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Test score distributions of schools or demographic groups are often summar-

ized by frequencies of students scoring in a small number of ordered proficiency

categories. We show that heteroskedastic ordered probit (HETOP) models can

be used to estimate means and standard deviations of multiple groups’ test

score distributions from such data. Because the scale of HETOP estimates is

indeterminate up to a linear transformation, we develop formulas for converting

the HETOP parameter estimates and their standard errors to a scale in which

the population distribution of scores is standardized. We demonstrate and

evaluate this novel application of the HETOP model with a simulation study and

using real test score data from two sources. We find that the HETOP model

produces unbiased estimates of group means and standard deviations, except

when group sample sizes are small. In such cases, we demonstrate that a

‘‘partially heteroskedastic’’ ordered probit (PHOP) model can produce esti-

mates with a smaller root mean squared error than the fully heteroskedastic

model.
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The widespread availability of aggregate student achievement data provides

a potentially valuable resource for researchers and policy makers alike. Often,

however, these data are only publicly available in ‘‘coarsened’’ form in which

students are classified into one or more ordered ‘‘proficiency’’ categories (e.g.,

‘‘basic,’’ ‘‘proficient,’’ ‘‘advanced’’). Although proficiency category data are

clearly useful when proficiency status itself is of substantive interest, coarsened

data pose challenges for the analyst when moments of the underlying test score
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distributions are of interest. Proficiency rates convey information about a single

point in a cumulative test score distribution. This not only limits the infor-

mation available to the analyst about the underlying test score distribution,

but it also complicates inferences about relative changes in achievement

levels in different population subgroups, a point illustrated by Ho (2008)

and Holland (2002).

For example, suppose one wants to compare the average test scores among

multiple schools, but one knows only the proportion of students scoring in each

of several ordered proficiency categories. If the underlying test score distribu-

tions have unequal variances among schools, then rankings of schools on the

basis of the percentages scoring at or above a given proficiency category will

depend on which threshold is chosen. Moreover, rankings of schools based on

percentages above some threshold will not, in general, match rankings based on

mean scores. The same problem holds if one wishes to compare average test

scores among multiple student subgroups (such as racial/ethnic groups) or to

compare average test scores in a given school over time. In each case, judg-

ments about the relative magnitude of between-group differences and even the

ordering of groups’ average performance will be dependent on what profi-

ciency category threshold is used. These and other limitations posed by the

coarsening of standardized test scores have been described extensively (Ho,

2008; Ho & Reardon, 2012; Holland, 2002; Jacob, Goddard, & Kim, 2013;

Jennings, 2011).

With access to only coarsened test score data, therefore, comparisons of

average performance among groups of students may be ambiguous. Unfortu-

nately, most publicly available data on student performance on state standar-

dized tests consist of coarsened test scores. Most states, for example, do not

report school- or district-level test score means (and very few report standard

deviations). The EDFacts Assessment Database (U.S. Department of Educa-

tion, 2015), for example, provides test score data for every public school in the

United States but does not include means and standard deviations. Rather, it

contains the counts of students (by school, grade, subject, and student sub-

group) scoring in each of the two to five state-defined performance levels, as

required under the Elementary and Secondary Education Act. While these data

are a valuable resource for educators, policy makers, and researchers, their

utility is severely hampered by the absence of test score means and standard

deviations.

In this article, we describe an approach that allows the analyst to recover more

complete information about continuous test score distributions when only coar-

sened test score data are available. To achieve this, we propose a novel applica-

tion of the heteroskedastic ordered probit (HETOP) model (e.g., Alvarez &

Brehm, 1995; Greene & Hensher, 2010; Keele & Park, 2006; Williams, 2009).

As we describe, the HETOP model can be used to recover means and standard

deviations of continuous test score distributions of multiple groups from

Heteroskedastic Ordered Probit Models for Coarsened Data

4



coarsened data. These groups may be schools, districts, or demographic sub-

groups. Estimates of these group means and standard deviations can be used to

estimate intraclass correlations (ICCs), between-group achievement gaps, and

other theoretically interesting or policy-relevant statistics, just as if each group’s

mean and standard deviation were provided directly.

The methods we describe generalize prior work quantifying achievement

gaps in an ordinal or nonparametric framework, both with continuous (Ho,

2009) and with coarsened (Ho & Reardon, 2012; Reardon & Ho, 2015) test

scores. Although we describe the use of such models to recover moments of test

score distributions from aggregate proficiency data, the methods are applicable

to other educational testing contexts when only coarsened scores are reported,

such as Advanced Placement (AP) or English language proficiency exams.

Aggregate data on coarse, ordered scales can also arise in college rankings,

health research and practice scales, and income reporting. In all of these cases,

our methods enable the estimation of group means and standard deviations

from ordered data.

This article is organized into four main sections. In Section 1, we describe the

statistical and conceptual framework for our application of the HETOP model. In

Section 2, we use Monte Carlo simulations to evaluate recovery of the parameters

of interest across a range of scenarios that might be encountered in practice. In

Section 3, we use two real test score data sets, one from the National Assessment

of Educational Progress (NAEP) and one from a State testing program, to eval-

uate the extent to which the key assumption of the HETOP model holds for real

data. For these case studies, both student-level scale scores and coarsened pro-

ficiency counts are available, allowing us to evaluate the agreement between

HETOP model estimates of means and standard deviations and estimates of the

same parameters based on uncoarsened scale score data. Section 4 summarizes

and discusses the results and offers recommendations for applying the metho-

dology in practice.

1. Background and Statistical Framework

1.1 Canonical Application: Data, Assumptions, and Estimands

In our context of interest—the reporting of large-scale educational test

scores in proficiency categories—the data consist of frequencies of students

scoring within each of K ordered categories (often called performance levels)

for G groups. Groups might be defined by racial/ethnic categories, schools,

school districts, or other relevant categories. Such data can be summarized in a

G � K matrix. Each cell in the matrix indicates the observed frequency of

students from group g ¼ f1; : : : ;Gg scoring at performance level k ¼
f1; . . . ;Kg of a test. The performance levels describe ordered degrees of

student proficiency in a content area. In standard current state testing practice,
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a panel of content experts selects one to four cut scores that divide the score

scale into performance levels through a standard setting procedure (e.g., Cizek,

2012).

Let y denote a continuous random variable (scaled test scores, in our exam-

ple), with mg and sg denoting the mean and standard deviation, respectively, of y

in group g. Although we make no specific distributional assumptions about the

shape of the distributions of y in each group, we do make the assumption that the

distributions are ‘‘respectively normal’’ (Ho, 2009; Ho & Reardon, 2012). This

means we assume there exists a continuous monotonic increasing function f

defined for all values of y, such that y� ¼ f(y) has a normal distribution within

each group g:

y�jðG ¼ gÞ*Nðm�g; s�g 2Þ: ð1Þ

This does not require that the test score y be normally distributed within each

group, only that the metric of y can be transformed so that this is true for the

resulting transformed scores. Without loss of generality, we assume that f is

defined so that y� is standardized in the population, that is, E½y�� ¼ 0 and

Varðy�Þ ¼ 1. Hence, we assume that there is a continuous scale for ‘‘academic

achievement’’ (y�) for which all within-group distributions are normal. Note that

neither y nor y� is assumed to be normally distributed in the combined population

of all groups. We elaborate on the conceptual distinctions between these two

metrics in Section 1.5.

