
Using Hardware Vulnerability Factors to Enhance
AVF Analysis

Vilas Sridharan and David R. Kaeli
ECE Department

Northeastern University
Boston, MA 02115

{vilas, kaeli}@ece.neu.edu

ABSTRACT

Fault tolerance is now a primary design constraint for all
major microprocessors. One step in determining a proces-
sor’s compliance to its failure rate target is measuring the
Architectural Vulnerability Factor (AVF) of each on-chip
structure. The AVF of a hardware structure is the proba-
bility that a fault in the structure will affect the output of a
program. While AVF generates meaningful insight into sys-
tem behavior, it cannot quantify the vulnerability of an in-
dividual system component (hardware, user program, etc.),
limiting the amount of insight that can be generated. To
address this, prior work has introduced the Program Vul-
nerability Factor (PVF) to quantify the vulnerability of soft-
ware. In this paper, we introduce and analyze the Hardware
Vulnerability Factor (HVF) to quantify the vulnerability of
hardware.

HVF has three concrete benefits which we examine in this
paper. First, HVF analysis can provide insight to hardware
designers beyond that gained from AVF analysis alone. Sec-
ond, separating AVF analysis into HVF and PVF steps can
accelerate the AVF measurement process. Finally, HVF
measurement enables runtime AVF estimation that com-
bines compile-time PVF estimates with runtime HVF mea-
surements. A key benefit of this technique is that it allows
software developers to influence the runtime AVF estimates.
We demonstrate that this technique can estimate AVF at
runtime with an average absolute error of less than 3%.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Fault Tolerance

General Terms

Reliability

Keywords

Reliability, Fault Tolerance, Architectural Vulnerability Fac-
tor

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’10, June 19–23, 2010, Saint-Malo, France.
Copyright 2010 ACM 978-1-4503-0053-7/10/06 ...$10.00.

1. INTRODUCTION
Fault tolerance is a primary design constraint for all ma-

jor microprocessors. Chip vendors typically set a failure
rate target for each design and strive to maximize perfor-
mance subject to this constraint. To validate that a design
meets the failure rate target, vendors perform extensive pre-
and post-silicon analysis. This analysis measures the rate at
which faults occur in a system as well as whether a given
fault will cause a system failure (an error).

Some faults do not result in an error; these faults are said
to be masked. Fault masking in a system can be quantified
using the Architectural Vulnerability Factor, or AVF. The
AVF of a hardware structure is the fraction of faults in that
structure that affect correct program operation [11]. AVF
is both simple to understand and easy to measure: ACE

Analysis is a method to derive an upper bound on AVF
using performance simulation. Therefore, recent research
in the area of transient faults has used ACE Analysis to
observe AVF behavior and propose novel applications for
AVF [3] [9] [19] [23].

AVF is not without its limitations, however. In particular,
AVF exploits very little of the abstraction that is present
in modern computer systems. AVF provides device-level
abstraction: it models multiple underlying hardware devices
(e.g., SRAMs, latches) as basic memory elements. However,
AVF provides for none of the abstractions at the higher levels
of the system stack, such as the Instruction Set Architecture
(ISA) or Application Binary Interface (ABI), that have been
key drivers of modern computer architecture.

Some researchers have started to develop fault frameworks
capable of exploiting these higher levels of abstraction. For
example, Sridharan and Kaeli introduced the Program Vul-

nerability Factor (PVF) to quantify the portion of AVF that
is attributable to a user program [21]. This allows a soft-
ware designer to measure the microarchitecture-independent
vulnerability of a program during its design phase.

Prior work does not, however, provide a method to quan-
tify the non-PVF components of AVF, nor does it provide a
method to re-compute AVF from PVF. In this paper, we in-
troduce the Hardware Vulnerability Factor (HVF) to address
these limitations. HVF quantifies the hardware portion of
AVF, independent of program-level masking effects. AVF
can then be calculated as the product of HVF and PVF.

Computing HVF has three concrete benefits which we ex-
amine in this paper. First, using HVF analysis (in con-
junction with AVF analysis) provides insight to hardware
designers beyond that gained by AVF analysis alone. Sec-
ond, separating AVF analysis into HVF and PVF steps can

461

accelerate the AVF measurement process. Our results show
a 2x reduction in simulation time with no loss of accuracy.
Finally, runtime monitoring of HVF enables runtime estima-
tion of AVF by combining HVF measurements with compile-
time PVF estimates. A key benefit of this technique, rela-
tive to earlier AVF estimation techniques, is that it allows
software developers to influence the runtime AVF estimates.
We demonstrate that our technique estimates AVF with an
average absolute error of less than 3%.

The rest of this paper is organized as follows. Section 2
provides background and discusses related work. Section 3
introduces the System Vulnerability Stack, our framework to
separate AVF into hardware and software components. Sec-
tion 4 demonstrates the use of HVF to provide insight to
hardware designers about hardware behavior. Section 5 ex-
amines the use of HVF (in conjunction with PVF traces) to
accelerate AVF modeling during processor design. Finally,
Section 6 presents our technique to use HVF and PVF to
estimate AVF at runtime.

2. BACKGROUND AND RELATED WORK
Mukherjee et al. introduced the Architectural Vulnerabil-

ity Factor (AVF) and ACE Analysis as a means to estimate
a processor’s failure rate from transient faults early in the
design cycle [11]. The AVF of a hardware structure is the
probability that a fault in that structure will result in a vis-
ible error in the final output of a program. The authors
call bits required for correct operation ACE bits; bits not
required for correct operation are unACE bits. The AVF of
a hardware structure is the fraction of bits in the structure
that are ACE. For hardware structure H with size BH , its
AVF over a period of N cycles can be expressed as follows:

AV FH =

N∑

n=0

(ACE bits in H at cycle n)

BH ×N
(1)

AVF quantifies full-system vulnerability. Some previously-
introduced metrics can quantify the vulnerability of individ-
ual system components such as devices or user programs.
The most relevant of these metrics is the Program Vulnera-

bility Factor (PVF), which computes the vulnerability of a
user program [21]. PVF can be computed across ISA-defined
architectural resources (e.g., the architectural register file)
and uses the dynamic instruction stream to measure time.
The PVF of an architectural resource is the probability that
a fault in that resource will result in a visible error in the
final output of the program. For architectural resource R

with size BR, its PVF over a period of I instructions can be
expressed as follows1:

PV FR =

I∑

i=0

(Activated and exposed faults in R at instruction i)

BR × I
(2)

Other related work includes Seifert and Tam’s Timing

Vulnerability Factor (TVF) [16]. TVF quantifies device-
level fault masking but does not extend to other system
layers. Sanda et al. report experimental AVFs of a Power6

1Note that we formulate PVF using terminology from Sec-
tion 3 of this paper.

User Program

Operating System

Virtual Machine

Microarchitecture

DevicesTVF

HVF

VMVF

OSVF

PVF

AVF

Figure 1: We calculate a vulnerability factor at every layer of
the system. A bit is assigned a vulnerability at every layer
to which it is visible. If it is vulnerable at every layer of the
system, it is vulnerable to the system (i.e., its AVF is 1).

processor in machine derating and application derating com-
ponents, but do not provide a method for a priori calcula-
tion of vulnerability [15]. Finally, Weaver et al. calculate
DUE AVF (Detected Unrecoverable Error AVF), which ex-
cludes architectural sources of unACEness such as logical
masking, and is similar to HVF in some respects [25]. DUE
AVF incorporates structure-specific information about er-
ror handling, however, and is not guaranteed to match up
with the non-PVF components of AVF. Furthermore, HVF
and DUE AVF serve different purposes: HVF can guide
decisions about redundancy, while DUE AVF uses existing
redundancy to calculate a structure’s DUE rate.

3. THE SYSTEM VULNERABILITY STACK
In this section, we introduce the System Vulnerability Stack,

our method to separate AVF into individual vulnerability
factors measured at each level of the system stack. We
first introduce the basic concepts of the stack. We then
explain how we use the stack to compute HVF, and how to
re-compute AVF from its individual components.

