
Using Hardware Performance Events for

Instruction-Level Monitoring on the x86 Architecture

Sebastian Vogl and Claudia Eckert
{vogls,eckertc}@in.tum.de

Chair for IT Security
Technische Universität München

Munich, Germany

10.04.2012

S. Vogl and C. Eckert (TUM) 10.04.2012 1 / 42

Outline

1 Motivation

2 Performance Monitoring Counters (PMCs)

3 PMC-based Instruction-level Monitoring (ILM)

4 Experiments & Results

5 Summary

S. Vogl and C. Eckert (TUM) 10.04.2012 2 / 42

Outline

1 Motivation

2 Performance Monitoring Counters (PMCs)

3 PMC-based Instruction-level Monitoring (ILM)

4 Experiments & Results

5 Summary

S. Vogl and C. Eckert (TUM) 10.04.2012 3 / 42

Motivation
▸Why Instructions-Level Monitoring (ILM) ?

My Research

Make use of full hardware virtualization to detect malware infections

and exploitation attempts.

S. Vogl and C. Eckert (TUM) 10.04.2012 4 / 42

Motivation
▸Why Instructions-Level Monitoring (ILM) ?

main

400707: call 400584 <vulnerable>
40070c: mov 0x0, %EAX

DATA

Stack

vulnerable

400584: push %rbp
400585: mov %rsp,%rbp
400588: sub $0x20,%rsp

4006b2: leave
4006b3: ret

<vulnerable code>

S. Vogl and C. Eckert (TUM) 10.04.2012 5 / 42

Motivation
▸Why Instructions-Level Monitoring (ILM) ?

main

400707: call 400584 <vulnerable>
40070c: mov 0x0, %EAX

DATA

Stack

0x40070c (RET)

vulnerable

400584: push %rbp
400585: mov %rsp,%rbp
400588: sub $0x20,%rsp

4006b2: leave
4006b3: ret

<vulnerable code>

S. Vogl and C. Eckert (TUM) 10.04.2012 6 / 42

Motivation
▸Why Instructions-Level Monitoring (ILM) ?

main

400707: call 400584 <vulnerable>
40070c: mov 0x0, %EAX

DATA

Stack

0x40070c (RET)

RBP

vulnerable

400584: push %rbp
400585: mov %rsp,%rbp
400588: sub $0x20,%rsp

4006b2: leave
4006b3: ret

<vulnerable code>

S. Vogl and C. Eckert (TUM) 10.04.2012 7 / 42

Motivation
▸Why Instructions-Level Monitoring (ILM) ?

main

400707: call 400584 <vulnerable>
40070c: mov 0x0, %EAX

DATA

Stack

0x40070c (RET)

RBP

vulnerable

400584: push %rbp
400585: mov %rsp,%rbp
400588: sub $0x20,%rsp

4006b2: leave
4006b3: ret

<vulnerable code>

S. Vogl and C. Eckert (TUM) 10.04.2012 8 / 42

Motivation
▸Why Instructions-Level Monitoring (ILM) ?

main

400707: call 400584 <vulnerable>
40070c: mov 0x0, %EAX

DATA

Stack

0x40070c (RET)

RBP

BUFFER vulnerable

400584: push %rbp
400585: mov %rsp,%rbp
400588: sub $0x20,%rsp

4006b2: leave
4006b3: ret

<vulnerable code>

S. Vogl and C. Eckert (TUM) 10.04.2012 9 / 42

Motivation
▸Why Instructions-Level Monitoring (ILM) ?

main

400707: call 400584 <vulnerable>
40070c: mov 0x0, %EAX

vulnerable

400584: push %rbp
400585: mov %rsp,%rbp
400588: sub $0x20,%rsp

4006b2: leave
4006b3: ret

DATA

Stack

DATA (EBP)

DATA

<vulnerable code>

* /bin/bash

exit

system

S. Vogl and C. Eckert (TUM) 10.04.2012 10 / 42

Motivation
▸Why Instructions-Level Monitoring (ILM) ?

main

400707: call 400584 <vulnerable>
40070c: mov 0x0, %EAX

vulnerable

400584: push %rbp
400585: mov %rsp,%rbp
400588: sub $0x20,%rsp

4006b2: leave
4006b3: ret

DATA

Stack

DATA (EBP)

<vulnerable code>

* /bin/bash

exit

system

S. Vogl and C. Eckert (TUM) 10.04.2012 11 / 42

Motivation
▸Why Instructions-Level Monitoring (ILM) ?

main

400707: call 400584 <vulnerable>
40070c: mov 0x0, %EAX

vulnerable

400584: push %rbp
400585: mov %rsp,%rbp
400588: sub $0x20,%rsp

4006b2: leave
4006b3: ret

DATA

Stack

<vulnerable code>

* /bin/bash

exit

system

system

S. Vogl and C. Eckert (TUM) 10.04.2012 12 / 42

Motivation
▸Why Instructions-Level Monitoring (ILM) ?