We are interested in the case where neither y nor y� is observed. Instead, we

observe a ‘‘coarsened’’ version of y. This coarsened version, denoted

s 2 f1; : : : ;Kg, is determined by K � 1 distinct ordered threshold values,

c1; : : : ; cK�1, where ck�1 < ck for all k:

s � k iff ck�1 < y � ck ; ð2Þ

where we define c0 � �1 and cK � þ1. Because f is a monotonic increasing

function, s is also a coarsened version of y�:

s � k iff c�k�1 < y� � c�k ; ð3Þ

where c�k ¼ f ðckÞ. Under our assumption of respective normality, the model-

implied proportion of observations in category k for group g is therefore:

pgk ¼ F
m�g � c�k�1

s�g

 !
� F

m�g � c�k
s�g

 !
¼ Prðc�k�1 < y�ig � c�kÞ � Prðck�1 < yig � ckÞ;

ð4Þ

where Fð�Þ is the standard normal cumulative distribution function. The aim is to

estimate m�g and s�g for each group based on the observed frequencies of members

of group g in each of the K ordered proficiency categories.
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Equation 4 is an instance of the HETOP model. Here we think of each

ordered proficiency category as the result of a draw from an underlying

continuous (normal) distribution of test scores within a group. The HETOP

model is an extension of the homoskedastic ordered probit (HOMOP)

model that allows for heteroskedasticity in the variances of the underlying

continuous variable across groups. In the remainder of the article, we refer

to the ordered probit model in which all group variances are assumed equal

as the HOMOP model. The ordered probit model is sometimes referred to

as an ordered choice model (Williams, 2009) or as a location-scale model

(Cox, 1995; McCullagh, 1980). Most broadly, it is an instance of a

generalized linear model that parameterizes the multinomial distribution

of observations in each group as cumulative probabilities from a normal

density function (Agresti, 2002). Use of a HETOP model allows us to relax

the often unrealistic assumption that test scores are homoskedastic across

groups and to obtain direct estimates of the within-group standard

deviations. To our knowledge, the HETOP model has not been used for

the recovery of means and standard deviations from the coarsened data of

multiple groups.

Our proposed application and interpretation of the HETOP model is analo-

gous to the ordered regression model used in the analysis of receiver operating

characteristic (ROC) curves, where the model can be interpreted as estimating

the mean and standard deviation of unobserved (latent) normal distributions

across multiple groups. Tosteson and Begg (1988) demonstrated that the

HETOP model generalizes the binormal model for analyzing ROC curves

comparing two groups (Dorfman & Alf, 1969) to scenarios with more than two

groups. The binormal model has been used previously as a method to estimate

the nonparametric V gap statistic between two groups when only coarsened

proficiency data are available (Ho & Reardon, 2012; Reardon & Ho, 2015).1

The HETOP model also generalizes the maximum likelihood (ML)–based esti-

mator of V recommended by Ho and Reardon (2012). It effectively allows for

simultaneous estimation of all pairwise V gaps on a common metric for three or

more groups.

1.2 HETOP Model Estimation and Identification

Let N be an observed G � K matrix with elements ngk containing the counts of

observations in group g for which s¼ k; let P ¼ ½p1; . . . ; pG� be the 1� G vector

of the groups’ proportions in the population; and let n ¼ ½n1; . . . ; nG� be the 1�
G vector of the observed sample sizes in each group, with N ¼

P
gng .2 We

would like to estimate the vectors M� ¼ ½m�1; : : : ; m�G�
t
, Σ� ¼ ½s�1; : : : ;s�G�

t
,

and C� ¼ ½�1; c�1; : : : ; c
�
K�1;þ1�. In practice, it is preferable to estimate

Γ� ¼ ½g�1; g�2; : : : ; g�G�
t
, where g�g ¼ lnðs�gÞ. This ensures that the estimates of s�g
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will all be positive. Following estimation of Γ�, we have bΣ� ¼ ½eĝ�1 ; : : : ; eĝ�G �t.
Given M�, Γ�, and C�, and under the assumption of conditional independence

of scores within groups, the log likelihood of drawing a sample with observed

counts N is

L ¼ ln½PðNjM�;Γ�;C�Þ� ¼
XG

g¼1

lnðng!Þ þ
XK

k¼1

½ngk lnðpgkÞ � lnðngk !Þ�
( )

¼ Aþ
XG

g¼1

XK

k¼1

ngk lnðpgkÞ

¼ Aþ
XG

g¼1

XK

k¼1

ngk ln F
m�g � c�k�1

eg
�
g

0@ 1A� F
m�g � c�k

eg
�
g

0@ 1A24 35;
ð5Þ

where A ¼ ln

QG

g¼1
ng !QG

g¼1

QK

k¼1
ngk !

 !
is a constant based on the observed counts in N.

Without constraints on the parameters, the scale of M�, Γ�, and C� is

indeterminate up to a linear transformation. The constraints
P

gpgm̂
�
g ¼ 0

and
P

gpgm̂
�2
g þ

P
gpge2ĝ�g ¼ 1 together imply that y� has mean 0 and var-

iance 1, as desired. However, these nonlinear constraints are not easily

implemented in standard software. Instead, it is easier to fit the model

subject to two linear constraints on the parameters. As a default, we rec-

ommend the constraints

P bM0 �
XG

g¼1

pgm̂
0
g ¼ 0;

PbΓ 0 �XG

g¼1

pgĝ
0
g ¼ 0; ð6Þ

where we use a superscript prime symbol to denote the metric defined by the

linear constraints.3

To estimate an HOMOP model, we impose the additional constraint that

ĝ01 ¼ ĝ02 ¼ : : : ¼ ĝ0G before maximizing Equation 5, so that all groups have

identical standard deviations.4 In some cases, as we discuss below, we may

wish to fit a partially heteroskedastic ordered probit (PHOP) model, in

which we constrain some subset of the groups to have identical standard

deviations, but we allow the others to vary freely. This is achieved by

adding to Equation 6 the constraint that the relevant elements of bΓ 0 are

equal to one another.

We can then maximize Equation 5 subject to the constraints, resulting in

estimates bM0, bΓ 0, and bC 0 from which we obtain bΣ 0 ¼ ½eĝ01 ; eĝ02 ; : : : ; eĝ0G �t.
Note that the constraints listed in Equation 6 (or any set of linear
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constraints) do not, in general, yield estimates that satisfy the requirement

that
P

gpgm̂
02
g þ

P
gpge2ĝ0g ¼ 1. We can, however, standardize the estimates

to recover estimates of M�, Σ�, and C�, using

bM� ¼ 1

ŝ0
bM0

bΣ� ¼ 1

ŝ0
bΣ 0

bC� ¼ 1

ŝ0
bC0; ð7Þ

where ŝ0 is an estimate of the population standard deviation in the metric defined

by the constraints (the ‘‘prime’’ metric). We show in Appendix A that ŝ0 can be

estimated as

ŝ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

B þ ŝ2
W

q
; ð8Þ

where

ŝ02W ¼
PbΣ 0°2

1þ 2
co2

g

; ð9Þ

and

ŝ02B ¼ P bM0°2 þ ½n
°�1°ðP°2 � PÞ�bΣ0°2

1þ 2
co2

g

: ð10Þ

In these equations,
co2

g is the estimated average sampling variance of the ĝ0g
and the ‘‘ðAÞ°b

’’ notation indicates the matrix whose elements are the correspond-

ing elements of matrix A raised to the power b. Appendix A shows that for the

HETOP model, we can use the approximation
co2

g 	 ð2~nÞ�1
, where ~n is the

harmonic mean of ng � 1: ~n ¼ 1
G

P
g

1
ng�1

� ��1

. For the HOMOP and PHOP

models,
co2

g is approximated slightly differently (see Appendix A).