3.1 Definitions and Concepts
We define a fault as a raw failure event such as a single-bit

flip in a hardware structure. In this work, we refer to faults
using the notation (b, n): b is the location of the fault (e.g.,
the bit in which it occurs), and n is the time of the fault
(e.g., the cycle at which it occurs).

The basic underpinning of the vulnerability stack is the
calculation of a vulnerability factor for each layer of the
system stack (see Figure 1). A layer’s vulnerability factor is
the fraction of faults that cause incorrect operation of that
layer. We define incorrect operation of a system layer as any
disruption of the interface being implemented by that layer;
we refer to this as an error in the layer. For instance, a
hardware error is defined as any deviation in the semantics
of the ISA being implemented. This includes faults that
are propagated to ISA-visible state such as an architectural
register, faults that entirely halt ISA function (e.g., a core
deadlock), and any other behaviors that corrupt ISA state
or disrupt program execution.

Not all faults in a system can cause an error in every
system layer. For instance, a fault in a free physical register
cannot cause a user program error without first propagating
to program state. To determine the set of potential faults
that can cause an error within a given system layer, we use
the concept of bit visibility. A visible bit is a bit that is
observable (accessible) by a particular system layer. For

462

instance, a bit in a free physical register is visible to the
microarchitecture, but not to a user program. A bit in a
valid cache line, on the other hand, is visible to both the
microarchitecture and the user program. For a fault to cause
an error within a given system layer, it must occur within a
bit visible to that layer. Therefore, a program-visible fault
can occur only in a bit that is visible to the architected state
of the program. On a given system, the set of bits visible
to an upper layer of the stack (e.g., the user program) is a
subset of the bits visible to a lower level of the stack (e.g.,
the microarchitecture).

There are three possible consequences of a visible fault
within a system layer. First, the fault can propagate to an
interface implemented by the layer, thus becoming visible
to another system layer. For instance, a microarchitecture-
visible fault that propagates to ISA-visible state becomes
visible to the user program. This fault has been exposed to
the user program.

Second, a visible fault can create an error without being
exposed to another system layer. For instance, a fault in an
instruction scheduler unit might cause the unit to deadlock,
freezing the system. This fault is not exposed to the user
program, but still causes an error in the microarchitecture2.
We refer to this fault as activated within the microarchitec-
ture.

Finally, a visible fault that is neither activated within a
layer nor exposed to another layer will not cause an error.
We refer to these faults as masked.

A fault is either exposed, activated, or masked within ev-
ery system layer to which it is visible. At a given layer, only
exposed faults are made visible to higher system layers. For
instance, masked and activated faults within the hardware
are not visible to the operating system or user program. It
is possible for a fault to be both activated within a layer
and exposed to the next layer. However, we assume without
loss of generality that an activated fault is not also exposed;
that is, it is not visible to any higher system layers.

A fault’s ACEness to the system will be determined by the
highest layer to which it is exposed. If the fault is activated
within that layer, it is ACE to the system. If the fault is
masked within that layer, it is unACE to the system.

Two examples can help to illustrate the way the vulnera-
bility stack treats a typical system. First, consider a bit in
a free physical register whose contents will be overwritten
when the register is mapped to an architected register. A
fault in this bit will be masked within the microarchitecture
and will not be visible to any higher system layers. There-
fore, this fault will be unACE to the system.

Second, consider a bit in a register that is used as a load
address. Further, assume that the load is dynamically-dead
(i.e., its result is never used) [5]. A microarchitecture-visible
fault in this bit will be exposed to the next layer of the sys-
tem, typically the operating system. Assume the operating
system does not examine the address, but allows the load
to proceed normally. Thus, the OS exposes the fault to the
user program. Finally, since the load is dynamically-dead,
the fault is masked within the user program. As a result,
the bit is unACE to the system.

Now instead assume that the operating system first per-
forms a bounds check on the address and crashes the system
on an out-of-range address. If the fault causes the address

2Although this fault is not visible to the user program, the
resulting error obviously still affects the program.

to be out-of-range, the fault will be exposed to the OS by
the hardware, activated within the operating system, and
not visible to the user program. Therefore, in this case the
bit will be ACE to the system.

To compute the vulnerability of a system layer, activated
and exposed faults are assigned a vulnerability factor (VF)
of 1, while masked faults are assigned a VF of 0. In the next
section, we show how to use these definitions to calculate
the vulnerability of the hardware layer.

3.2 Computing Hardware Vulnerability
The Hardware Vulnerability Factor (HVF) of a hardware

structure is the fraction of faults in the structure that are
either activated within the hardware layer or exposed to a
higher layer. The HVF of hardware structure H with size
BH over N cycles can be represented as follows:

HV FH =

N∑

n=0

(Activated and exposed faults in H at cycle n)

BH ×N
(3)

A hardware-visible fault is exposed to the user program
if it will corrupt committed state. In a register file, for
example, a fault within a physical register with a valid ar-
chitectural mapping will be exposed to the user program.
In instruction-based structures (e.g., Issue Queue, Reorder
Buffer), faults are often exposed if they occur in an entry
that eventually commits, or if the fault causes the instruc-
tion to incorrectly overwrite committed state. For instance,
a fault in the destination register address of a squashed in-
struction is exposed if the faulty address points to an ar-
chitected register and causes the instruction to overwrite a
committed register value.

Whether a fault within a particular bit is activated is
highly dependent on the details of the microarchitecture.
For instance, a fault in a valid bit of an instruction sched-
uler might always be activated, while a fault in a valid bit of
a load buffer might be activated only when the correspond-
ing entry is occupied.

3.3 Computing System Vulnerability
The system vulnerability (AVF) of a bit is the product

of its vulnerability factors in all system layers to which it
is visible. In this section, we compute the AVF of a regis-
ter in a system that consists of a microarchitecture and a
user program. For simplicity, we assume that the VFs of
all software layers of the system (e.g., virtual machine, user
program) are captured as part of the PVF value.

Figure 2 shows a sequence of machine instructions and the
corresponding events in physical register P1 of the microar-
chitecture. During cycles 4-6 and 12, P1 is not mapped to an
architectural register, and a microarchitecture-visible fault
during these cycles will be masked. Therefore, the HVF of
all bits of P1 is 0. In the remaining cycles, P1 is mapped to
architectural registers R1 and R2, and a microarchitecture-
visible fault during these cycles will be exposed to the user
program. In these cycles, the HVF of all bits of P1 is 1.

If a program-visible fault in R1 or R2 is masked by the
user program, the bit is assigned a PVF of 0. For instance,
a fault during cycle 14 will be masked if it does not change
the result of the compare operation in cycle 15. PVF uses
dynamic instructions to mark time. Therefore, the PVF

463

R1 R1 R1 -- -- -- R2 R2 R2 R2 R2 -- R1 R1 R1P1

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ldq R
1,

(R
3)

A
ddq R

1,
R
4,

R
1

Ldq R
2,

(R
3)

Stl
R
2,

(R
3)

Ldq R
1,

(R
3)

C
m

ple
 R

1,
R
5,

R
3

A
ddq R

2,
R
4,

R
5

Inst 1 2 3 4 5 6 7

Figure 2: Physical register P1 is mapped to architectural registers R1 and R2 over 15 cycles. A microarchitecture-visible fault
during cycles 4-6 and 12 will be masked in hardware. A fault during cycles 1-3, 7-11, and 13-15 will be exposed to the user
program, creating a program-visible fault. The AVF of register P1 is a function of the HVF of P1 and the PVF of R1 and R2.

assigned to bit b of P1 during cycle n is the PVF of the
architectural state ab contained in b at the time (instruction)
in, the instruction that consumes the value stored in P1
during cycle n. For example, in cycle 10, the AVF of P1 is
the PVF of R2 at time 5 (instruction Stl R2, (R3)).