One possible Solution

Make use of a Shadow Stack to verify the target of return instructions.

S. Vogl and C. Eckert (TUM) 10.04.2012 13 / 42

Motivation
▸Why Instructions-Level Monitoring (ILM) ?

main

400707: call 400584 <vulnerable>
40070c: mov 0x0, %EAX

DATA

Stack

vulnerable

400584: push %rbp
400585: mov %rsp,%rbp
400588: sub $0x20,%rsp

4006b2: leave
4006b3: ret

<vulnerable code>

Shadow Stack

S. Vogl and C. Eckert (TUM) 10.04.2012 14 / 42

Motivation
▸Why Instructions-Level Monitoring (ILM) ?

main

400707: call 400584 <vulnerable>
40070c: mov 0x0, %EAX

DATA

Stack

0x40070c (RET)

vulnerable

400584: push %rbp
400585: mov %rsp,%rbp
400588: sub $0x20,%rsp

4006b2: leave
4006b3: ret

<vulnerable code>

Shadow Stack

0x40070c (RET)

S. Vogl and C. Eckert (TUM) 10.04.2012 15 / 42

Motivation
▸Why Instructions-Level Monitoring (ILM) ?

main

400707: call 400584 <vulnerable>
40070c: mov 0x0, %EAX

vulnerable

400584: push %rbp
400585: mov %rsp,%rbp
400588: sub $0x20,%rsp

4006b2: leave
4006b3: ret

DATA

Stack

<vulnerable code>

* /bin/bash

exit

system

system

Shadow Stack

0x40070c (RET)

EIP: system

S. Vogl and C. Eckert (TUM) 10.04.2012 16 / 42

Motivation
▸Why Instructions-Level Monitoring (ILM) ?

Observation

A Shadow Stack for return addresses can be implemented on the

hypervisor-level by only trapping call and return instructions.

S. Vogl and C. Eckert (TUM) 10.04.2012 17 / 42

Motivation
▸Why Instructions-Level Monitoring (ILM) ?

Observation

A Shadow Stack for return addresses can be implemented on the

hypervisor-level by only trapping call and return instructions.

ILM Requirements

1 Based on full hardware virtualization

S. Vogl and C. Eckert (TUM) 10.04.2012 17 / 42

Motivation
▸Why Instructions-Level Monitoring (ILM) ?

Observation

A Shadow Stack for return addresses can be implemented on the

hypervisor-level by only trapping call and return instructions.

ILM Requirements

1 Based on full hardware virtualization

2 Secure

S. Vogl and C. Eckert (TUM) 10.04.2012 17 / 42

Motivation
▸Why Instructions-Level Monitoring (ILM) ?

Observation

A Shadow Stack for return addresses can be implemented on the

hypervisor-level by only trapping call and return instructions.

ILM Requirements

1 Based on full hardware virtualization

2 Secure

3 Flexible

S. Vogl and C. Eckert (TUM) 10.04.2012 17 / 42

Motivation
▸Why a new ILM mechanism?

Existing Approaches

1 Page-Fault (PF)-based ILM

2 Debug Register (DR)-based ILM

3 Trap Flag (TF)-based ILM

S. Vogl and C. Eckert (TUM) 10.04.2012 18 / 42

Motivation
▸Why a new ILM mechanism?

Existing Approaches

1 Page-Fault (PF)-based ILM

2 Debug Register (DR)-based ILM
3 Trap Flag (TF)-based ILM

S. Vogl and C. Eckert (TUM) 10.04.2012 19 / 42

Motivation
▸Why a new ILM mechanism?