As we noted above, the model can be estimated with different con-

straints than those in Equation 6, as long as two independent constraints

are used. However, if an alternate set of constraints are used, it is neces-

sary to transform the resulting estimates to the metric defined by Equation

6 before standardizing using the procedure in Equation 7; we describe the

necessary transformation in Online Appendix A (available in the online

version of the journal). Absent problems maximizing the likelihood
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function, such as those discussed in Section 1.6, these transformation and

standardization procedures will yield the same estimates of M� and Σ�
regardless of the linear constraints imposed to identify the model.

ML estimation of the HETOP, HOMOP, and PHOP models can be

conducted in a number of widely available statistical packages; see

Greene and Hensher (2010, p. 179) for a fairly recent list. For all simula-

tions and analyses described in this article, we carry out the ML estima-

tion of Equation 5 using a modification of the -oglm- (‘‘ordinal

generalized linear models’’) routine (Williams, 2010) written for Stata

(StataCorp, 2013).5

1.3 Additional Estimands of Interest

Once we have obtained bM� and bΣ�, estimation of summary statistics like

between-group gaps and ICCs is straightforward. First, the achievement gap

between any two groups g and h can be computed as the standardized mean

difference in y� between the groups:

Dgh ¼
m̂�g � m̂�hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
ðŝ�g 2 þ ŝ�h2Þ

q : ð11Þ

Note that, under the assumption of respective normality, Dgh is equal to V , a

gap statistic invariant to monotonic scale transformations (Ho & Reardon, 2012).

Second, the ICC (the between-group share of total test score variance) is

simply one minus the estimated within-group variance of y�, because the total

variance of y� is 1:

dICC ¼ 1� ŝ�2W ¼ 1� PðbΣ�Þ°2

1þ 2
co2

g

24 35: ð12Þ

1.4 Computation of Standard Errors

Once we have standardized the estimated group means and standard devia-

tions using Equation 7, we can also compute their standard errors. Because the

elements of bM� and bΣ� are the products of error-prone estimates of s0 and error-

prone elements of M0 and Σ0, the standard errors of the elements of bM� and bΣ�
will depend on the variances and covariances of ŝ0 and the elements of bM0 and bΣ 0.
In Appendix B, we derive formulas to estimate V� and W�, the sampling variance–

covariance matrices of bM� and bΣ�, respectively, when the model is fit with the

constraints P bM0 ¼ 0 and PbΓ 0 ¼ 0. These derivations take into account the

sampling error in ŝ0.
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The standard errors of the gaps described in Equation 11 can be computed

from bM�, bΣ�, bV�, and cW�, as described in Online Appendix B (available in the

online version of the journal). There are generalizations of the formulas used in

Reardon and Ho (2015).

The standard error of the ICC is relatively straightforward to compute once we

have cW�. Given Equation 12, the variance of the ICC estimator will be

VarðdICCÞ 	 1

1þ 2
co2

g

0@ 1A2

Var½PðbΣ�Þ°2� 	 4
1

1þ 2
co2

g

0@ 1A2

P½diagðΣ�Þ�W�½diagðΣ�Þ�Pt:

ð13Þ

Substituting bΣ� andcW� and the appropriate approximation of
co2

g (see Appen-

dix A) into Equation 13 yields an estimate of the variance of the ICC estimator.

1.5 A Note on Interpreting the Estimated Parameters

There are two different test score scales relevant to the interpretation of

estimated parameters. The first is the continuous scale in which test scores are

constructed (i.e., the scale score metric of a test as constructed by a test devel-

oper). We denote the scores measured in this metric (the original test metric) with

the variable y and denote estimates based on these scores as m̂k and ŝk . The

second is the scale of the standardized estimates produced by the HETOP model.

We denote the scores measured in this metric with the variable y� and denote

estimates in this metric with a superscript ‘‘star’’ (e.g., m̂�k and ŝ�k). The estimates

in this metric are interpreted relative to a population mean and standard deviation

of 0 and 1, respectively. Scores in the prime metric described in Section 1.2 are

simply a linear transformation of y� used in the process of model estimation and

are not relevant to the final interpretation of y�.
If the function f that transforms y into y� is nonlinear, then the group means

and standard deviations in the y� metric will not be linearly related to those in

the original y metric. In other words, the target parameters of our application of

the HETOP model are not the test score means and standard deviations in the

(potentially observed) test score metric of y. Rather, they are the means and

standard deviations in the continuous metric of y�—the metric in which each

group’s distribution is normal and in which the population distribution has mean

0 and standard deviation 1. The key assumption of the model is that such a metric

exists. That is equivalent to saying that the group distributions of y (if y could be

observed) are ‘‘respectively normal,’’ as defined above.

In some cases, these parameters may be unsatisfying. If, for example, we want

to recover means and standard deviations in the reported metric of y (e.g., if we

want to recover group-specific mean SAT scores, expressed in the SAT score

scale metric), we could do so if two conditions are met. First, we would need to
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know the threshold scores (in the original metric) used to coarsen the data (i.e.,

we would need to know c1; : : : ; cK�1, where K 
 3). Second, we would have

to assume that the group-specific distributions of scores are normally distributed

in the original metric (rather than assuming only that they could be normalized by

some common transformation f). If these two conditions are met, we could fit the

HETOP model using the frequency counts within each ordered category, as

above, except that we would constrain the vector C to have values equal to the

known threshold scores (rather than imposing constraints on the vectors of esti-

mated means and standard deviations). The vectors bM0 and bΣ 0 would then be

freely estimated and would be interpretable as group means and standard devia-

tions in the original score metric y. From a practical standpoint, if the group

distributions in the original metric are already normal (or nearly normal), the y

and y� estimates will differ only by a linear transformation (or a nearly linear

transformation). While the scale of the means and standard deviations will thus

differ, auxiliary statistics such as standardized mean differences or the estimated

ICC will be unchanged (or nearly unchanged).

When it is reasonable to assume distributions of the original scores y are

normal within each group and it is desirable to obtain estimates in that metric,

then constraining the thresholds to their known values may be preferable. Unlike

physical properties like height or weight, however, it is not clear that there is any

natural cardinal scale for cognitive or academic skill (Lord, 1980) or that the test

design principles necessary to support cardinality have been addressed for many

common test score scales (Briggs, 2013). In many cases, then, the fixed intervals

between established cut scores defined in the original scale score metric might

have little theoretical justification or relevance and may be unnecessarily restric-

tive. The y� metric provides a unique metric interpretable in standard deviation

units for comparing test score distributions across groups. The y� metric also

preserves the ordinal structure of the observed data, while remaining invariant to

plausible monotonic transformations of the original test score scale (i.e., it does

not rely on the cardinality of the original test score scale). We therefore use the

parameters on the y� scale as targets for simulation and interpretation.

1.6 Estimation Issues and the Partially Heteroskedastic Ordered Probit Model

The HETOP model will be unidentified if there are groups in which all

observations fall in the highest or lowest proficiency category. In this case, the

ML estimates of these groups’ means will be +1. The model is also unidenti-

fied if there are groups in which all observations fall into only two adjacent

categories; in such cases the MLE of the log standard deviation does not exist.

