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Motivation
▸Why Instructions-Level Monitoring (ILM) ?

My Research

Make use of full hardware virtualization to detect malware infections

and exploitation attempts.
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Motivation
▸Why Instructions-Level Monitoring (ILM) ?

main 

400707:  call 400584 <vulnerable> 
40070c:  mov  0x0, %EAX 

DATA 

Stack 

vulnerable 

400584:  push %rbp 
400585:  mov  %rsp,%rbp 
400588:  sub  $0x20,%rsp 

4006b2:  leave 
4006b3:  ret 

<vulnerable code> 
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Motivation
▸Why Instructions-Level Monitoring (ILM) ?

One possible Solution

Make use of a Shadow Stack to verify the target of return instructions.
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400584:  push %rbp 
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DATA 
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<vulnerable code> 

* /bin/bash 

exit 

system 
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Shadow Stack 

0x40070c (RET) 

EIP: system 
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Motivation
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Observation

A Shadow Stack for return addresses can be implemented on the

hypervisor-level by only trapping call and return instructions.
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▸Why a new ILM mechanism?

Existing Approaches

1 Page-Fault (PF)-based ILM

2 Debug Register (DR)-based ILM
3 Trap Flag (TF)-based ILM

▸ Insecure
▸ Incomplete
▸ Inflexible

⇒ None of the existing methods can provide the desired flexbility.
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Performance Monitoring Counters (PMCs)
▸ Overview

Performance Monitoring on the x86 architecture

Performance Events

PMCs that count these events
▸ Which event is counted can be programmed.
▸ Can be set to raise an interrupt on overflow.
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Performance Monitoring Counters (PMCs)
▸ Performance Events

▸ All instructions
▸ All branch instructions
▸ All conditional branch instructions
▸ All near call instructions
▸ All near return instructions
▸ All far branch instructions
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PMC-based Instruction-level Monitoring (ILM)
▸ Trapping Performance Events

Question

How can we trap performance events to the hypervisor?
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Challenges

1 Interrupt Generation: Generate an interrupt whenever the
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PMC-based Instruction-level Monitoring (ILM)
▸ Trapping Performance Events: Signal Generation

Set the PMC initially to

MAX_PMC_VALUE - X + 1

where X is the number of events that should occur before the interrupt.
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▸ Trapping Performance Events: Signal Generation

Set the PMC initially to

MAX_PMC_VALUE - X + 1

where X is the number of events that should occur before the interrupt.

⇒ PMC will overflow after the desired number of events.

⇒ An Interrupt will be generated.
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PMC-based Instruction-level Monitoring (ILM)
▸ Trapping Performance Events: Control Transfer

Interrupt Generation

The type of interrupt that is generated depends on the settings within the local
Advanced Programmable Interrupt Controller (APIC).
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The type of interrupt that is generated depends on the settings within the local
Advanced Programmable Interrupt Controller (APIC).

It is possible to generate a Nonmaskable Interrupt (NMI).

▸ NMIs lead to a VM Exit if the appropriate flag is set.
▸ NMIs are immediately handled by the processor.

Problem: Interrupt Delivery

There is a gap of time between the occurrence of a performance event and the
interrupt delivery.

Other performance events may go unnoticed during this period of time.

Problem has to be solved on a case-by-case basis.

S. Vogl and C. Eckert (TUM) 10.04.2012 26 / 42



PMC-based Instruction-level Monitoring (ILM)
▸ Instruction Reconstruction (IR)

Problem

The number of selected instructions that are executed during

interrupt delivery depend on the event that we monitor.

If we set a PMC to count every instruction, about 6 instructions will

be executed on the average before the interrupt is acknowledged.
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Problem

The number of selected instructions that are executed during

interrupt delivery depend on the event that we monitor.

If we set a PMC to count every instruction, about 6 instructions will

be executed on the average before the interrupt is acknowledged.

Solution

The PMC will keep counting after an overflow occurred.

⇒
We know exactly how many instructions were executed before the

interrupt was acknowledged.

⇒
Reconstruct the instruction stream and obtain the instructions

that we missed.
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PMC-based Instruction-level Monitoring (ILM)
▸ Instruction Reconstruction (IR)

Approach

1 Save the value of the instruction pointer on every overflow.

2 Check the value of the PMC on overflow to determine how many

instructions were missed if any.

3 Disassemble every instruction starting from the last saved

instruction pointer till we reach the current instruction pointer.

Example

1 40f448 : mov %r12 ,% r d i ; <====== LAST EIP

2 40f44b : mov $0x20,%esi

3 40f450 : mov %rbp ,%rdx
4 40f453 : mov %ecx ,0 x28(%rsp )
5 40f457 : mov %r8b ,0 x10(%rsp )
6 40 f45c : mov %r9 ,0 x20(%rsp )
7 40f461 : add %rbp ,%r12 ; <====== CURRENT EIP
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PMC-based Instruction-level Monitoring (ILM)
▸ Instruction Reconstruction (IR)

What about branches?