We can calculate the AVF of bit b in register P1 just using
PVF values:

AV Fb,1−15 =
1

15
×(PV FR1b,i1 + PV FR1b,i2 + PV FR1b,i3+

PV FR2b,i7 + PV FR2b,i8 + PV FR2b,i9+

PV FR2b,i10 + PV FR2b,i11 + PV FR2b,i13+

PV FR1b,i14 + PV FR1b,i15)

We can replace R1b and R2b in the equation above with
ab, the architectural state assigned to b. Then we can com-
pute AV Fb,1−15 by multiplying the HVF and PVF values
assigned to b during each cycle, and summing over all 15
cycles:

AV Fb,1−15 =
1

15

15∑

n=1

HV Fb,n × PV Fab,in

More generally, we can compute the AVF of a hardware
structure H with size BH over N cycles as:

AV FH,N =
1

N ×BH

BH∑

b=1

N∑

n=1

HV Fb,n × PV Fab,in (4)

3.4 Multi-Exposure Faults
Some faults that are exposed by the hardware to a user

program will cause multiple program-visible faults when cor-
rupted; we call these multi-exposure faults. Figure 3 gives an
example: a fault within the Physical Source Register Index
field of the IQ will cause an incorrect source operand to be
fetched for the computation, resulting in up to 64 program-
visible faults in the destination register.

The presence of multiple faults can change the behavior
of a fault. Therefore, the PVF of a bit calculated using a
single-fault model cannot be used to compute the AVF of a
bit with a multi-exposure fault. Instead, we must calculate
the AVF of a bit b with a multi-exposure fault as follows:

AV Fb,N =
1

N

N∑

n=1

HV Fb,n × PV FAb,n
(5)

In this equation, Ab,n is the set of all program-visible
faults resulting from a microarchitecture-visible fault in bit
b at cycle n. PV FAb,n

is 1 if and only if the set of program-
visible faults Ab,n causes the program to produce incorrect

Disp

Arch
Src
Reg
Idx

Instruction Memory

Disp

Phys
Src
Reg
Idx

Rename

Execute

Issue Queue

Data

Dest. Register

uArch-visible state Program-visible stateProgram-visible state

Figure 3: A single microarchitecture-visible fault that causes
multiple program-visible faults is a multi-exposure fault. For
instance, a fault in a bit in the Physical Source Register In-
dex in the Issue Queue can cause multiple program-visible
faults (e.g., in the destination register). To precisely calcu-
late the AVF of a multi-exposure fault requires evaluating
the impact of all the program-visible faults simultaneously.

output. Calculating a precise value for PV FAb,n
requires

modeling multiple simultaneous program-visible faults. This
is tractable for a small set of faults, but is not feasible to
evaluate in general.

In practice, there are many cases where we can conclu-
sively determine the PVF of a multi-exposure fault. For
example, a bit in the Physical Source Register Index field
of the IQ will have a PVF of 0 (i.e., a fault in this bit will
be masked within the user program) if the destination regis-
ter is dead, logically masked by a subsequent instruction, or
otherwise not needed for program correctness. In this work,
unless we can conclusively prove that a multi-exposure fault
is masked within the user program, we treat the bit as acti-
vated within the hardware.

4. USING HVF FOR PROCESSOR DESIGN
Currently, architects use AVF to guide decisions such as

where or when to add redundancy. For runtime reliability
techniques (e.g., IQ squashing [25] or dynamic RMT [23]),
this is appropriate. However, using AVF alone to evaluate
the impact of design-time microarchitectural decisions (e.g.,
structure sizing) is suboptimal because AVF is not sensitive
to operations that are masked at a program level, which can
obscure changes in hardware behavior.

Figure 4 presents an illustrative example. The figure shows
the behavior of four physical registers, P1 through P4, over
10 cycles, using two different scheduling algorithms. In Fig-
ure 4a, each register is written at cycle 0, and a sequence of
reads occurs in cycles 4, 6, 8, and 10. We assume that the
reads of P2, P3, and P4 do not affect program output due
to logical masking later in the program’s execution (i.e., the
reads are dead). Since P1 is only ACE for 4 cycles, the AVF
of P1-P4 over these 10 cycles is 10%.

464

0 1 2 3 4 5 6 7 8 9 10!Cycle!

Write!

Read!

P1!

P2!

P3!

P4!

(Live)!

Read!
(Dead)!

Read!
(Dead)!

Read!
(Dead)!

Write!

Write!

Write!

(a) Baseline

0 1 2 3 4 5 6 7 8 9 10!Cycle!

Write!

Read!

P1!

P2!

P3!

P4!

(Live)!

Read!
(Dead)!

Read!
(Dead)!

Read!
(Dead)!

Write!

Write!

Write!

(b) Scheduler Change
Figure 4: The behavior of four physical registers over 10 cy-
cles. In the baseline case, the registers have an HVF of 70%
and an AVF of 10%. After a change to the scheduling al-
gorithm, the registers have an HVF of 40% and an AVF
of 10%. In this case, AVF does not capture the significant
change to register behavior caused by the scheduler change.
In contrast, the change in HVF will alert the designer to a
change in potential vulnerability behavior.

0!

20!

40!

In
te

g
e

r
R

e
g

is
te

r
V

F
 (

%
)!

Cycles!

HVF! AVF!

(a) equake

0!

20!

40!

In
te

g
e

r
R

e
g

is
te

r
V

F
 (

%
)!

Cycles!

HVF! AVF!

(b) mgrid
Figure 5: The AVF and HVF of the register file for equake
and mgrid. The circled areas indicate regions of similar reg-
ister behavior, with similar HVFs (15%). Due to program
masking, however, equake has a much lower AVF (8%) than
mgrid (15%). If equake is run during processor design, a
designer using only AVF will underestimate the potential
vulnerability of this behavior. Therefore, it is important to
understand the causes of high HVF in a hardware structure.

Now assume we make a change to the instruction sched-
uler, which results in the behavior indicated by Figure 4b.
We wish to examine the vulnerability impact of this design

change. Unfortunately, the AVF of Figure 4b is still 10%,
since the design change only altered the behavior of dead
reads.

In the field, a different workload (or the same workload
with different input data) may execute the same sequence of
operations, but a different subset of the reads may be dead,
resulting in a change in AVF. In this case, a designer would
like to know that the scheduler change will have a potential
impact on vulnerability. Unfortunately, AVF is not sensitive
to the placement of dead reads, and does not provide insight
into this behavior change.

If, instead, the designer also measured the HVF of the
registers, he/she would see that the HVF in Figure 4a is
70%, while the HVF in Figure 4b is 40%. This change in
HVF alerts the designer to the significant change in behav-
ior. This is an example of a situation in which HVF gives us
insight into potential vulnerability changes that AVF does
not. Therefore, we suggest that HVF is a useful metric to
examine in conjunction with AVF.

A similar real-world example is presented in Figure 5,
which shows the AVF and HVF of equake and mgrid. In the
circled regions, the two workloads perform a similar series of
register operations. This is reflected in their similar HVFs
of approximately 15%. However, due to program masking
characteristics, the AVF of equake is only 8%, while the
AVF of mgrid is 15%. If a hardware designer runs equake in
simulation, he/she will significantly underestimate the po-
tential AVF of this register behavior in the field. Thus, it
is important to understand behaviors that cause high HVF,
regardless of the AVF of a particular workload.

Finally, a comparison to performance evaluation is also
instructive. Assume we have a workload whose goal is to
maximize transactions executed per cycle (TPC). There are
two components to TPC: the transactions-per-instruction
rate (TPI), and the number of instructions per cycle (IPC).
Increases in both TPI and IPC will increase TPC, but IPC
is the only metric within the control of a hardware designer.
Therefore, microarchitects focus on improving IPC during
processor design. Similarly, when looking to maximize re-
liability, HVF is the only metric within the control of the
hardware designer, and microarchitects should focus on im-
proving HVF during processor design. (Note that, just as
the ultimate goal of performance evaluation is to improve
TPC, our ultimate goal is to improve AVF.)