In such cases, the HETOP model does not have enough information to provide

estimates. In other cases, heteroskedastic multinomial or ordered probit models

may suffer from fragile identification (Freeman, Keele, Park, Salzman, & Weick-

ert, 2015; Keane, 1992), meaning that although the model is formally identified,
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the likelihood function may be nearly flat over a range of the parameter space.

This may result in a near-singular Hessian, failure of the estimation algorithm to

converge, or convergence with very large standard errors. In addition, ML algo-

rithms can sometimes indicate convergence even when the multinomial or ordinal

probit model is formally unidentified, due to approximation errors in estimating the

likelihood function (Horowitz, Sparmann, & Daganzo, 1982; Keane, 1992).

In our simulations and in applying the HETOP model to real data, we found

evidence of such fragile identification in some cases. This occurred when one or

more groups had sparse data—for example, when the coarsened data showed all

members of a group scoring in the same one or two ordered categories. This

condition is unlikely to occur unless more than one of the following conditions

hold: the group has a relatively high or low mean, a small standard deviation, a

small sample size, and/or the cut scores are narrowly or unevenly spaced. In such

cases, the HETOP algorithm sometimes either failed to converge or converged

and returned estimates with very large standard errors for particular groups’

parameter estimates (often many orders of magnitude larger than those for other,

well-identified groups). In some cases, the algorithm would converge using one

set of constraints but not another or would converge with two different sets of

constraints but result in differing estimates of m�g and s�g, suggesting these para-

meters were at best tenuously identified and not to be trusted.6

In such cases, one can drop sparsely populated groups from the model and fit

the HETOP model only with groups with sufficient data to identify their para-

meters. One disadvantage of this is that the standardization procedure we

describe will no longer include the full population of interest. An alternate

solution is to fit a PHOP (or HOMOP) model instead of the HETOP model,

imposing some constraints on the standard deviations of the groups with sparse

data. For example, constraining all groups with small sample sizes, or with

similar values of some covariate, to have the same standard deviation allows the

model to use information from multiple groups to estimate a common standard

deviation for those groups. As long as at least some of the constrained groups

have sufficient data to identify the parameters, the fragile identification problem

may be avoided. We describe simulation analyses of such a model in Section 2.3,

where we find that the PHOP model often yields a smaller root mean squared

error (RMSE) than the HETOP model, even when the groups’ true standard

deviations are not identical.

2. Evaluating the Performance of the HETOP and PHOP Models

Using Simulated Data

We conducted a Monte Carlo simulation to evaluate the accuracy of our

proposed use of the HETOP model (and our described standardization procedure)

when the data generating procedure matches the model. The first simulation

study uses a range of conditions selected to represent those likely to be
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encountered when analyzing coarsened proficiency data in practice. It builds

upon prior simulation studies of HETOP models that sought to recover

individual-level parameters rather than group parameters (e.g., Keele & Park,

2006). We focus directly on recovery of the means, standard deviations, and

ICCs of the continuous y� variable after applying our proposed standardization

procedure, including evaluation of bias, sampling variability, and confidence

interval (CI) coverage of the estimated standard errors. We also evaluate the

performance of the PHOP model as a potential way to overcome estimation

problems caused by small sample sizes.

2.1 HETOP Model Simulation Conditions and Procedure

We simulated data from populations that differ in the degree to which the true

means and standard deviations of test scores vary among groups. We characterize

the variation in group means using the ICC (the proportion of total variance in

test scores that lies between groups) and the variation in group standard devia-

tions using the coefficient of variation (CV) of group variances (defined as

CV ¼ SDðs2Þ=E½s2�). We first created four populations, each defined by an

ICC (0.05 or 0.20) and a CV (0.0 or 0.3) and containing 100 groups. In each

population, each of the 100 groups has 1 of 10 uniformly spaced true means and 1

of 10 uniformly spaced true standard deviations (when CV ¼ 0, all groups have

identical standard deviations), with the set of means and standard deviations

defined so that the population has the desired ICC and CV, and an overall mean

of 0 and total variance of 1. We selected the ICC and CV values to correspond

roughly to the high and low ends of values reported in prior literature on test

score variation (Hedberg & Hedges, 2014; Hedges & Hedberg, 2007) and the real

test score data we analyze later in this article.

In each of the four populations, we conducted four sets of simulations, each

defined by groups of a different sample size (n¼ 25, 50, 100, 400). For each of the

16 resulting simulation scenarios defined by the ICC, CV, and group sample size,

we generated random samples of size n from each of the 100 groups. Each group’s

sample was drawn from normal population distributions with means and standard

deviations defined by the parameters for each of the 100 groups. We then coar-

sened the scores four different ways, each time using a different set of cut score

locations (set at the 20th/50th/80th, 5th/50th/95th, 5th/30th/55th, and 5th/25th/

50th/75th/95th percentiles of the population test score distribution, and described

as ‘‘mid,’’ ‘‘wide,’’ ‘‘skewed,’’ and ‘‘many’’ cut scores, respectively). The cut score

locations were chosen to be representative of a wide range of conditions found in

empirical coarsened test score data (Reardon & Ho, 2015). Finally, we fit both the

HETOP and HOMOP model to the coarsened data and followed the procedures

described above to obtain bM�, bΣ�, the estimated ICC, and their standard errors. For

each of the 64 scenarios, we repeated this process 1,000 times.

Heteroskedastic Ordered Probit Models for Coarsened Data

14



Although our primary goal is to assess the performance of the HETOP

model, we also fit the HOMOP model to each simulated data set in order to

compare the relative performance of the two models. Fitting both the HOMOP

and HETOP models to data generated from a population that is homoskedastic

(CV ¼ 0.0) allows us to assess whether using the HETOP model when it is not

needed leads to bias or inefficient estimation relative to the more appropriate

HOMOP model. Likewise, fitting both models to data generated from a popu-

lation that is heteroskedastic (CV ¼ 0.3) allows us to assess whether and how

much the use of the HETOP model improves estimation relative to the HOMOP

model.

We evaluated the performance of the HETOP and HOMOP models by

computing the bias and RMSE of the estimated means, standard deviations,

and ICCs. For the means and standard deviations, we focused primarily on

the aggregate bias and RMSE (averaged across all G ¼ 100 groups) for

each estimator ŷ (where y could be a mean or a standard deviation) by

computing

Biasŷ¼
1

RG

XR

r¼1

XG

g¼1

ðŷgr � ygÞ

RMSEŷ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

RG

XR

r¼1

XG

g¼1

ðŷgr � ygÞ2
vuut ;

ð14Þ

where R is the number of converged replications (usually 1,000), ŷgr is the

estimate for group g in replication r, and yg is the true value. For the ICC

estimates, dICC, bias, and RMSE were computed as

BiascICC
¼ 1

R

XR

r¼1

ðdICCr � ICCÞ

RMSEcICC
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R

XR

r¼1

ðdICCr � ICCÞ2
vuut :

ð15Þ

To evaluate the accuracy of our formulas for the standard errors of group

means and standard deviations, we computed the average ratio of the median7

estimated standard error of a parameter to its empirical standard error (the stan-

dard deviation of the sampling distribution of the parameter, denoted SDðŷgrÞ)
across all G ¼ 100 groups in a condition:

Standard error ratioŷ ¼
1

G

XG

g¼1

MedianðcSE ŷgr
Þ

SDðŷgrÞ
: ð16Þ
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To evaluate the accuracy of the standard error formula of the estimated ICCs,

we compute the ratio of the median estimated standard error of the ICC to its

empirical standard error:

Standard error ratiocICC
¼

MedianðcSEcICCr

Þ

SDðdICCrÞ
; ð17Þ

where SDðdICCrÞ is the observed standard deviation of the sampling distribution

of the ICC estimates across the R replications for a given condition. If our

standard error formulas in Appendix B are accurate, we expect the ratios in

Equations 16 and 17 to be close to 1. We also computed the 95% CI coverage

rates for each parameter, computed as the proportion of cases for which jŷgr �
ygj < 1:96� cSEygr

or jdICCr � ICCj < 1:96� cSEICCr
. If the estimates are biased,

the CI coverage rates will not equal 95%, however, even if the standard error

formulas accurately reflect sampling variability.