Existing Approaches

1 Page-Fault (PF)-based ILM

2 Debug Register (DR)-based ILM
3 Trap Flag (TF)-based ILM

▸ Insecure

S. Vogl and C. Eckert (TUM) 10.04.2012 19 / 42

Motivation
▸Why a new ILM mechanism?

Existing Approaches

1 Page-Fault (PF)-based ILM

2 Debug Register (DR)-based ILM
3 Trap Flag (TF)-based ILM

▸ Insecure
▸ Incomplete

S. Vogl and C. Eckert (TUM) 10.04.2012 19 / 42

Motivation
▸Why a new ILM mechanism?

Existing Approaches

1 Page-Fault (PF)-based ILM

2 Debug Register (DR)-based ILM
3 Trap Flag (TF)-based ILM

▸ Insecure
▸ Incomplete
▸ Inflexible

S. Vogl and C. Eckert (TUM) 10.04.2012 19 / 42

Motivation
▸Why a new ILM mechanism?

Existing Approaches

1 Page-Fault (PF)-based ILM

2 Debug Register (DR)-based ILM
3 Trap Flag (TF)-based ILM

▸ Insecure
▸ Incomplete
▸ Inflexible

⇒ None of the existing methods can provide the desired flexbility.

S. Vogl and C. Eckert (TUM) 10.04.2012 19 / 42

Outline

1 Motivation

2 Performance Monitoring Counters (PMCs)

3 PMC-based Instruction-level Monitoring (ILM)

4 Experiments & Results

5 Summary

S. Vogl and C. Eckert (TUM) 10.04.2012 20 / 42

Performance Monitoring Counters (PMCs)
▸ Overview

Performance Monitoring on the x86 architecture

Performance Events

S. Vogl and C. Eckert (TUM) 10.04.2012 21 / 42

Performance Monitoring Counters (PMCs)
▸ Overview

Performance Monitoring on the x86 architecture

Performance Events

PMCs that count these events

S. Vogl and C. Eckert (TUM) 10.04.2012 21 / 42

Performance Monitoring Counters (PMCs)
▸ Overview

Performance Monitoring on the x86 architecture

Performance Events

PMCs that count these events
▸ Which event is counted can be programmed.

S. Vogl and C. Eckert (TUM) 10.04.2012 21 / 42

Performance Monitoring Counters (PMCs)
▸ Overview

Performance Monitoring on the x86 architecture

Performance Events

PMCs that count these events
▸ Which event is counted can be programmed.
▸ Can be set to raise an interrupt on overflow.

S. Vogl and C. Eckert (TUM) 10.04.2012 21 / 42

Performance Monitoring Counters (PMCs)
▸ Performance Events

▸ All instructions
▸ All branch instructions
▸ All conditional branch instructions
▸ All near call instructions
▸ All near return instructions
▸ All far branch instructions

S. Vogl and C. Eckert (TUM) 10.04.2012 22 / 42

Outline

1 Motivation

2 Performance Monitoring Counters (PMCs)

3 PMC-based Instruction-level Monitoring (ILM)

4 Experiments & Results

5 Summary

S. Vogl and C. Eckert (TUM) 10.04.2012 23 / 42

PMC-based Instruction-level Monitoring (ILM)
▸ Trapping Performance Events

Question

How can we trap performance events to the hypervisor?

S. Vogl and C. Eckert (TUM) 10.04.2012 24 / 42

PMC-based Instruction-level Monitoring (ILM)
▸ Trapping Performance Events

Question

How can we trap performance events to the hypervisor?

Challenges

1 Interrupt Generation: Generate an interrupt whenever the

desired hardware performance event occurs.

S. Vogl and C. Eckert (TUM) 10.04.2012 24 / 42

PMC-based Instruction-level Monitoring (ILM)
▸ Trapping Performance Events

Question

How can we trap performance events to the hypervisor?

Challenges

1 Interrupt Generation: Generate an interrupt whenever the

desired hardware performance event occurs.

2 Control Transfer: The emitted interrupt must lead to a VM Exit.

S. Vogl and C. Eckert (TUM) 10.04.2012 24 / 42

PMC-based Instruction-level Monitoring (ILM)
▸ Trapping Performance Events: Signal Generation

Set the PMC initially to

MAX_PMC_VALUE - X + 1

where X is the number of events that should occur before the interrupt.