4.1 Measuring HVF
Both activated and exposed faults can be identified us-

ing fault injection or ACE Analysis, in either a performance
model or in RTL. In this work, we measure the HVF of a
hardware structure using a modified version of ACE Anal-
ysis: we assume that all faults are activated unless we can
prove they are exposed to another layer or masked. Deter-
mining that a fault is exposed to another layer is, at max-
imum, as difficult as determining that a bit is ACE during
AVF computation. Determining that a fault is exposed is
often quicker than determining it is ACE since a value need
only be tracked until it is visible to the architected state.

We examine the HVF of the Issue Queue (IQ), Reorder
Buffer (ROB), Load Buffer (LDB), Store Buffer (STB), and
Integer Register File (RF). Within each structure, we split
each entry into multiple subfields and measure the HVF of
each subfield independently. For example, an Issue Queue
entry contains several fields, including a destination register

465

0!

20!

40!

60!

R
O

B
 H

V
F

 (
%

)!

Cycles!

(a) ammp

0!

20!

40!

60!

R
O

B
 H

V
F

 (
%

)!

Cycles!

(b) equake

0!

20!

40!

60!

R
O

B
 H

V
F

 (
%

)!

Cycles!

(c) mcf
Figure 6: The HVF of a hardware structure is the fraction of faults that are activated within the layer or exposed to another
layer. The HVF behavior of microarchitectural structures such as the Reorder Buffer varies substantially across benchmarks,
increasing when the structure is full of correct-path instructions, and decreasing when the structure is empty or contains
mostly wrong-path instructions.

Parameter Value

Issue / Commit Width 8 instructions
IQ / ROB / LDB / STB 64 / 192 / 32 / 32 entries

Physical Registers 256 Int. / 256 FP
L1 I-Cache 32 kB, 2 cycle access

2-way SA
L1 D-Cache 64 kB, 2 cycle access, WB

2-way SA, allocate-on-miss
L2 Cache 2 MB, 10 cycle access, WB

8-way SA, allocate-on-miss
Memory Latency 200 cycles

Table 1: Simulated machine parameters used in this paper.

address and control information for the functional units. We
measure the HVF of each field separately and calculate a
weighted average to compute IQ HVF.

Figure 6 plots the HVF of the Reorder Buffer for three
typical benchmarks from the SPEC2000 suite. The dramatic
changes in HVF represent shifts in system behavior. Typi-
cally, the high HVF phases are the result of memory stalls or
other events that cause the structure to fill with correct-path
instructions. Low HVF phases (e.g., in equake) will result
when the structure is relatively empty (e.g., as a result of low
fetch bandwidth due to instruction cache misses). Low HVF
can also be caused by a high incidence of flushes (e.g., from
mispredicted branches) when the structure contains mostly
wrong-path instructions.

4.2 Using HVF for Design Exploration
In this section, we present the results of a microarchitec-

ture exploration study performed using HVF. For all exper-
iments, we use the detailed CPU model in the M5 simu-
lator modeling an Alpha 21264-like CPU [2]; our baseline
system configuration is shown in Table 1. All experiments
were run using the SPEC CPU2000 benchmarks at the single
early simulation points given by Simpoint analysis [12]. We
use a 100M-instruction warmup window and a 100M-cycle
cooldown window for all simulations [3].

Assume that the goal of our study is to choose the optimal
number of store buffer entries for our microarchitecture, sub-
ject to performance and reliability constraints. Therefore,
we vary the number of store buffer entries while monitoring
the HVF of several large structures and the average CPI of
the workloads. Figure 7 shows the results averaged over all
benchmarks. A 32-entry Store Buffer increases performance
by approximately 2% over a 16-entry Store Buffer (STB).
However, this is accompanied by a 16%, 25%, and 30% in-
crease in the HVF of the Load Buffer (LDB), Reorder Buffer
(ROB), and Issue Queue (IQ), respectively. In addition, the
HVF decrease in the Store Buffer (from 7.2% to 3.2%) is
offset by the 4x increase in its size. Therefore, by choosing

a 16-entry Store Buffer, we can derive most of the perfor-
mance benefit of a 32-entry Store Buffer but substantially
improve overall reliability.

In general, our experiments have shown that the AVF of
microarchitectural structures with architectural equivalents
(such as register files) shows low correlation to HVF, while
the AVF of structures with no architectural equivalent (e.g.,
issue queue, reorder buffer) shows good correlation to HVF.

4.3 Using Occupancy to Approximate HVF
Previous studies have shown that a structure’s AVF in-

creases with its occupancy, leading to a high correlation
between AVF and structure occupancy [6] [19] [23]. These
studies have demonstrated reasons for this correlation based
on performance statistics (events such as memory stalls that
lead to high occupancy also tend to increase AVF), but no
study has demonstrated the component(s) of AVF that are
responsible for the correlation. We expect that the corre-
lation between occupancy and AVF is due to a correlation
between occupancy and HVF, and that significant deviations
in the AVF/occupancy relationship are due to program-
specific (PVF) effects.

Figure 8 shows that committed instruction occupancy is a
good but conservative predictor of HVF in the ROB and IQ.
The correlation coefficients between HVF and occupancy are
high (greater than 0.97 for all benchmarks). However, the
IQ HVF is approximately 65% of the IQ occupancy on av-
erage; for certain benchmarks, the HVF is only 50% of the
average occupancy. This result has an important implica-
tion for AVF measurements in complex hardware structures.
Many techniques provide an upper bound on AVF by using
the simplifying assumption that all bits in an entry are ACE
if any bit within the entry is ACE (e.g., [8] [9] [19]). (Gen-
erally, this is due to infrastructure limitations which result
in occupancy being used as a heuristic for HVF.) While an
upper bound on AVF is often desirable in design settings,
our results indicate that a more detailed implementation is
needed if the goal is to provide an accurate estimate, rather
than a bound, for AVF.

5. BOUNDING AVF AT DESIGN TIME
The previous section discussed the use of HVF during the

processor design cycle for activities such as microarchitec-
tural exploration. When attempting to determine a proces-
sor’s soft error rate, however, designers will want to measure
the AVF of the processor, including workload effects. In this
section, we discuss how to use HVF to improve AVF simu-
lation during processor design. Note that all HVF and PVF
measurements are performed using full ACE Analysis (i.e.,
not calculated using heuristics).

466

0!

5!

10!

15!

20!

25!

30!

0! 20! 40! 60! 80!

IQ
 H

V
F

 (
%

)!

STB Entries!

(a) Issue Queue

0!

5!

10!

15!

20!

25!

0! 20! 40! 60! 80!

R
O

B
 H

V
F

 (
%

)!

STB Entries!

(b) ROB

0!

1!

2!

3!

4!

5!

6!

7!

8!

0! 20! 40! 60! 80!

L
D

B
 H

V
F

 (
%

)!

STB Entries!

(c) Load Buffer

0!

2!

4!

6!

8!

10!

0! 20! 40! 60! 80!

S
T

B
 H

V
F

 (
%

)!

STB Entries!

(d) Store Buffer

0!

0.5!

1!

1.5!

2!

2.5!

3!

3.5!

0! 20! 40! 60! 80!

C
P

I!

STB Entries!

(e) CPI
Figure 7: Microarchitectural exploration using HVF. We vary the size of the Store Buffer (STB) and compute the average
HVF of the IQ, ROB, LDB, and STB, and the CPI across all benchmarks in the SPEC CPU2000 suite. Increasing the Store
Buffer from 16 to 32 entries provides a 2% performance boost at the cost of a 25% increase in vulnerability.

0.8!

0.9!

1!

0!

10!

20!

30!

40!

50!

60!

70!

am
m
p!

ap
pl
u!

ar
t1
10
!

bz
ip
2_
pr
og
ra
m
!

bz
ip
2_
so
ur
ce
!

cr
af
ty
!

eo
n!

eq
ua
ke
!

fa
ce
re
c!

fm
a3
d!

ga
lg
el
!

gc
c_
16
6!

gz
ip
_g
ra
ph
ic
!

gz
ip
_s
ou
rc
e!
m
cf
!

m
es
a!

m
gr
id
!

pe
rlb
m
k!

si
xt
ra
ck
!

sw
im
!

tw
ol
f!

vo
rte
x2
!

vp
r_
ro
ut
e!

w
up
w
is
e!