Finally, we present results describing the loss of efficiency (in terms of

increased sampling variance) when estimating group means and standard devia-

tions from coarsened rather than full data. For each condition, we estimate

relative efficiency as the average efficiency ratio across groups. We define this

as the average (across groups) of the ratio of the observed sampling variance of

the target parameter in the simulations (using coarsened data) to its theoretical

sampling variance if it were estimated from continuous data:

Average efficiency ratioŷ ¼
1

G

XG

g¼1

dVar

�
ŷgr

�
t2
yg

; ð18Þ

where y is either a mean or a standard deviation, dVar

�
ŷgr

�
is the observed

variance in estimates of the target parameter across the R replications and t2
yg

is the theoretical sampling variance of the estimator based on continuous data

(when y is the mean, m�g, then t2
yg
¼ s2

g=ng; when y is the standard deviation, s�g,

then t2
yg
¼ s2

g � 2½ng � 1��1
). An efficiency ratio of 1.0 would indicate that

estimates based on coarsened data have the same sampling variance as estimates

based on continuous data; efficiency ratios larger than 1.0 indicate there is

greater variability in estimates based on coarsened data. The efficiency ratio can

be interpreted as the ratio by which the sample size would need to be increased to

estimate the parameters from coarsened data with the same precision as if the

parameters were estimated from continuous data.

Because the 100 true group means and standard deviations were held constant

across the 1,000 replications within a given scenario, we also examine the bias,

RMSE, and standard error performance for individual groups within a particular
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condition when relevant. Online Appendix C (available in the online version of the

journal) contains detailed tables of all aggregate bias, RMSE, and standard error

results. We used the constraints P bM0 ¼ 0 and PbΓ 0 ¼ 0 to identify the model, and

the ML algorithm converged in all but 5 of the total 128,000 replications.

2.2 HETOP Model Simulation Results

2.2.1 Recovery of means. The aggregate bias of means estimated with the

HETOP model was indistinguishable from 0 for all conditions, and the bias for

individual groups was also indistinguishable from 0 in almost all of the scenarios

we explored. The one exception was in the small sample (n ¼ 25) simulations

with a large ICC (0.20), large CV (0.3), and skewed or wide cut scores; in these

cases, we detected nonzero bias for some groups, though the bias was very small,

nearly always less than 0.05 standard deviation units for any given group. More-

over, not only was this bias small in absolute terms, but it was also very small in

relation to the aggregate RMSE of the estimated means (which in this case was on

average approximately 10 times larger than the largest bias we observed). We do

not show these results for parsimony. The precision of the estimated means varied

primarily as a function of sample size, although when sample sizes were small, the

sampling variance was modestly affected by the location of the cut scores; sam-

pling variance was consistently lowest for estimates based on the ‘‘many’’ cut

score condition, as one would expect given the light degree of coarsening.

2.2.2 Recovery of standard deviations. The top panel of Figure 1 shows the

average bias in standard deviation estimates across all groups and all replications

for each condition. This figure illustrates that there is some negative bias in the

standard deviation estimates from the HETOP model and that the bias is primar-

ily a function of sample size that is exacerbated when cut scores are skewed or

wide. Note the average bias for standard deviations is quite small compared to the

true standard deviation of scores, typically less than 1% of the size of the true

standard deviations, except when sample sizes are less than 50 and the cut scores

are skewed or wide (the average standard deviation is approximately 0.89 when

ICC ¼ 0.20 and 0.97 when ICC ¼ 0.05, and the largest absolute bias in any

condition is approximately 0.045).

When CV ¼ 0 and the HOMOP model is the correct model, the top panel of

Figure 1 indicates a very slight negative bias in HOMOP standard deviation

estimates that generally approaches 0 with increasing sample size more quickly

than the corresponding HETOP estimates, particularly with skewed or wide cut

scores. That is, when the group distributions are truly homoskedastic and the

coarsening is done suboptimally, the HOMOP model produces less biased esti-

mates of standard deviations than the HETOP model. Note, however, that the

HOMOP model produces modest positive bias in the standard deviation esti-

mates in the CV ¼ 0.3 conditions (where the HOMOP model is not the correct
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model), particularly when sample sizes are large. Given the misspecification of

the model, such bias is not surprising.

The bottom panel of Figure 1 depicts the RMSE of standard deviation estimates

across conditions as defined in Equation 14. The results in Figure 1 together

suggest that when the data are homoskedastic, the HOMOP model is generally
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FIGURE 1. Average bias and aggregate root mean squared error (RMSE) in group

standard deviation estimates.
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(and unsurprisingly) preferable to the HETOP model. If data are heteroskedastic,

however, the HOMOP model will systematically over-/underestimate individual

group standard deviations, with bias inversely related to the true standard devia-

tion. Nonetheless, if one wishes to minimize RMSE, it may still be better to use an

HOMOP model if sample sizes are small. In the scenarios shown in Figure 1, the

HOMOP model generally yields a smaller RMSE than the HETOP model for

scenarios with n < 100. The sample size at which the HOMOP model is preferable

to the HETOP model (in terms of RMSE) will be a function of a number of factors,

particularly the CV of group variances and the location of the cut scores. We

further investigate this bias/variance trade-off in Section 2.3.

Figure 2 provides more detail on the systematic patterns of bias in group

standard deviation estimates from the HETOP model, showing the bias in standard

deviation estimates as a function of the true population means and standard devia-

tions for the condition in which ICC ¼ 0.20 and CV ¼ 0.3. Each panel in Figure 2

shows the bias as a function of groups’ true mean and standard deviation for a

given sample size and cut score condition, with the x-axis indicating group means

and y-axis indicating group standard deviations. The figure makes clear that the

bias in estimated standard deviations varies with a group’s true mean and standard

deviation, when cut scores are skewed or wide and sample sizes are small. The top
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left panel, for example, shows that nearly all group standard deviation estimates are

negatively biased when n¼ 25 and cut scores are skewed, but the bias is largest for

groups with larger true means and smaller true standard deviations. This pattern is

a result of the loss of information due to the coarsening of the data. If a group’s true

standard deviation is small and its true mean is high, then when the cut scores are

skewed, the coarsening leads to observed data with little information (most cases

will fall in the top category, providing little information about the group’s standard

deviation) and to underestimation of standard deviations. In larger samples, coar-

sening leads to much less consequential loss of information, however, as is evident

in the bottom (n ¼ 400) row of panels, where absolute bias is less than 0.01 for all

but one group across all cut score conditions. Although not pictured, the pattern of

small negative bias in small groups is similar when CV ¼ 0.0.