S. Vogl and C. Eckert (TUM) 10.04.2012 25 / 42

PMC-based Instruction-level Monitoring (ILM)
▸ Trapping Performance Events: Signal Generation

Set the PMC initially to

MAX_PMC_VALUE - X + 1

where X is the number of events that should occur before the interrupt.

⇒ PMC will overflow after the desired number of events.

S. Vogl and C. Eckert (TUM) 10.04.2012 25 / 42

PMC-based Instruction-level Monitoring (ILM)
▸ Trapping Performance Events: Signal Generation

Set the PMC initially to

MAX_PMC_VALUE - X + 1

where X is the number of events that should occur before the interrupt.

⇒ PMC will overflow after the desired number of events.

⇒ An Interrupt will be generated.

S. Vogl and C. Eckert (TUM) 10.04.2012 25 / 42

PMC-based Instruction-level Monitoring (ILM)
▸ Trapping Performance Events: Control Transfer

Interrupt Generation

The type of interrupt that is generated depends on the settings within the local
Advanced Programmable Interrupt Controller (APIC).

S. Vogl and C. Eckert (TUM) 10.04.2012 26 / 42

PMC-based Instruction-level Monitoring (ILM)
▸ Trapping Performance Events: Control Transfer

Interrupt Generation

The type of interrupt that is generated depends on the settings within the local
Advanced Programmable Interrupt Controller (APIC).

It is possible to generate a Nonmaskable Interrupt (NMI).

▸ NMIs lead to a VM Exit if the appropriate flag is set.

S. Vogl and C. Eckert (TUM) 10.04.2012 26 / 42

PMC-based Instruction-level Monitoring (ILM)
▸ Trapping Performance Events: Control Transfer

Interrupt Generation

The type of interrupt that is generated depends on the settings within the local
Advanced Programmable Interrupt Controller (APIC).

It is possible to generate a Nonmaskable Interrupt (NMI).

▸ NMIs lead to a VM Exit if the appropriate flag is set.
▸ NMIs are immediately handled by the processor.

S. Vogl and C. Eckert (TUM) 10.04.2012 26 / 42

PMC-based Instruction-level Monitoring (ILM)
▸ Trapping Performance Events: Control Transfer

Interrupt Generation

The type of interrupt that is generated depends on the settings within the local
Advanced Programmable Interrupt Controller (APIC).

It is possible to generate a Nonmaskable Interrupt (NMI).

▸ NMIs lead to a VM Exit if the appropriate flag is set.
▸ NMIs are immediately handled by the processor.

Problem: Interrupt Delivery

There is a gap of time between the occurrence of a performance event and the
interrupt delivery.

S. Vogl and C. Eckert (TUM) 10.04.2012 26 / 42

PMC-based Instruction-level Monitoring (ILM)
▸ Trapping Performance Events: Control Transfer

Interrupt Generation

The type of interrupt that is generated depends on the settings within the local
Advanced Programmable Interrupt Controller (APIC).

It is possible to generate a Nonmaskable Interrupt (NMI).

▸ NMIs lead to a VM Exit if the appropriate flag is set.
▸ NMIs are immediately handled by the processor.

Problem: Interrupt Delivery

There is a gap of time between the occurrence of a performance event and the
interrupt delivery.

Other performance events may go unnoticed during this period of time.

S. Vogl and C. Eckert (TUM) 10.04.2012 26 / 42

PMC-based Instruction-level Monitoring (ILM)
▸ Trapping Performance Events: Control Transfer

Interrupt Generation

The type of interrupt that is generated depends on the settings within the local
Advanced Programmable Interrupt Controller (APIC).

It is possible to generate a Nonmaskable Interrupt (NMI).

▸ NMIs lead to a VM Exit if the appropriate flag is set.
▸ NMIs are immediately handled by the processor.

Problem: Interrupt Delivery

There is a gap of time between the occurrence of a performance event and the
interrupt delivery.

Other performance events may go unnoticed during this period of time.

Problem has to be solved on a case-by-case basis.

S. Vogl and C. Eckert (TUM) 10.04.2012 26 / 42

PMC-based Instruction-level Monitoring (ILM)
▸ Instruction Reconstruction (IR)

Problem

The number of selected instructions that are executed during

interrupt delivery depend on the event that we monitor.

If we set a PMC to count every instruction, about 6 instructions will

be executed on the average before the interrupt is acknowledged.