C
o

r
r
e

la
ti

o
n

 C
o

e
ffi

c
ie

n
t!

P
e

r
c

e
n

t!

Occupancy! HVF! Correlation!

(a) IQ

0.8!

0.9!

1!

0!

10!

20!

30!

40!

50!

60!

am
m
p!

ap
pl
u!

ar
t1
10
!

bz
ip
2_
pr
og
ra
m
!

bz
ip
2_
so
ur
ce
!

cr
af
ty
!

eo
n!

eq
ua
ke
!

fa
ce
re
c!

fm
a3
d!

ga
lg
el
!

gc
c_
16
6!

gz
ip
_g
ra
ph
ic
!

gz
ip
_s
ou
rc
e!
m
cf
!

m
es
a!

m
gr
id
!

pe
rlb
m
k!

si
xt
ra
ck
!

sw
im
!

tw
ol
f!

vo
rte
x2
!

vp
r_
ro
ut
e!

w
up
w
is
e!

C
o

r
r
e

la
ti

o
n

 C
o

e
ffi

c
ie

n
t!

P
e

r
c

e
n

t!

Occupancy! HVF! Correlation!

(b) ROB
Figure 8: The relationship between HVF and committed instruction occupancy across benchmarks for the IQ and ROB. HVF
is, on average, 65% of occupancy in the IQ and 72% of occupancy in the ROB. However, we find correlation coefficients
between HVF and occupancy (using 100 samples per Simpoint) to be greater than 0.97 across all benchmarks. This indicates
that committed instruction occupancy is a good but conservative heuristic for HVF.

We simulate AVF using a two-step process. First, we per-
form PVF simulation of a program and save the results in a
PVF trace. This step happens offline (i.e., not on the critical
path of a processor design) in architecture-only simulation
(e.g., using Pin [10]). Second, during the hardware design
phase, we perform HVF simulation of the microarchitecture.
For a given instruction or data value, we determine its HVF
and then retrieve the corresponding PVF value from the
trace. The simulator then multiplies the two values to de-
termine the AVF of the value in question.

Since benchmarks are typically used over multiple chip
generations, PVF traces can be re-used over multiple pro-
cessor designs. This also allows us to increase the accuracy
of PVF analysis without increasing simulation time during
processor design. For instance, we assess effects such as tran-
sitive logic masking, which take significant simulation time,
that are often omitted from AVF simulation [11].

Our methodology resulted in an approximately 2x reduc-
tion in the time required for AVF simulation relative to
standard ACE analysis. The speedup is due to two fac-
tors. First, we no longer need to perform PVF calculations
(e.g., dynamic-dead analysis) during microarchitectural sim-
ulation. Second, we drastically reduce the amount of state

that the simulator needs to track. Standard ACE analysis
defers analysis of an event until after the corresponding in-
struction has been analyzed in a post-commit window which
can be tens of thousand instructions in length [11]. This re-
quires the simulator to maintain large event history buffers
within each hardware structure. Our methodology defers
analysis of an event only until after HVF analysis, which
typically completes soon after the corresponding instruction
commits. This significantly reduces the average size of the
history buffers and yields a much smaller memory footprint
for the simulator itself. Our experiments show an approxi-
mately 3x reduction in memory usage for each simulation.

5.1 Capturing PVF Traces
The primary difficulty with offline PVF analysis is cap-

turing PVF traces such that they can be easily mapped to
simulation state during HVF simulation. To do this, we ex-
ploit the fact that ACE Analysis monitors events (e.g., reads
and writes) in each structure. A bit within the structure is
ACE if it is read by an event that affects the outcome of the
program (a live event). A bit is unACE if it is not read; or
if it is read only by dead events.
During PVF simulation, we assign a unique ID to each in-

467

0%!

20%!

40%!

60%!

80%!

100%!

P
e

r
c

e
n

t
d

e
a

d
 m

a
r
k

e
d

 l
iv

e
!

Benchmark!

Word! Longword! Quadword!

(a)

0%!

20%!

40%!

60%!

80%!

100%!

T
r
a

c
e

 S
iz

e
!

Benchmark!

Word! Longword! Quadword!

(b)
Figure 9: PVF traces can be used to help estimate AVF dur-
ing hardware design. There is a tradeoff between the accu-
racy of PVF analysis and the size of PVF traces. For exam-
ple, changing the granularity at which we perform PVF anal-
ysis from 1 to 8 bytes decreases the number of dead events
identified, but significantly reduces the trace size. We show
results for PVF analysis at different granularities: word (2
byte), longword (4 byte), and quadword (8 byte), normal-
ized to byte granularity.

struction. If an instruction generates a dead event, we record
its ID in the trace along with identifying information such
as the type of event, the register or memory target, and the
deadness of each byte within the event. During HVF simu-
lation, we recreate the ID of each instruction and check the
trace for any dead events associated with that instruction.
If an instruction generates a microarchitecturally-live event,
we apply the deadness value from the trace to determine
the event’s liveness to the system. We use the resulting live-
ness value to make ACE/unACE determinations within each
hardware structure.

Increasing the accuracy of PVF simulation will lead to
more dead events and a larger trace, but will also lead to a
better estimate of PVF. Figure 9 presents an example of one
such tradeoff: the granularity at which events are recorded in
the trace. Reducing the granularity of the analysis decreases
trace size at the expense of accuracy. (In this work, we
record traces at a byte granularity.)

5.2 Results
Dead events in a PVF trace arise from effects such as

static and dynamically dead instructions, transitively dead
instructions, static and dynamic logical masking, and tran-
sitive logical masking. Figure 10 shows that, on average,
57% of dead events in our PVF traces are the result of dead
instructions, while 33% and 9% of dead events result from
first-level and transitive logical masking, respectively. Inter-
estingly, this breakdown is not reflected in the contribution
to AVF of each of these sources. For example, in the IQ,
dead instructions reduce the AVF bound by 24% on aver-
age, while first-level and transitive logic masking combined
provide only a 1% further reduction. Mukherjee et al. found
a similar result; they showed that first-level logic masking
had a 1% impact on the AVF of the execution units [11].

Our results extend these findings to all structures that we
tested and to both first-level and transitive logic masking.

Figure 11 shows the impact of using PVF traces with HVF
simulation to bound AVF. In all cases, incorporating PVF
information significantly reduces the AVF estimate achieved
using HVF-only simulation. Accounting for PVF yields a
62% reduction in the AVF bound for the register file, pri-
marily due to the effects of dead and ex-ACE register values.
In the other structures, the use of PVF traces also results
in significant reductions in the AVF bound: 25% for the IQ,
27% and 30% for the Load and Store Buffers, and 22% for
the ROB.

6. ESTIMATING AVF AT RUNTIME
Sections 4 and 5 demonstrated that HVF can be used

to improve the hardware design cycle. Previous work has
shown that PVF can be used during software design to stat-
ically reduce program vulnerability [21]. In this section, we
demonstrate that the vulnerability stack can also be used to
dynamically impact system reliability at runtime. In par-
ticular, we demonstrate how to combine compile-time PVF
estimates with runtime HVF estimates to monitor AVF at
runtime. A runtime AVF monitor can allow a system to tune
its redundancy capabilities, enabling protection when AVF
is high and disabling it when AVF is low (e.g., [23]). AVF
monitoring can be used in conjunction with redundancy
techniques (e.g., [1], [7], [13]) to provide highly-effective re-
dundancy with low overhead.

Previous runtime AVF estimation techniques fall into two
basic categories: training-based predictors [4] [6] [23]; and
runtime-only predictors [9] [19]. The training-based predic-
tors use a set of training benchmarks to determine a rela-
tionship between AVF and hardware statistics that can be
measured at runtime. For instance, Walcott et al. use linear
regressions to generate a microarchitecture-specific predic-
tor equation that allows AVF estimation based on statistics
that are easily measurable at runtime [23]. Similarly, Duan
et al. use Boosted Regression Trees to correlate AVF with
processor statistics and extend this to predict correlations
across microarchitectural changes [6].