2.2.3 Recovery of ICC. Figure 3 shows the bias in ICC estimates across condi-

tions. The ICC estimates are upwardly biased, particularly when sample sizes are

small; this is partly a result of the small negative bias in standard deviations in

these cases (see Figure 1). The bias in the HETOP ICC estimates does not appear

to depend on the true CV but is modestly larger when the true ICC is larger.

When CV ¼ 0, the HETOP and HOMOP estimates are similarly biased in most

cases, though the bias is slightly lower in the HOMOP model when the cut scores

are skewed or wide. When the data are heteroskedastic (CV ¼ 0.3), the HOMOP
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ICC estimates are biased even when n ¼ 400, due to the misspecification of the

model. In all cases, the bias is largest when cut scores are skewed or wide.

Overall, however, the bias in ICCs is relatively small, generally less than 0.01

unless n ¼ 25 or the cut scores are skewed.

2.2.4 Accuracy of standard errors. The accuracy of the standard errors in the

simulations was similar across ICC and CV conditions. For parsimony and to

limit sampling variability, Table 1 shows the standard error ratios and CI

coverage rates averaged across the four combinations of ICC (0.05 and 0.20)

and CV (0.0 and 0.3) conditions. Table 1 indicates that estimated standard

errors and CIs for all three parameters were accurate with moderate and large

sample sizes (n ¼ 100 or more), but less accurate with smaller sample sizes.

Standard errors and CIs were least accurate with small sample sizes when cut

scores were widely spaced. In such cases, the approximations used to derive

the standard error formulas (Appendix B) appear to break down.

TABLE 1.

Ratio of Median Estimated Standard Error to Empirical Standard Error and 95% Confidence

Interval Coverage for HETOP Estimates by Parameter, Sample Size, and Cut Scores

Group Mean

Group Standard

Deviation ICC

Sample

Size Cut Scores Ratio Coverage Ratio Coverage Ratio Coverage

25 Skewed (05/30/55) 0.923 0.943 0.865 0.892 0.914 0.975

Mid (20/50/80) 0.944 0.945 0.887 0.906 1.133 0.942

Wide (05/50/95) 1.608 0.983 1.881 0.995 3.251 0.994

Many (05/25/50/75/95) 0.965 0.936 0.933 0.927 1.073 0.897

50 Skewed (05/30/55) 0.954 0.946 0.930 0.920 1.084 0.933

Mid (20/50/80) 0.973 0.948 0.944 0.929 1.084 0.940

Wide (05/50/95) 1.043 0.957 0.923 0.965 1.476 0.943

Many (05/25/50/75/95) 0.982 0.943 0.967 0.939 1.044 0.925

100 Skewed (05/30/55) 0.974 0.947 0.964 0.935 1.053 0.924

Mid (20/50/80) 0.984 0.948 0.972 0.940 1.019 0.933

Wide (05/50/95) 0.996 0.948 0.957 0.951 1.093 0.929

Many (05/25/50/75/95) 0.990 0.946 0.983 0.945 1.019 0.932

400 Skewed (05/30/55) 0.995 0.949 0.992 0.946 0.995 0.935

Mid (20/50/80) 0.999 0.950 0.993 0.948 0.995 0.944

Wide (05/50/95) 0.998 0.949 0.993 0.949 1.006 0.946

Many (05/25/50/75/95) 1.000 0.949 0.996 0.948 0.997 0.944

Note. ICC ¼ intraclass correlation coefficient; Ratio ¼ ratio of median estimated standard error to

empirical standard error; Coverage ¼ confidence interval coverage rate of an estimated 95%

confidence interval; HETOP ¼ heteroskedastic ordered probit model.
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2.2.5 Efficiency of estimators. Figure 4 presents the average efficiency ratio

across all 100 groups for each condition when using the HETOP model. The top

panel shows average efficiency ratios for estimated means while the bottom

panel shows the average efficiency ratios for the standard deviations; each panel

represents a different ICC and CV condition while each line represents a different

cut score condition. For the means, the loss of efficiency is moderate and depends

primarily on the cut score locations, with the greatest loss of efficiency when the

cut scores are skewed. Within any combination of cut scores, CV, and ICC, the

relative loss of precision is largest when samples are small. The average effi-

ciency ratio for estimated means across all groups and conditions is 1.36, ranging

from a minimum of 1.06 (in the case where there are many cut scores, a CV of

0.3, an ICC of 0.05, and n ¼ 400) to a maximum of 2.49 (in the case where the

cut scores are skewed, the CV is 0.3, the ICC is 0.20, and n ¼ 25). This indicates

that in some conditions, the coarsening of the data results in very little loss of

precision, while in others (very small group sizes and skewed cut scores) the loss

of precision is more substantial.

The efficiency loss with respect to estimating group standard deviations

is larger than when estimating means, but again, the efficiency ratio varies

considerably depending on cut score locations and sample size. The

skewed cut score condition is consistently the least efficient, and the many
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cut scores condition is consistently the most efficient, with average effi-

ciency ratios of 3.53 and 1.37, respectively, averaging across all CVs,

ICCs, and group sizes. The efficiency ratio in the wide cut score condition

appears to be most dependent upon group sample sizes: When group sam-

ple sizes are 25, the average efficiency ratios range from 3.12 to 3.93

across the ICC and CV conditions; they are half as large (1.60–1.82) when

sample sizes are 400.

2.3 PHOP Model Simulation Conditions and Procedure

When the data are truly homoskedastic, the simulation results in Section 2.2

show that an HOMOP model with all group standard deviations constrained to

equality performs better than a fully heteroskedastic model. However, the results

also suggest that in some truly heteroskedastic cases with small sample sizes, the

HOMOP model may be preferable, as reductions in RMSE could outweigh

increases in bias for group standard deviation estimates. In the simulations above,

however, all groups in a given simulation scenario had the same sample sizes, a

condition that may not often hold in practice.

Anticipating contexts in which sample sizes across groups differ, we eval-

uate the performance of a PHOP model in which standard deviation estimates

for small groups are constrained to equality while those for large groups are

freely estimated. Because the efficiency/bias trade-off implicit in constraining

group standard deviations will depend on how much true variation in standard

deviations there is, we conduct these simulations in populations with different

degrees of heteroskedasticity (CV).

We follow the same general simulation methodology as outlined in Section

2.1, but with the following modifications. We generate data from five popula-

tions, each with ICC ¼ 0.20, and one of five different CVs of group variances

(0.0, 0.1, 0.2, 0.3, or 0.4). Each population contains 36 group types whose means

and standard deviations are bivariate uniformly distributed with values set to

produce the defined ICC and CV. For each group type, we draw seven random

samples of sizes n¼ 25, 50, 75, 100, 150, 200, and 400 from normal distributions

defined by each of the 36 group mean/standard deviation values. This yields 7 �
36 ¼ 252 groups, one of each combination of mean, standard deviation, and

sample size. We then coarsen these scores four separate times, using the same cut

scores described above (i.e., the ‘‘mid,’’ ‘‘many,’’ ‘‘skewed,’’ and ‘‘wide’’ con-

ditions). For each coarsened sample, we then fit eight different models: the

HETOP and HOMOP models as well as PHOP models where groups with sample

sizes less than or equal to 25, 50, 75, 100, 150, or 200 were all constrained to be

equal. We repeated this process for 1,000 replications. We used the constraints

P bM0 ¼ 0 and PbΓ0 ¼ 0 to identify the model. The ML algorithm converged in all

40,000 replications using the ‘‘many’’ cuts cores and failed to converge in 9, 13,
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and 271 of the 40,000 replications using the ‘‘mid,’’ ‘‘skewed,’’ and ‘‘wide’’ cut

scores, respectively.