S. Vogl and C. Eckert (TUM) 10.04.2012 27 / 42

PMC-based Instruction-level Monitoring (ILM)
▸ Instruction Reconstruction (IR)

Problem

The number of selected instructions that are executed during

interrupt delivery depend on the event that we monitor.

If we set a PMC to count every instruction, about 6 instructions will

be executed on the average before the interrupt is acknowledged.

Solution

The PMC will keep counting after an overflow occurred.

⇒
We know exactly how many instructions were executed before the

interrupt was acknowledged.

⇒
Reconstruct the instruction stream and obtain the instructions

that we missed.

S. Vogl and C. Eckert (TUM) 10.04.2012 27 / 42

PMC-based Instruction-level Monitoring (ILM)
▸ Instruction Reconstruction (IR)

Approach

1 Save the value of the instruction pointer on every overflow.

2 Check the value of the PMC on overflow to determine how many

instructions were missed if any.

3 Disassemble every instruction starting from the last saved

instruction pointer till we reach the current instruction pointer.

Example

1 40f448 : mov %r12 ,% r d i ; <====== LAST EIP

2 40f44b : mov $0x20,%esi

3 40f450 : mov %rbp ,%rdx
4 40f453 : mov %ecx ,0 x28(%rsp)
5 40f457 : mov %r8b ,0 x10(%rsp)
6 40 f45c : mov %r9 ,0 x20(%rsp)
7 40f461 : add %rbp ,%r12 ; <====== CURRENT EIP

S. Vogl and C. Eckert (TUM) 10.04.2012 28 / 42

PMC-based Instruction-level Monitoring (ILM)
▸ Instruction Reconstruction (IR)

What about branches?

1 40f24e : pop %r12 ; <====== LAST EIP

2 40f250 : pop %r13
3 40f252 : pop %r14
4 40f254 : pop %r15
5 40f256 : re t

Problem

The target of a branch may depend on a memory operand that may

have been overwritten in the meantime.

S. Vogl and C. Eckert (TUM) 10.04.2012 29 / 42

PMC-based Instruction-level Monitoring (ILM)
▸ The Last Branch Record (LBR) Stack

LBR Stack

Records the last taken branches

Set of MSRs

▸ A top-of-stack (TOS) pointer (MSR_LASTBRANCH_TOS)
▸ A pair of MSRs for each branch that the stack can record:
MSR_LASTBRANCH_x_FROM_IP⇒ MSR_LASTBRANCH_x_TO_LIP

The size of the LBR stack depends on the microarchitecture

S. Vogl and C. Eckert (TUM) 10.04.2012 30 / 42

PMC-based Instruction-level Monitoring (ILM)
▸ The Last Branch Record (LBR) Stack

LBR Stack

Records the last taken branches

Set of MSRs

▸ A top-of-stack (TOS) pointer (MSR_LASTBRANCH_TOS)
▸ A pair of MSRs for each branch that the stack can record:
MSR_LASTBRANCH_x_FROM_IP⇒ MSR_LASTBRANCH_x_TO_LIP

The size of the LBR stack depends on the microarchitecture

⇒ Save the TOS pointer on each monitoring related interrupt.

S. Vogl and C. Eckert (TUM) 10.04.2012 30 / 42

PMC-based Instruction-level Monitoring (ILM)
▸ The Last Branch Record (LBR) Stack

LBR Stack

Records the last taken branches

Set of MSRs

▸ A top-of-stack (TOS) pointer (MSR_LASTBRANCH_TOS)
▸ A pair of MSRs for each branch that the stack can record:
MSR_LASTBRANCH_x_FROM_IP⇒ MSR_LASTBRANCH_x_TO_LIP

The size of the LBR stack depends on the microarchitecture

⇒ Save the TOS pointer on each monitoring related interrupt.

⇒
All taken branches are recorded between the last saved TOS and the current
TOS.

S. Vogl and C. Eckert (TUM) 10.04.2012 30 / 42

PMC-based Instruction-level Monitoring (ILM)
▸ Instruction Reconstruction (IR)

0x40f256

0x40f4b3

Last TOS

Current TOS

MSR_LASTBRANCH_7_FROM_IP

MSR_LASTBRANCH_7_TO_LIP

MSR_LASTBRANCH_8_FROM_IP

Using the LBR Stack

1 40f24e : pop %r12 ; <====== LAST EIP

2 40f250 : pop %r13
3 40f252 : pop %r14
4 40f254 : pop %r15
5 40f256 : re t

6

7 40f4b3 : mov %r12 ,% r d i ; <====== CURRENT EIP

S. Vogl and C. Eckert (TUM) 10.04.2012 31 / 42

PMC-based Instruction-level Monitoring (ILM)
▸What about security?