Runtime-only predictors, on the other hand, attempt to
measure (or bound) AVF directly at runtime. For instance,
the predictor proposed by Soundararajan et al. uses the
ROB’s instruction occupancy to bound its AVF [19]. An-
other technique, proposed by Li et al., uses simulated fault
injection tracked via error bits attached to each hardware
structure [9]. If a fault propagates to a pre-defined failure
point, the injection is said to result in an error. The sys-
tem computes AVF as the number of errors divided by the
number of injections.

6.1 Methodology
Our key observation is that none of the predictors dis-

cussed above include any mechanism for the programmer to
influence the AVF computation; they all require hardware
designers to predict software reliability behavior. To do this,
hardware designers generally rely on the behavior of typical
software. For instance, the predictor proposed by Li et al.
assumes a fault is ACE if it propagates to memory. This
assumption falls apart in many software applications that
deviate from the norm. For example, gaming and multime-
dia applications are memory-intensive yet extremely fault-
tolerant [17] [22]. As a result, every predictor discussed so
far will likely overestimate the AVF of these applications.

468

0%!

20%!

40%!

60%!

80%!

100%!

am
m

p!

ap
pl
u!

ar
t1
10
!

bz
ip
2_

pr
og
!

bz
ip
2_

so
ur

ce
!

cr
af

ty
!

eo
n!

eq
ua

ke
!

fa
ce

re
c!

fm
a3

d!

ga
lg
el
!

gc
c_

16
6!

gz
ip
_g

ra
ph

ic
!

gz
ip
_s

ou
rc

e!
m

cf
!

m
es

a!

m
gr

id
!

pe
rlb

m
k!

si
xt
ra

ck
!

sw
im
!

tw
ol
f!

vo
rte

x2
!

vp
r_

ro
ut

e!

w
up

w
is
e!

P
e

r
c

e
n

t
D

e
a

d
 E

v
e

n
ts
! First-level Logic

Masking!

Transitive Logic
Masking!

Dead
Instructions!

Figure 10: On average across all benchmarks, 57% of dead events are due to dead instructions (static and dynamic), while
33% and 9% of dead events are due to first-level and transitive logic masking, respectively. Since PVF analysis is performed
offline, we can perform expensive analyses such as detection of transitive logic masking without increasing simulation time
during hardware design.

0!

5!

10!

15!

20!

25!

R
e

g
is

te
r

F
il
e

 V
F

 (
%

)!

Benchmark!

AVF! HVF!

(a) Register File

0!

10!

20!

30!

40!

50!

IQ
 V

F
 (

%
)!

Benchmark!

AVF! HVF!

(b) Issue Queue

0!

5!

10!

15!

20!

25!

S
T

B
 V

F
 (

%
)!

Benchmark!

AVF! HVF!

(c) Store Buffer
Figure 11: Incorporating PVF traces tightens the AVF bound by 60% in the register file, 25% in the Issue Queue, and 30% in
the Store Buffer. Results for the ROB and Load Buffer are similar to those of the IQ and Store Buffer.

Similarly, software-based redundancy techniques such as
SWIFT [14], PLR [18], or SRMT [24] will not be recog-
nized by any of the hardware-based predictors. In fact, these
techniques typically increase processor utilization. This will
likely lead to higher AVF estimates than for the same ap-
plication without redundancy. The problem is further com-
plicated if a mix of redundant and non-redundant code is
executing on the same system.

The vulnerability stack addresses this problem by sepa-
rating the analysis of program behavior (PVF) from hard-
ware behavior (HVF). We can calculate HVF estimates in
hardware at runtime, but allow each program to supply its
own PVF estimates. This allows each program to specify its
level of fault tolerance to the system in a microarchitecture-
independent format. Finally, the system can combine the
HVF and PVF estimates to generate an overall AVF esti-
mate.

To communicate PVF estimates to hardware, we pro-
pose a set of registers called the Program Vulnerability State

(PVS). These registers are used by software to communi-
cate PVF estimates of architectural resources to the sys-
tem. We implement one PVS register for the integer regis-
ter file and one for the floating-point register file, and one
for instruction-based structures to store the fraction of dead
instructions in the dynamic instruction stream. Since ECC
protection is standard on most memory-based structures, we
omit any memory-based registers.

6.2 PVF Prediction via Software Profiling
Our prior work has shown that in the SPEC CPU2006

suite, changes in a program’s execution profile are the pri-
mary reason for PVF changes due to different input data,
and that the PVF of a single basic block is relatively in-
sensitive to input data [20]. This implies that computing
PVF based on representative training data will generate ac-
curate runtime PVF estimates. In this work, we adopt this

methodology as it requires a programmer to generate PVF
estimates just once at compile time.

To generate PVF predictions, we profile each benchmark
in the SPEC 2000 suite using the train input data set. Based
on this training run, we generate an average PVF value for
each function in the program’s call graph; we then instru-
ment the program to record these values into the PVS reg-
isters at runtime.

Figure 12 shows the accuracy of the training runs for the
SPEC CFP2000 benchmarks. The only benchmark where
input data has a significant effect on a function’s PVF is
mesa, where the ref input shows a lower PVF in several
short-lifetime functions. This is likely solvable by using a
more extensive training data set, but we leave a detailed
examination of this effect for future work. Results for the
SPEC CINT2000 benchmarks are similar; the only bench-
mark that shows significant PVF differences is gcc, where
the propagate block function’s PVF increases from 59% in
the train data to 72% in the ref data. Again, we expect this
to be solvable with more extensive training or by profiling at
a granularity smaller than a function. We note that, despite
these prediction inaccuracies, our runtime predictor yields
acceptable AVF estimates for both gcc and mesa.

Loading and storing PVS registers at each function bound-
ary requires two memory operations per function per PVS
register. However, we can apply profile-time optimizations
to reduce the runtime overhead. First, we only update the
PVS registers if the absolute difference in PVF between old
and new predictions is more than 3%. Second, we omit pre-
dictions for short-lifetime functions to avoid adding over-
head to short function executions. Finally, in certain code
regions that exhibit a round-robin calling pattern between
three or more functions, we use one average prediction for
all functions in the call chain. Using our optimizations, we
reduce the overhead of PVS updates to an average of 6.2
extra memory operations per million instructions.

469

40%!

60%!

80%!

100%!

am
m
p!

ap
pl
u!

ap
si
!

ar
t1
10
!

eq
ua
ke
!

fa
ce
re
c!

ga
lg
el
!

lu
ca
s!

m
es
a!

m
gr
id
!

si
xt
ra
ck
!

sw
im
!

w
up
w
is
e!

P
V
F
!

Function!

Ref!

Train!

Figure 12: The x-axis plots functions that comprise over 90% of the execution of the first Simpoint of the SPEC CFP2000
benchmarks’ ref inputs. The y-axis plots the fraction of dead instructions using both the train and ref input sets. Within a
function, the difference in PVF between input sets is less than 4% except for short-lifetime functions in mesa and wupwise.

6.3 HVF Monitor Unit
To estimate HVF at runtime, we implement an HVF Mon-

itor Unit (HMU) for each structure. At a fixed 512-cycle
interval, the HMU chooses a random entry within the struc-
ture. If the specified entry generates an HVF trigger during
the next 512-cycle interval, the structure sets a bit within
the ROB entry for the corresponding instruction. At com-
mit, a centralized AVF Calculation Unit (ACU) reads these
added ROB bits. If the bit for a given structure is set, a
3-bit HVF Counter is incremented. When the counter over-
flows, it is reset and the value from the appropriate PVS
register is fetched, right-shifted by 3 bits, and added to an
AVF Counter for the structure. Every 220 cycles, the AVF

Counter value is divided by the total number of samples
(2048) to yield an AVF estimate for the previous interval.