1 40f24e : pop %r12 ; <====== LAST EIP

2 40f250 : pop %r13
3 40f252 : pop %r14
4 40f254 : pop %r15
5 40f256 : re t

Problem

The target of a branch may depend on a memory operand that may

have been overwritten in the meantime.
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PMC-based Instruction-level Monitoring (ILM)
▸ The Last Branch Record (LBR) Stack

LBR Stack

Records the last taken branches

Set of MSRs

▸ A top-of-stack (TOS) pointer (MSR_LASTBRANCH_TOS)
▸ A pair of MSRs for each branch that the stack can record:
MSR_LASTBRANCH_x_FROM_IP⇒ MSR_LASTBRANCH_x_TO_LIP

The size of the LBR stack depends on the microarchitecture
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Records the last taken branches
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▸ A top-of-stack (TOS) pointer (MSR_LASTBRANCH_TOS)
▸ A pair of MSRs for each branch that the stack can record:
MSR_LASTBRANCH_x_FROM_IP⇒ MSR_LASTBRANCH_x_TO_LIP

The size of the LBR stack depends on the microarchitecture

⇒ Save the TOS pointer on each monitoring related interrupt.

⇒
All taken branches are recorded between the last saved TOS and the current
TOS.
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PMC-based Instruction-level Monitoring (ILM)
▸ Instruction Reconstruction (IR)

0x40f256 

0x40f4b3 

Last TOS 

Current TOS 

MSR_LASTBRANCH_7_FROM_IP 

MSR_LASTBRANCH_7_TO_LIP 

MSR_LASTBRANCH_8_FROM_IP 

Using the LBR Stack

1 40f24e : pop %r12 ; <====== LAST EIP

2 40f250 : pop %r13
3 40f252 : pop %r14
4 40f254 : pop %r15
5 40f256 : re t

6

7 40f4b3 : mov %r12 ,% r d i ; <====== CURRENT EIP
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PMC-based Instruction-level Monitoring (ILM)
▸What about security?

PMCs are MSRs

All PMC control structures are MSRs as well

Read/Write accesses to MSRs can be intercepted from the

hypervisor

⇒ An attacker cannot disable or manipulate the PMCs.
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Experiments & Results
▸ Experiments

Monitored four common Linux applications at the instruction-level:
▸ ls (Argument: /usr/bin, 597 files)
▸ tar (Argument: Hello World.c, 10 LOC)
▸ cat (Argument: Hello World.c, 10 LOC)
▸ gcc (Argument: Hello World.c, 10 LOC)
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▸ cat (Argument: Hello World.c, 10 LOC)
▸ gcc (Argument: Hello World.c, 10 LOC)

Each application was executed multiple times using different

monitoring modes:

▸ PMC ALL & IR: All instructions & Instruction Reconstruction
▸ TF ALL: All instructions
▸ PMC ALL: All instructions without Instruction Reconstruction
▸ PMC Branches: All branch instructions
▸ PMC Shadow Stack: Only call & return instructions

Measured the execution time from the hypervisor for each run

Calculated the average slowdown factor
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Experiments & Results
▸ Results

Mode ls tar cat gcc

PMC ALL & IR 755 (18s) 1002 (3.0s) 334 (0.6s) 1263 (92s)

TF ALL 310 (7.0s) 415 (1.2s) 142 (0.3s) 545 (40s)

PMC ALL 273 (6.5s) 403 (1.2s) 126 (0.3s) 435 (32s)

PMC Branches 163 (4.0s) 259 (0.8s) 81 (0.2s) 281 (21s)

PMC Shadow Stack 95 (2.0s) 196 (0.6s) 31 (0.1s) 212 (15s)
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Experiments & Results
▸ Improving the Performance

Improving the Performance

The performance of the approach heavily depends on the number

of the VM Exists.
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Improving the Performance

The performance of the approach heavily depends on the number

of the VM Exists.

The performance will increase by almost the same factor as the

VM Exits are decreased.

Possible Approaches
▸ Precise Event Based Sampling (PEBS)
▸ Branch Trace Store (BTS)

Security

The overall security of the mechanisms will decrease if the VM Exits

are reduced.
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Performance

The proposed ILM mechanism still leads to significant overhead.

However, the mechanism can be significantly faster than existing

hardwared-based mechanism on the x86 architecture.
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Summary

Contributions

PMC-based trapping

A flexible and secure ILM mechanism

Instruction Reconstruction

Performance

The proposed ILM mechanism still leads to significant overhead.

However, the mechanism can be significantly faster than existing

hardwared-based mechanism on the x86 architecture.

There is still a lot of room for improvements.

More detailed experiments are needed.

⇒
We encourage other researchers to explore the possibilities of

PMC-based trapping as well as PMC-based ILM.
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Summary
▸ Questions?
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