PMCs are MSRs

All PMC control structures are MSRs as well

Read/Write accesses to MSRs can be intercepted from the

hypervisor

⇒ An attacker cannot disable or manipulate the PMCs.

S. Vogl and C. Eckert (TUM) 10.04.2012 32 / 42

Outline

1 Motivation

2 Performance Monitoring Counters (PMCs)

3 PMC-based Instruction-level Monitoring (ILM)

4 Experiments & Results

5 Summary

S. Vogl and C. Eckert (TUM) 10.04.2012 33 / 42

Experiments & Results
▸ Experiments

Monitored four common Linux applications at the instruction-level:
▸ ls (Argument: /usr/bin, 597 files)
▸ tar (Argument: Hello World.c, 10 LOC)
▸ cat (Argument: Hello World.c, 10 LOC)
▸ gcc (Argument: Hello World.c, 10 LOC)

S. Vogl and C. Eckert (TUM) 10.04.2012 34 / 42

Experiments & Results
▸ Experiments

Monitored four common Linux applications at the instruction-level:
▸ ls (Argument: /usr/bin, 597 files)
▸ tar (Argument: Hello World.c, 10 LOC)
▸ cat (Argument: Hello World.c, 10 LOC)
▸ gcc (Argument: Hello World.c, 10 LOC)

Each application was executed multiple times using different

monitoring modes:

▸ PMC ALL & IR: All instructions & Instruction Reconstruction
▸ TF ALL: All instructions
▸ PMC ALL: All instructions without Instruction Reconstruction
▸ PMC Branches: All branch instructions
▸ PMC Shadow Stack: Only call & return instructions

S. Vogl and C. Eckert (TUM) 10.04.2012 34 / 42

Experiments & Results
▸ Experiments

Monitored four common Linux applications at the instruction-level:
▸ ls (Argument: /usr/bin, 597 files)
▸ tar (Argument: Hello World.c, 10 LOC)
▸ cat (Argument: Hello World.c, 10 LOC)
▸ gcc (Argument: Hello World.c, 10 LOC)

Each application was executed multiple times using different

monitoring modes:

▸ PMC ALL & IR: All instructions & Instruction Reconstruction
▸ TF ALL: All instructions
▸ PMC ALL: All instructions without Instruction Reconstruction
▸ PMC Branches: All branch instructions
▸ PMC Shadow Stack: Only call & return instructions

Measured the execution time from the hypervisor for each run

Calculated the average slowdown factor

S. Vogl and C. Eckert (TUM) 10.04.2012 34 / 42

Experiments & Results
▸ Results

Mode ls tar cat gcc

PMC ALL & IR 755 (18s) 1002 (3.0s) 334 (0.6s) 1263 (92s)

TF ALL 310 (7.0s) 415 (1.2s) 142 (0.3s) 545 (40s)

PMC ALL 273 (6.5s) 403 (1.2s) 126 (0.3s) 435 (32s)

PMC Branches 163 (4.0s) 259 (0.8s) 81 (0.2s) 281 (21s)

PMC Shadow Stack 95 (2.0s) 196 (0.6s) 31 (0.1s) 212 (15s)

S. Vogl and C. Eckert (TUM) 10.04.2012 35 / 42

Experiments & Results
▸ Improving the Performance

Improving the Performance

The performance of the approach heavily depends on the number

of the VM Exists.

S. Vogl and C. Eckert (TUM) 10.04.2012 36 / 42

Experiments & Results
▸ Improving the Performance

Improving the Performance

The performance of the approach heavily depends on the number

of the VM Exists.

The performance will increase by almost the same factor as the

VM Exits are decreased.

S. Vogl and C. Eckert (TUM) 10.04.2012 36 / 42

Experiments & Results
▸ Improving the Performance

Improving the Performance

The performance of the approach heavily depends on the number

of the VM Exists.

The performance will increase by almost the same factor as the

VM Exits are decreased.

