by Hu et al. [7]. The classification includes Activity, Event,

Dynamic type, API, I/O, and Concurrency errors, as well as

unhandled exceptions. An Android-specific testing technique is

the one proposed by the same authors of the bug classification

[7]. The technique is event-based and focuses on Activity, Event

and dynamic type errors. The test case generation centers on the

Activity components, as they provide the main entry points and

control-flow drivers in Android applications. Test case generation

exploits the built-in Monkey application within the Android

mobile OS. Monkey [14] generates random or deterministic

sequences of events automatically and can support the interaction

with the mobile device. Tracing log files produced by test case

executions are automatically analyzed to detect potential bugs by

looking for known error patterns, including activity, event or

dynamic type bugs.

Android testing has also been approached by model-based testing

techniques that first obtain a formal model describing the

application at a level of detail necessary for automatic test case

generation. Test case generation algorithms process the model in

systematic ways to produce test cases. To obtain the application’s
model, these techniques usually require detailed static or dynamic

analysis of the application. A model-based approach for Android

GUI testing has been proposed by Takala et al. [16]. The

technique describes the GUI of an Android application by state

machines, a very common model for representing GUIs. In order

to cope with the complexity of state machines representing real-

size applications, each individual view of the GUI is split into two

levels as specified by two separate state machines: an action

machine (describing high-level functionalities using action words

and state verifications) and a refinement machine (describing

action words and state verifications using keywords). These

models, which must be manually generated, are used to define test

cases that can be executed by a test automation tool.

An alternative approach for automatically testing an Android

application by its GUI has been proposed by Amalfitano et al. [2].

The approach is based on a tool that explores the application GUI

by simulating real user events on the user interface and

reconstructs a GUI tree model. The nodes of the tree represent

individual user interfaces in the Android application, while edges

describe event-based transitions between interfaces. The GUI

exploration technique supports the automatic derivation of test

cases that can be executed both in crash testing and regression

testing processes. In contrast to the testing technique presented by

Takala et al. [16], the one proposed by [2] reconstructs the GUI

model automatically and thus provides a suitable solution for GUI

testing automation. However, the exploration technique used for

deriving test cases in [2] is pre-defined and it is not possible to

vary it in order to satisfy specific exploration needs.

Liu et al. propose a black-box approach for testing mobile

applications that mixes elements of event-based testing and

random testing [9]. The technique extends the Adaptive Random

Testing [6] to the automatic test case generation for mobile

applications. Test cases are composed by sequences of both user

events and context events that come from the physical context of

the device (such as GPS, compass, or other device sensors) or

from other ones, like chat friends, the current activity of a user,

etc.. Test cases are generated randomly by a monkey robot. This

technique exploits a new definition of test case distance for

mobile applications in order to spread the randomly generated test

cases as evenly as possible. The experimental results show that

this technique is superior to pure random test case generation in

terms of earlier detection of failures.

3. DESIGN OF AndroidRipper
The GUIs of Android applications provide a hierarchical,

graphical front-end to the application that accept as input user-

generated and system-generated events from a fixed set of events

and produce graphical output. Each GUI contains graphical

objects; each object has a fixed set of properties. At any time

during the execution of the GUI, these properties have discrete

values, the set of which constitutes the state of the GUI [13]. In

Android, GUIs are implemented by two main components from

the development framework namely Activities and Views.

AndroidRipper dynamically analyses the application’s GUI with

the aim of obtaining sequences of events fireable through the GUI

widgets. Each sequence provides an executable test case. During

its operation, AndroidRipper maintains a state machine model of

the GUI, which we call a GUI Tree. The GUI Tree model contains

the set of GUI states and state transitions encountered during the

ripping process. The ripping technique is iterative and relies on

the following concepts:

- An event is a user action performed on a GUI widget. Events

can be distinguished between data input events (such as filling

in an editable text) and command input events (such as

clicking on a button);

- An action consists of a sequence of zero or more data input

events followed by a single command input event;

- A task is a couple (action, GUI state) representing an action

performed in a GUI state; a task is executed by preliminarily

reaching the GUI state and then performing the action; a task

list is a set of tasks;

- The GUI exploration criterion is a logical predicate

(composition of conditions) that establishes if the exploration

of a given GUI must be continued (true value) or stopped

(false value). As an example, given a GUI, a condition may

evaluate the equivalence of its state with the one of already

visited GUIs, or that the Depth of the resulting GUI Tree is

less than a given maximum value (Maximum Depth of GUI

Tree).