2.4 PHOP Model Simulation Results

In general, results for the bias, RMSE, and standard errors were similar for the

overlapping HETOP and HOMOP conditions here and in Section 2.2, suggesting

that the conclusions above remain largely unchanged for conditions with groups

of varying sample sizes. However, in some cases, there was less bias in HETOP

standard deviation estimates for groups with small sample sizes in the simula-

tions with a range of group sizes. This may result from the fact that the overall

standard deviation (ŝ0) is more accurately estimated when there are some groups

with large sample sizes, so that less bias is introduced when we divide by this

estimated standard deviation to obtain the ŝ� estimates. For the PHOP models,

the accuracy of the estimated standard errors was very good: The ratio of median

estimated to empirical standard errors was close to 1 in all cases.

Our primary motivation for testing the PHOP models was to assess whether

they reduce the aggregate RMSE of group standard deviation estimates.
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Estimating a single pooled standard deviation estimate across small groups will

yield more precise (but potentially biased) estimates of small groups’ group stan-

dard deviations; if the increase in bias is outweighed by the reduction in error, the

PHOP model may be preferred. Hence, our discussion of the results in this section

focuses on the RMSE of the standard deviations of groups of various sizes.

Figure 5 displays the RMSE of group standard deviation estimates for differ-

ent PHOP models in the condition in which CV ¼ 0.2 and data were coarsened

with the ‘‘mid’’ cut scores. Each panel of the figure displays the aggregate RMSE

of standard deviation estimates for a different PHOP model (e.g., PHOP25 is a

model in which group standard deviations are constrained to equality for groups

with n � 25); each panel also includes results for the HOMOP (dotted line) and

HETOP (dashed line) models, which are the same across panels, as they are not

affected by the sample size threshold used in the PHOP model. We show RMSE

disaggregated by group size here (unlike in Figure 1) because the PHOP model

treats groups of different sizes differently by design. Figure 5 shows that the

RMSEs of constrained group standard deviation estimates in the PHOP model

are nearly identical to HOMOP model RMSEs while the unconstrained group

standard deviation estimates are nearly identical to the HETOP RMSEs. The
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pattern of constrained and unconstrained group RMSEs tracking the HOMOP

and HETOP model results was consistent across CV values (not shown).

Figure 5 suggests there will be an optimal sample size threshold at which to

constrain standard deviation estimates to minimize the overall RMSE. Figure 6

displays information useful for determining such a threshold for each CV-by-cut

scores condition. Each panel of Figure 6 shows RMSE of group standard devia-

tions (aggregated across all sample sizes) for each model type and each CV

condition. The upper left panel, for example, shows the results for the ‘‘many’’

cut score condition and includes a line for each CV condition. For a given CV and

cut score condition, an optimal threshold can be identified by finding the model

that minimizes RMSE for the corresponding line. When the true CV is 0, the

HOMOP model minimizes RMSE in all conditions. When the true CV is 0.2, the

optimal models (among those we tried) would be PHOP50, PHOP100, PHOP75,

and PHOP150 for the many, mid, wide, and skewed cut score conditions, respec-

tively. Although these results do not cover all possible combinations of ICC, CV,

and cut score locations, they are suggestive about the conditions under which a

PHOP model would minimize the RMSE of group standard deviation estimates.

In analysis of real data, analysts will know the location of the cut scores, the

number of groups, and the group sizes; they may also have information about the

range of plausible values of the ICC and CV. These could be used to conduct

customized simulations of the type we show here to make an informed decision

about the optimal HETOP/PHOP/HOMOP model to select to minimize RMSE, if

that is their goal.

2.5 Summary of Simulation Analyses

These simulations demonstrate that the HETOP model works well when the

model matches the data generating process. Unbiased and precise recovery of

standard deviations generally requires group sizes of 100 or more. Figure 1

suggests that in some cases where sample sizes are small, a homoskedastic model

may produce more efficient (although biased) standard deviation estimates even

if the data are truly heteroskedastic. The results in Section 2.4 suggest that using a

PHOP model, which constrains small groups to have equal standard deviation

estimates, improved the efficiency of standard deviation estimates with only a

relatively small increase in average bias, thus reducing the RMSE. Although the

optimal group size at which to constrain the group standard deviations to be equal

is not a priori clear in any given scenario, the results above suggest that the

analyst may be able to make an informed choice to achieve a roughly optimal

model.

3. Application of the HETOP Model to Real Data

The simulations in Section 2 indicate that the HETOP model accurately

recovers means, standard deviations, and ICCs from coarsened data across a
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range of scenarios when sample sizes are moderately large and the group dis-

tributions are normal. This section analyzes 18 sets of real test score data to

investigate whether means and standard deviations can be recovered from real

coarsened test score distributions. To carry out these analyses, we selected data

sets for which we had access to both the coarsened proficiency data and the scale

scores (the uncoarsened, continuous data) for each student: 10 data sets from a

midsize state’s testing program and eight data sets from the state NAEP admin-

istrations in 2009 and 2011. In effect, these analyses assess whether the actual

test score distributions in these 18 cases satisfy the respective normality assump-

tion of the HETOP model.

3.1 Data

The first eight data sets contained student-level records for the 2009 and 2011

Grades 4 and 8 Main NAEP mathematics and reading administrations, with each

data set containing scores for a single year-by-grade-by-subject combination

(e.g., 2009 Grade 4 math scores constitute one data set). The groups in these

data sets were states, and the aim was to estimate the means and standard

deviations of state test score distributions with the HETOP model. Hence, there

were 50 groups in each of the NAEP data sets, with a median group (state)

sample size of 3,050 across all eight data sets.8

The other 10 data sets consist of mathematics and reading test scores from a

medium-sized state for a cross section of approximately 90,000 students in

Grades 4 through 8 during the 2005–2006 school year. Each data set contained

student-level scores from a single grade-by-subject combination, with scores

grouped at the school level, so that the target estimates of interest were the school

means and standard deviations of test scores for given grade levels. Across the 10

state data sets, the number of groups (schools) ranged from 428 to 1,244 and the

median group (grade within school) sample size ranged from 70 to 194. Both the

NAEP and State testing programs use three unique cut scores in each grade and

subject level to classify students into one of the four ordered proficiency cate-

gories. Online Appendix Table D1 (available in the online version of the journal)

provides detailed descriptive information about the 18 data sets.

3.2 Comparison of HETOP and Uncoarsened Estimates

If the test scores in these 18 data sets are respectively normal, and if the group

sample sizes are large and the cut scores are well placed, the HETOP model

should return precise, unbiased estimates of the group means and standard devia-

tions in the continuous metric of y�, as our simulation suggests. If, additionally,

the function relating the reported scale scores to the metric in which the distribu-

tions are normal is linear, then group means and standard deviations based on the

student-level scale scores should be perfectly correlated (within the limits of

sampling variability), with the group means and standard deviations based on
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fitting the HETOP model to the coarsened proficiency data. This suggests we

could examine the correlation between HETOP estimates and estimates based on

observed scale scores to assess the extent to which the empirical test score

distributions satisfy the respective normality assumption of the model.