Possible Approaches
▸ Precise Event Based Sampling (PEBS)
▸ Branch Trace Store (BTS)

S. Vogl and C. Eckert (TUM) 10.04.2012 36 / 42

Experiments & Results
▸ Improving the Performance

Improving the Performance

The performance of the approach heavily depends on the number

of the VM Exists.

The performance will increase by almost the same factor as the

VM Exits are decreased.

Possible Approaches
▸ Precise Event Based Sampling (PEBS)
▸ Branch Trace Store (BTS)

Security

The overall security of the mechanisms will decrease if the VM Exits

are reduced.

S. Vogl and C. Eckert (TUM) 10.04.2012 36 / 42

Outline

1 Motivation

2 Performance Monitoring Counters (PMCs)

3 PMC-based Instruction-level Monitoring (ILM)

4 Experiments & Results

5 Summary

S. Vogl and C. Eckert (TUM) 10.04.2012 37 / 42

Summary

Contributions

PMC-based trapping

A flexible and secure ILM mechanism

Instruction Reconstruction

S. Vogl and C. Eckert (TUM) 10.04.2012 38 / 42

Summary

Contributions

PMC-based trapping

A flexible and secure ILM mechanism

Instruction Reconstruction

Performance

The proposed ILM mechanism still leads to significant overhead.

However, the mechanism can be significantly faster than existing

hardwared-based mechanism on the x86 architecture.

There is still a lot of room for improvements.

More detailed experiments are needed.

S. Vogl and C. Eckert (TUM) 10.04.2012 38 / 42

Summary

Contributions

PMC-based trapping

A flexible and secure ILM mechanism

Instruction Reconstruction

Performance

The proposed ILM mechanism still leads to significant overhead.

However, the mechanism can be significantly faster than existing

hardwared-based mechanism on the x86 architecture.

There is still a lot of room for improvements.

More detailed experiments are needed.

⇒
We encourage other researchers to explore the possibilities of

PMC-based trapping as well as PMC-based ILM.

S. Vogl and C. Eckert (TUM) 10.04.2012 38 / 42

Summary
▸ Questions?

S. Vogl and C. Eckert (TUM) 10.04.2012 39 / 42

References I

Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy.

Ropdefender: a detection tool to defend against return-oriented

programming attacks.

In Proceedings of the 6th ACM Symposium on Information,

Computer and Communications Security, 2011.

Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee.

Ether: Malware Analysis via Hardware Virtualization Extensions.

In Proceedings of the 15th ACM conference on Computer and

Communications Security, 2008.

Tal Garfinkel, Keith Adams, and Andrew Warfield.

Compatibility is not transparency.

In Proceedings of the 11th Workshop on Hot Topics in Operating

Systems, 2007.

S. Vogl and C. Eckert (TUM) 10.04.2012 40 / 42

References II

Intel Corporation.

Intel 64 and IA-32 Architectures Software Developer’s Manual

Volume 3: System Programming Guide, 2011.

Corey Malone, Mohamed Zahran, and Ramesh Karri.

Are hardware performance counters a cost effective way for

integrity checking of programs.

In Proceedings of the sixth ACM workshop on Scalable Trusted

Computing, 2011.

Jonas Pfoh, Christian Schneider, and Claudia Eckert.

Exploiting the x86 Architecture to Derive Virtual Machine State

Information.

In Proceedings of the fourth international conference on Emerging

Security Information, Systems and Technologies, 2010.

S. Vogl and C. Eckert (TUM) 10.04.2012 41 / 42

References III

Jonas Pfoh, Christian Schneider, and Claudia Eckert.

Nitro: Hardware-based System Call Tracing for Virtual Machines.

Advances in Information and Computer Security, 2011.

S. Vogl and C. Eckert (TUM) 10.04.2012 42 / 42

	Motivation
	Why Instructions-Level Monitoring (ILM) ?
	Why a new ILM mechanism?

	Performance Monitoring Counters (PMCs)
	Overview
	Performance Events

	PMC-based Instruction-level Monitoring (ILM)
	Trapping Performance Events
	Trapping Performance Events: Signal Generation
	Trapping Performance Events: Control Transfer
	Instruction Reconstruction (IR)
	Instruction Reconstruction (IR)
	Instruction Reconstruction (IR)
	The Last Branch Record (LBR) Stack
	Instruction Reconstruction (IR)
	What about security?

	Experiments & Results
	Experiments
	Results
	Improving the Performance

	Summary
	Questions?