259

AndroidRipper design is based on executing tasks in a task list,

initialized with tasks that are fireable in an initial GUI of the

application, while the GUI Tree just contains a single state

(representing the initial GUI shown by the application when the

ripper starts exercising it). The task list is iteratively updated with

new tasks defined from the current GUIs, and new states and state

transitions are added to the GUI Tree. The GUI exploration

strategy of AndroidRipper can be tuned varying some parameters

such as the time delay between consecutive fired events, input

values, GUI traversal strategy, GUI exploration criterion, etc…

4. DEMONSTRATION OF AndroidRipper
We implemented the AndroidRipper using the Robotium

Framework [15] and by the Android Instrumentation class [3].

Further details about this tool and some examples of using it for

crash testing real Android applications are available at a Wiki

Web Page [18]. We used our implementation of the

AndroidRipper to test an open-source Android app called

“Wordpress for Android” (available at

http://android.wordpress.org/). It provides an interactive client for

creating, updating and managing blogs saved on a server. Its rich

user interface allows users to write new posts, edit post content,

and manage comments of blogs with built-in notifications. The

app is under active development and has a broad user community,

as evident by its publicly available web site. Its developers

employ an issue tracking system for software development

projects available at https://android.trac.wordpress.org/,

containing bug tracking and linking to application version history

(available at http://android.svn.wordpress.org/). We chose to

analyze release r394, which was the newest release available at

the time this work was performed. This release’s source code

consists of 6 Java packages, a total of 71 files containing 334

classes and 1,489 methods; in all, 10,017 executable lines of

code.

Using AndroidRipper’s settings discussed earlier, we tested the

app and measured a number of metrics in order to assess both

effectiveness and costs of the technique [12]. We counted the

number of bugs detected (Metric M0) and the number of crashes

occurred at run-time (metric M1) for measuring the Defect

Detection Effectiveness of the technique. Moreover, we measured

Code coverage that provides an evidence of the technique’s
potential ability in fault detection: the better the code coverage,

the better the potential goodness of a testing technique. We used

the Number of LOCs covered / Total number of executable LOCs)

% (metric M2) as coverage metric. Lastly, we assessed process

cost by resources spent by testing. We used the time (in hours)

spent for GUI ripping (M3). The testing sessions were all

executed using a workstation equipped with a Windows XP

Professional O.S., with 2 GB RAM and a Dual Intel Pentium

E2200 at 2.2GHZ.

Because WordPress is a client-server application, we had to

control its state too. In a first round, called R1, the app was tested

in the client side precondition called No Login (NL), where the

user installed the application for the first time and accepted the

disclaimer. No specific preconditions were set for the server side,

because they were irrelevant. This session lasted about 12

minutes, due to the very restrictive precondition of the application

that did not allow the ripper to explore the app GUI further. The

ripper did not record any crash of the app and code coverage was

very low (just 2,65 LOC coverage %).

In the second round, called R2, the client-side precondition was

set to First Login (FL) where the user had previously installed the

application on the mobile device for the first time, accepted the

disclaimer and correctly logged in. The server side precondition

was More than one Blog (MB), where the WordPress database

was initialized to two blogs, both having two pages, six

comments, two posts with multimedia elements (one of which is

‘Hello World’), one tag, and one comment. With these new

preconditions, the ripper was able to cover more than 39% of

LOC of the app in less than 5 hours and recorded a considerable

number of crashes (6 crashes) that were not documented by the

app Web page. Using the WordPress bug track system, we

reported (with the ‘AndroidCrawler’ user name) these crashes to

the app developers by opening a ticket. The developers fixed the

bugs. By analysing the change-set made for correcting bugs, we

recognized that crashes were due to 3 distinct bugs of the

applications (namely, B1, B2, and B3). We classified the bugs as

per a standard classification scheme [7]: (1) Concurrency (C),

errors due to the interaction of multiple processes or threads, and

(2) Others (O), due to incorrect application logic implementation.