We choose our interval sizes to allow a new AVF predic-
tion every 1 million cycles, similar to previous work [9]. By
choosing power-of-two interval sizes, we implement all arith-
metic operations as either bit-shifts or integer addition.

The core logic in the HMU and ACU is similar for all struc-
tures and can easily be replicated across structures; only the
HVF trigger varies from structure to structure. The trigger
event in the Issue Queue is an instruction issue, the trig-
ger in the ROB is an instruction commit, and the trigger
in the LDB is a read of the load address. Each structure
typically has just one HVF trigger, limiting the complexity
of monitoring these events.

In terms of hardware overhead, each structure requires the
HMU logic and related state; a bit within each ROB entry;
a set of basic counters in the ACU; and the logic required
to calculate AVF (which is used infrequently and can be
shared across all structures). The overhead of our technique
is similar to that of other proposed techniques (e.g., [9]).

We expect that using only one HMU per hardware struc-
ture will sometimes result in a high estimate of HVF be-
cause the estimate will converge to committed instruction
occupancy. As discussed in Section 4, this is a loose bound
on HVF. The estimate can be improved by treating individ-
ual fields within a structure as independent structures with
separate HMUs. For example, the IQ’s displacement field
stores instruction-carried constants such as load/store off-
sets and arithmetic immediate values, and can be evaluated
separately from the rest of the IQ.

6.4 Results
We implement our baseline HVF predictor (one HMU per

structure) in the Reorder Buffer, Load Buffer, and Issue
Queue. In addition, we implement two additional predic-
tors in the Issue Queue. Predictor IQ-3 uses 3 HMUs in the

IQ: one each for the Displacement field and Branch Con-
trol field (which is used only for control instructions), and
a third for the remainder of the fields. We identified the
displacement and branch control fields as the most likely
to benefit from separate measurement. Similarly, predictor
IQ-All splits the IQ into 8 sub-structures. Obviously, IQ-All

has high hardware overhead, but we include these results to
demonstrate the potential of the technique.

We run our experiments on the first Simpoint of the ref

input data set for each benchmark. We evaluate our AVF
predictor on two relevant metrics: the ability of the predic-
tor to follow time-varying changes in AVF; and the mean
absolute error of our AVF estimates to the actual AVF. Ac-
tual AVF is measured on a per-field basis as described in
Section 4.1.

Figure 13 visually depicts a representative set of results
of the baseline predictor. The predictor is highly respon-
sive to time-varying changes in AVF. However, it is obvious
that the predictor can have a high error (e.g., the IQ and
LDB when running applu). Table 2 confirms this result; the
mean absolute error (MAE) for many benchmarks is over
10%, which we deem unacceptably high3. Our data show
that these large errors are due almost entirely to HVF over-
estimates, and can be corrected by using multiple HMUs per
structure.

The results for the IQ-3 and IQ-All predictors are shown
in Figure 14 and Table 3. As expected, IQ-3 substan-
tially improves its HVF estimates over the baseline predic-
tor, which translates into better AVF predictions. IQ-3 has
a 3.6% average MAE across all benchmarks and only one
benchmark has an MAE higher than 8%. IQ-All further
improves the estimate and reduces the average MAE to just
2.7%. Furthermore, only one benchmark has an MAE higher
than 6%.

An interesting result is that a few benchmarks have a
higher MAE with the IQ-All predictor than with IQ-3. As
discussed in Section 6.2, gcc’s training input underestimates
the ref input’s PVF. This underestimate is offset by an HVF
overestimate in the Baseline and IQ-3 predictors, but not
in IQ-All. In mcf and swim, predictor IQ-3 slightly overes-
timates HVF, while predictor IQ-All underestimates HVF
by a slightly higher magnitude, resulting in a slightly higher
MAE. However, the magnitude of the MAE for these bench-
marks is still within those reported by prior work [9]. Based
on these results, we suggest that predictor IQ-3 achieves a
good balance between overhead and accuracy.

3Because AVF is reported as a percent, absolute errors carry
a unit of percent. For example, an actual AVF of 10% and
an estimated AVF of 15% implies a mean absolute error
(MAE) of 5%.

470

0!

20!

40!

60!

IQ
 A

V
F

 (
%

)!

Cycles!

Measured! Predicted!

(a) applu / IQ

0!

20!

40!

60!

R
O

B
 A

V
F

 (
%

)!

Cycles!

Measured! Predicted!

(b) applu / ROB

0!

20!

40!

60!

L
D

B
 A

V
F

 (
%

)!

Cycles!

Measured! Predicted!

(c) applu / LDB

0!

20!

40!

60!

IQ
 A

V
F

 (
%

)!

Cycles!

Measured! Predicted!

(d) vortex2 / IQ

0!

20!

40!

60!

R
O

B
 A

V
F

 (
%

)!

Cycles!

Measured! Predicted!

(e) vortex2 / ROB

0!

5!

10!

L
D

B
 A

V
F

 (
%

)!

Cycles!

Measured! Predicted!

(f) vortex2 / LDB
Figure 13: A visual depiction of the results from Table 2 for the Issue Queue, Reorder Buffer, and Load Buffer, for the first
100M-instruction Simpoint of applu and vortex2. Our predictor closely follows the time-varying behavior of AVF in every
benchmark. However, the predictor has a high MAE for certain benchmark / structure pairs (e.g., applu IQ and LDB).

Benchmark IQ ROB LDB Benchmark IQ ROB LDB

ammp 18.6 5.7 7.1 lucas 9.2 3.0 0.1
applu 19.6 1.6 24.4 mcf 6.5 5.3 0.1
apsi 5.4 1.9 6.5 mesa 6.2 4.3 5.9

art110 7.1 8.6 6.7 mgrid 3.2 6.2 12.0
crafty 0.4 0.5 0.5 perlbmk makerand 3.3 4.1 3.4

eon rushmeier 6.3 3.0 1.0 sixtrack 24.1 1.8 10.4
equake 6.0 4.0 9.5 swim 0.9 2.3 23.9
facerec 10.0 3.3 1.6 twolf 3.8 3.7 2.3
galgel 5.3 6.5 12.9 vortex2 6.0 4.7 0.2
gcc 166 2.9 1.8 4.9 vpr route 5.3 4.7 0.9

gzip graphic 2.0 1.8 18.2 wupwise 4.1 3.1 1.7
Table 2: Mean Absolute Errors (MAE) (in %) of the predicted AVF relative to the actual (measured) AVF. Our predictor
often has a high MAE because the HMU treats each entry as a single field (similarly to other techniques [9]), which results in
HVF overestimates. This highlights the need for more accurate HVF assessment in complex structures such as the IQ.

0!

20!

40!

60!

IQ
 A

V
F

 (
%

)!

Cycles!

Measured! Baseline! IQ-3! IQ-All!

(a) applu

0!

20!

40!

60!

IQ
 A

V
F

 (
%

)!

Cycles!

Measured! Baseline! IQ-3! IQ-All!

(b) gcc 166

0!

20!

40!

60!

IQ
 A

V
F

 (
%

)!

Cycles!

Measured! Baseline! IQ-3! IQ-All!

(c) swim

0!

20!

40!

60!

IQ
 A

V
F

 (
%

)!

Cycles!

Measured! Baseline! IQ-3! IQ-All!

(d) vortex2
Figure 14: Predicted and measured AVFs of the Baseline, IQ-3, and IQ-All predictors. Most benchmarks (e.g.,applu, vortex2)
and see a steady improvement of AVF estimates. For a few benchmarks (gcc 166, swim, and mcf), IQ-3 performs slightly
better than IQ-All due to PVF or HVF underprediction as discussed in Section 6.4. However, all IQ-All AVF predictions still
have an absolute error of less than 6%, with an average absolute error of less than 3%.