The first three rows of Table 1 report for each bug a short

description of the crash, the classification of the bug, the Java

exception, and the corresponding http addresses of ticket and

change-set from the bug tracking system of Wordpress.

In the third round, R3, the client side precondition was FL and the

server side was Single Blog (SB), the state in which the

WordPress database contains a single new blog with two pages,

six comments, two posts (one of which is the auto-generated

‘Hello World’ post), no multimedia element, one tag, and one
comment. With these new preconditions, the ripper was able to

cover about 38% of LOC of the app in less than 5 hours and

found 8 crashes. Six crashes were due to the three bugs detected

earlier. Two crashes were completely new to the app developer

and were attributed to a new bug (B4). The changeset analysis

revealed that bug B4 may be classified as an Activity error (A),

due to incorrect management of the Activity lifecycle, specific to

Android apps. Further details about this bug are reported in row

4 of Table 1 and the results are summarized in Table 2.

In order to compare the results achieved by our GUI ripping

technique against the ones reachable by other test automation

solutions currently available, we performed another testing

session using Monkey tool. Monkey is a tool for random stress

and crash testing of Android GUIs [14]. To the best of our

knowledge, this is the only non-commercial tool for Android

automated testing available. Monkey is able to fire random user

events on the GUI of an app and stops the exploration when a

given input number of events were fired. We tried several

configurations of Monkey, with various GUI exploration options.

Among them, we report the results of a single execution of

Monkey (RM) whose time duration was 4.46 hours, hence,

comparable with the duration of R3 and R2 sessions. In the

considered execution, Monkey had to fire 45,000 events with the

default value of event type statistical distribution. In this

experiment Monkey found 3 crashes corresponding to bug B2 and

reached 25.27 % LOC coverage, being less effective than the

ripping based testing sessions R3 and R2. These results are

reported in the last column of Table 2.

260

5. CONCLUSIONS
We presented AndroidRipper, a technique based on GUI ripping

for automatic testing of Android applications. Our evaluation

using the “WordPress for Android” application revealed four
undocumented bugs, automatically detected in less than five

hours. This datum shows the effectiveness of the technique in

finding real bugs and its suitability for testing processes that need

to be carried out in a short amount of time. Moreover, the

experimental data showed that the proposed technique is more

effective in bug detection than the random testing technique

implemented by Monkey.

Table 1: Crash Descriptions of bugs detected

Id Crash Description Bug

Class.

Java

Exception

Ticket and Changeset

B1 The app crashes trying to opening

the default post “Hello World”

O StringIndexOut

OfBoundExcep

tion

https://android.trac.word

press.org/ticket/206

https://android.trac.word

press.org/changeset/398

B2 The app crashes when the Stats

activity is rapidly opened and

closed (via the Back key).

C BadTokenExce

ption

https://android.trac.word

press.org/ticket/208

https://android.trac.word

press.org/changeset/420

B3 The app crashes when the Stats

activity is open and the Refresh

button is clicked while the

progress bar widget is still

loading.

C NullPointerExc

eption

https://android.trac.word

press.org/ticket/212

https://android.trac.word

press.org/changeset/423

B4 The app crashes when the user

opens a post and tries to share it

within his blog. The crash occurs

when there is a single blog in the

app.

A NullPointerExc

eption

https://android.trac.word

press.org/ticket/218

https://android.trac.word

press.org/changeset/446

Table 2: Bugs, Coverage and Cost Data

 R1 R2 R3 RM

Crashes of Bug B1 4 4

Crashes of Bug B2 1 1 1

Crashes of Bug B3 1 1

Crashes of Bug B4 2

Total Bugs 0 3 4 1

Total Crashes 0 6 8 3

% Covered LOCs 2,65 39,32 37,83 25.27

Time (hours) 0.2 4.88 4.58 4.46

6. REFERENCES
[1] Domenico Amalfitano, Anna Rita Fasolino, and Porfirio

Tramontana. 2008. Reverse Engineering Finite State

Machines from Rich Internet Applications. In Proceedings of

the 2008 15th Working Conference on Reverse Engineering

(WCRE '08). IEEE Computer Society, USA, 69-73.