Benchmark Baseline IQ-3 IQ-All Benchmark Baseline IQ-3 IQ-All

ammp 18.6 8.5 2.5 lucas 9.2 4.2 4.4
applu 19.6 7.7 1.5 mcf 6.5 2.1 5.4
apsi 5.4 1.9 0.9 mesa 6.2 3.2 0.7

art110 7.1 6.1 6.6 mgrid 3.2 2.3 3.0
crafty 0.4 0.8 1.5 perlbmk makerand 3.3 2.0 0.7

eon rushmeier 6.3 3.4 0.5 sixtrack 24.1 6.8 4.5
equake 6.0 3.8 3.0 swim 0.9 3.5 5.2
facerec 10.0 4.9 4.0 twolf 3.8 1.4 0.7
galgel 5.3 3.0 1.6 vortex2 6.0 3.8 0.7
gcc 166 2.9 1.6 4.6 vpr route 5.3 2.5 0.7

gzip graphic 2.0 2.7 3.7 wupwise 4.1 2.6 2.2
Table 3: Mean Absolute Errors (in %) of improved predictors that treat each IQ entry as multiple structures. Baseline is the
IQ predictor from Table 2, with 1 HMU. IQ-3 uses 3 HMUs in the IQ, and IQ-All uses 8 HMUs, one for each field in the IQ.
As expected, IQ-3 requires less hardware than IQ-All but delivers much better AVF estimates than Baseline.

471

7. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced the Hardware Vulnerability

Factor, one component of the System Vulnerability Stack.
We demonstrated that HVF is useful during the hardware
design process. HVF can be used to provide greater insight
to microarchitectural design decisions and to accelerate AVF
simulation, allowing hardware designers to more quickly and
accurately assess a processor’s vulnerability. Finally, we pro-
posed a technique to enable the runtime monitoring of AVF
using pre-calculated PVF and online HVF estimates. The
key benefit of this technique is to enable software designers
to influence runtime AVF calculations.

In general, the vulnerability stack presents many further
opportunities for exploration and optimization. For exam-
ple, we have not yet explored VM and OS-level vulnerability,
although these are important components of many modern
computer systems. Furthermore, techniques to dynamically
predict PVF may improve the task of runtime AVF esti-
mation. Finally, because the vulnerability stack isolates the
system-level effects of a transient fault from its (device-level)
causes, we believe that portions of the vulnerability stack
may eventually be used to model the effects of other hard-
ware faults.

Overall, we believe that HVF and the System Vulnerabil-
ity Stack represent an important step forward in our under-
standing of system vulnerability. The stack can empower
a much broader community (e.g., software and OS design-
ers) to more fully participate in the design of fault-tolerant
systems, and has the potential to significantly expand the
scope of fault tolerance research and enable the design of
more robust systems at lower cost.

Acknowledgments

The authors would like to thank Arijit Biswas and Michael
D. Powell for their comments on the original manuscript
and the anonymous reviewers for their feedback on the final
version. This work was supported in part by a Fellowship
provided by the Northeastern University Provost’s Office.

8. REFERENCES
[1] N. Aggarwal, N. P. Jouppi, P. Ranganathan, J. Smith, and

K. Saluja. Reducing overhead for soft error coverage in high
availability systems. In Workshop on System Effects of Logic
Soft Errors (SELSE-4), Austin, TX, April 2008.

[2] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and
S. Reinhardt. The M5 simulator: Modeling networked systems.
IEEE Micro, 26(4):52–60, July-Aug. 2006.

[3] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S.
Mukherjee, and R. Rangan. Computing architectural
vulnerability factors for address-based structures. In
International Symposium on Computer Architecture
(ISCA-32), 2005.

[4] A. Biswas, N. Soundararajan, S. S. Mukherjee, and
S. Gurumurthi. Quantized AVF: A means of capturing
vulnerability variations over small windows of time. In
Workshop on System Effects of Logic Soft Errors (SELSE-5),
2009.

[5] J. A. Butts and G. Sohi. Dynamic dead-instruction detection
and elimination. In International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS-10), 2002.

[6] L. Duan, B. Li, and L. Peng. Versatile prediction and fast
estimation of architectural vulnerability factor from processor
performance metrics. In Int’l Symposium on High
Performance Computer Architecture (HPCA-15), 2009.

[7] M. A. Gomaa and T. N. Vijaykumar. Opportunistic
transient-fault detection. In International Symposium on
Computer Architecture (ISCA-32), 2005.

[8] X. Li, S. Adve, P. Bose, and J. Rivers. Softarch: an
architecture-level tool for modeling and analyzing soft errors.
International Conference on Dependable Systems and
Networks (DSN ’05), 2005.

[9] X. Li, S. V. Adve, P. Bose, and J. A. Rivers. Online estimation
of architectural vulnerability factor for soft errors. In
International Symposium on Computer Architecture
(ISCA-35), 2008.

[10] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building
customized program analysis tools with dynamic
instrumentation. In Conference on Programming Language
Design and Implementation (PLDI ’05), 2005.

[11] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and
T. Austin. A systematic methodology to compute the
architectural vulnerability factors for a high-performance
microprocessor. In International Symposium on
Microarchitecture (MICRO-36), 2003.

[12] E. Perelman, G. Hamerly, and B. Calder. Picking statistically
valid and early simulation points. In International Conference
on Parallel Architectures and Compilation Techniques
(PACT-12), 2003.

[13] V. K. Reddy, E. Rotenberg, and S. Parthasarathy.
Understanding prediction-based partial redundant threading for
low-overhead, high- coverage fault tolerance. In Int’l Conf. on
Arch. Support for Prog. Langs. and Op. Sys. (ASPLOS-12),
2006.

[14] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I.
August. SWIFT: Software implemented fault tolerance. In
International Symposium on Code Generation and
Optimization (CGO ’05), 2005.

[15] P. N. Sanda, J. W. Kellington, P. Kudva, R. Kalla, R. B.
McBeth, J. Ackaret, R. Lockwood, J. Schumann, and C. R.
Jones. Soft-error resilience of the IBM POWER6 processor.
IBM Journal of Research and Development, 52(3):275–284,
2008.

[16] N. Seifert and N. Tam. Timing vulnerability factors of
sequentials. Device and Materials Reliability, IEEE
Transactions on, 4(3):516–522, Sept. 2004.

[17] J. W. Sheaffer, D. P. Luebke, and K. Skadron. The visual
vulnerability spectrum: characterizing architectural
vulnerability for graphics hardware. In
SIGGRAPH/EUROGRAPHICS Symposium on Graphics
Hardware (GH ’06), 2006.

[18] A. Shye, J. Blomstedt, T. Moseley, V. J. Reddi, and D. A.
Connors. PLR: A software approach to transient fault tolerance
for multicore architectures. IEEE Transactions on Dependable
and Secure Computing, 6(2):135–148, 2009.

[19] N. K. Soundararajan, A. Parashar, and A. Sivasubramaniam.
Mechanisms for bounding vulnerabilities of processor
structures. In International Symposium on Computer
Architecture (ISCA-34), 2007.

[20] V. Sridharan and D. R. Kaeli. The effect of input data on
program vulnerability. In Workshop on System Effects of
Logic Soft Errors (SELSE-5), 2009.

[21] V. Sridharan and D. R. Kaeli. Eliminating microarchitectural
dependency from architectural vulnerability. In International
Symposium on High Performance Computer Architecture
(HPCA-15), 2009.

[22] A. Sundaram, A. Aakel, D. Lockhart, D. Thaker, and
D. Franklin. Efficient fault tolerance in multi-media
applications through selective instruction replication. In
Workshop on Radiation Effects and Fault Tolerance
(WREFT ’08), 2008.

[23] K. R. Walcott, G. Humphreys, and S. Gurumurthi. Dynamic
prediction of architectural vulnerability from microarchitectural
state. In International Symposium on Computer Architecture
(ISCA-34), 2007.

[24] C. Wang, H. seop Kim, Y. Wu, and V. Ying.
Compiler-managed software-based redundant multi-threading
for transient fault detection. In International Symposium on
Code Generation and Optimization (CGO ’07), 2007.

[25] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt.
Techniques to reduce the soft error rate of a high-performance
microprocessor. In International Symposium on Computer
Architecture (ISCA-31), 2004.

472