[2] D. Amalfitano, A. R. Fasolino and P. Tramontana, A GUI

Crawling-Based Technique for Android Mobile Application

Testing, Third International Workshop on TESTing

Techniques & Experimentation Benchmarks for Event-

Driven Software, IEEE CS Press, pp. 252- 261.

[3] Android Developers. The Developer’s Guide.
http://developer.android.com/guide/, last accessed on

February 29th, 2012

[4] Eric Chu. 2011. 10 Billion Android Market Downloads and

Counting, http://android-

developers.blogspot.com/2011/12/10-billion-android-

market-downloads-and.html last acc. on February 29th, 2012

[5] Fevzi Belli, Christof J. Budnik, and Lee White. 2006. Event-

based modelling, analysis and testing of user interactions:

approach and case study: Research Articles. Softw. Test.

Verif. Reliab. 16, 1 (March 2006), 3-32.

[6] Tsong Yueh Chen, Fei-Ching Kuo, Robert G. Merkel, and T.

H. Tse. 2010. Adaptive Random Testing: The ART of test

case diversity. J. Syst. Softw. 83, 1 (January 2010), 60-66.

[7] Cuixiong Hu and Iulian Neamtiu. 2011. Automating GUI

testing for Android applications. In Proceedings of the 6th

International Workshop on Automation of Software Test

(AST '11). ACM, New York, NY, USA, 77-83.

[8] Gartner. 2011 Gartner Says Sales of Mobile Devices Grew

5.6 Percent in Third Quarter of 2011;http://www.gartner.com

/it/page.jsp?id=1848514 last acc. on February 29th, 2012

[9] Zhifang Liu, Xiaopeng Gao and Xiang Long. 2010.

Adaptive Random Testing of Mobile Application. In

Proceedings of the 2nd International Conference on

Computer Engineering and Technology (ICCET ’10), IEEE

Computer Society, Washington, DC, USA, 2, 297-301.

[10] Alessandro Marchetto, Paolo Tonella, and Filippo Ricca.

2008. State-Based Testing of Ajax Web Applications. In

Proceedings of the 2008 International Conference on

Software Testing, Verification, and Validation (ICST '08).

IEEE Computer Society, Washington, DC, USA, 121-130.

[11] Atif Memon, Ishan Banerjee, and Adithya Nagarajan. 2003.

GUI Ripping: Reverse Engineering of Graphical User

Interfaces for Testing. In Proceedings of the 10th Working

Conference on Reverse Engineering (WCRE '03). IEEE

Computer Society, Washington, DC, USA, 260-269.

[12] Atif Memon and, Qing Xie. 2005. Studying the Fault-

Detection Effectiveness of GUI Test Cases for Rapidly

Evolving Software. IEEE Trans. Softw. Eng. 31, 10, 884-

896.

[13] Atif M. Memon. 2007. An event-flow model of GUI-based

applications for testing: Research Articles. Softw. Test.

Verif. Reliab. 17, 3 (September 2007), 137-157.

[14] Android Developers, The Developer’s Guide. UI/Application
Exerciser Monkey,

http://developer.android.com/guide/developing/tools/monkey

.html last accessed on February 29th, 2012

[15] Robotium. http://code.google.com/p/robotium/, last accessed

on February 29th, 2012

[16] Tommi Takala, Mika Katara, and Julian Harty. 2011.

Experiences of System-Level Model-Based GUI Testing of

an Android Application. In Proceedings of the 2011 Fourth

IEEE International Conference on Software Testing,

Verification and Validation (ICST '11). IEEE Computer

Society, Washington, DC, USA, 377-386.

[17] A.Wasserman, Software Engineering Issues for Mobile

Application Development, Proc. of the FSE/SDP workshop

on Future of software engineering research, FOSER 2010,

IEEE Comp. Soc. Press, pp. 397- 400

[18] Android GUI Ripper Wiki, available at:

http://wpage.unina.it/ptramont/GUIRipperWiki.htm, last

accessed on July 8th, 2012.

261