An imperfect correlation, however, not only might result from a failure of

respective normality but also might arise if (a) the function f is not linear or (b)

the estimates are imprecise because sample sizes are not large or the cut scores

are not sufficiently informative. The first condition will lead to a nonlinear

association between the two sets of estimates. The second will produce a noisy

association. To assess the respective normality assumption in real test score data,

then, we must determine whether the less-than-perfect correlation between the

HETOP estimates and the estimates based on the observed scale scores can be

explained by the error that comes from coarsening and/or the nonlinearity of f.

We describe our approach to doing this below. To the extent that these factors do

not explain an observed correlation less than one, the test score distributions are

not respectively normal.

First, we estimated group means and standard deviations based on the original

student-level scale scores, using traditional estimators of means and standard

deviations. We refer to these as the ‘‘original’’ scale score estimates. Second,

to model the data that researchers may be limited to in practice, we coarsened the

scale scores according to the operational NAEP and State cut scores. We then

used the HETOP model to estimate means and standard deviations based on the

coarsened frequency counts. We refer to these as the ‘‘H4’’ estimates because

they are based on four proficiency categories. The correlation between these two

sets of estimates will be degraded by imprecision due to the coarsening and by

any nonlinearity in f.

Third, to generate HETOP estimates less affected by loss of information due

to coarsening, we coarsened each data set a second time, using 19 equal-interval

cut scores that classified students into 20 ‘‘proficiency’’ categories (instead of 4).

We then estimated means and standard deviations for each group with a HETOP

model using the 20 observed frequencies for each group. We refer to these as

‘‘H20’’ estimates, because they are based on 20 proficiency categories.9

Finally, we estimate a function f
�

that, when applied to the observed student-

level scale scores simultaneously, renders all of the within-group distributions as

nearly normal as possible. We estimate f
�

from the mapping between the 19 cut

scores estimated from the H20 model (i.e., ĉ�1, ĉ�2, . . . , ĉ�19) and their correspond-

ing values on the reported score scale (c1; . . . ; c19). We estimate a monotonic

function that goes through these 19 points (so that f̂
�ðcÞ ¼ ĉ�); this function will

closely approximate a function that renders the within-group distributions as

nearly normal as possible. We then apply this transformation to the observed

student-level scale scores, resulting in transformed scores, ŷ�, for each student. If

test scores are respectively normal, this transformation should render the group
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score distributions normal; the group means and standard deviations of ŷ� will be

linearly related, within sampling variability, to those estimated from the HETOP

model applied to coarsened data. We refer to group means and standard devia-

tions based on these normalized ŷ� scores as ‘‘transformed’’ estimates. The

procedure used to estimate f
�

is described in Online Appendix E (available in

the online version of the journal).

We calculated Pearson correlations between these four sets of estimates for

each of the 18 data sets. These correlations are summarized in Table 2, which

presents the average, minimum, and maximum correlation among the estimates

for the NAEP and State data sets separately (correlations for each of the 18 data

sets are in Online Appendix Table D2 [available in the online version of the

journal]). Column 1, for example, summarizes correlations between means esti-

mated based on the H4 and uncoarsened original scale scores, while column 5

summarizes the corresponding correlations between the standard deviation

estimates.

As mentioned above, these correlations may be less than 1.0 even if score

distributions are respectively normal. If the test score data are respectively nor-

mal, however, then we expect the correlations in columns 2 and 6 to be near 1.0,

because these correlations are based on estimates that adjust for a lack of normal-

ity of the reported scale score metric (transformed) and the error due to coarsen-

ing into only four categories. Indeed, the average correlations between these

estimates are uniformly near 1 for all data sets (the lowest correlation across

TABLE 2.

Average, Minimum, and Maximum Correlations Between HETOP Estimates and

Uncoarsened Score Estimates

Means Standard Deviations

(1) (2) (3) (4) (5) (6) (7) (8)

Estimate 1: H4 H20 Orig. H4 H4 H20 Orig. H4

Estimate 2: Orig. Trans. Trans. Trans. Orig. Trans. Trans. Trans.

NAEP Average .995 1.000 .999 .996 .851 .995 .955 .910

Minimum .988 1.000 .998 .992 .738 .992 .929 .831

Maximum .998 1.000 1.000 .998 .923 .998 .978 .967

State Average .973 1.000 .999 .973 .779 .987 .932 .759

Minimum .941 .999 .998 .941 .667 .979 .835 .626

Maximum .991 1.000 1.000 .992 .866 .995 .990 .864

Note. H4 ¼ heteroskedastic ordered probit model with 4 proficiency categories as defined by testing

program; H20 ¼ heteroskedastic ordered probit model with 20 categories defined by 19 equally

spaced cut scores; Orig. ¼ original score scale metric; Trans. ¼ transformed score scale metric;

HETOP ¼ heteroskedastic ordered probit model.
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both columns 2 and 6 is 0.979), suggesting both that the data are respectively

normal and that the H20 model accurately recovers the group means and standard

deviations in the y� metric.

To evaluate whether the original scale scores are reported in the metric in

which they are normal in each group, we examine two sets of results. First, we

inspect the correlations between the original and transformed estimate in col-

umns 3 and 7. If the original test score data were reported in the normal metric,

we would expect these correlations to be close to 1, because f̂
�

would be linear.

Second, we plot the function f̂
�

in each case to examine its linearity directly. The

correlations are near 1 for the means, but lower (as low as 0.83 in one case) for

the standard deviations. The plots of f̂
�

(in Online Appendix Figure E1 [available

in the online version of the journal]) show very slight nonlinearity in most cases.

Both of these patterns indicate that while the original test score scales are gen-

erally not one in which the distributions are as near to normal as possible, the

original scales are not very different from such a scale. The modest departure

from normality appears to cause more discrepancy in the estimated standard

deviations (average correlations of .955 and .932 for NAEP and State) than in

the estimated means (average correlations of .999 for both the NAEP and State

scales).

Finally, it is useful to compare columns 2 and 4 and columns 6 and 8; this

comparison indicates the extent to which coarsening into 4 rather than 20 cate-

gories reduces the precision of the estimated means and standard deviations. The

correlations between the H20 and transformed estimates of means (column 2) are

generally only modestly larger than those between the H4 and the transformed

estimates (column 4). In the case of the estimated standard deviations, however,

coarsening substantially degrades precision: The correlations in column 8 are

much lower than in column 6. This is consistent with our simulation results,

showing that the HETOP model more reliably estimates group means than stan-

dard deviations, particularly when group sizes are small and cut scores are not

optimally located, as is the case in the State data sets.

These analyses suggest the assumption of respective normality of test score

distributions is reasonable in the data sets we examined, which include both

school-level and state-level groups. Moreover, the reported scale scores in these

data sets appear to be in a metric that is very close to the latent metric in which

the means and standard deviations are estimated by the HETOP model. This may

not be true for all empirical test score distributions, of course; it would be useful

to test in other cases where continuous scores are available.

4. Discussion

This article introduces a method for estimating the means and standard devia-

tions of continuous test score distributions in multiple groups using only
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coarsened proficiency data. Through simulations and real data analyses, we

demonstrate that accurate estimation of means and standard deviations of test

score distributions for multiple groups (states, districts, schools, etc.) is possible

under a wide range of scenarios, with modest loss of efficiency, particularly

when sample sizes are larger than 50 and when the cut scores are not highly

skewed. The analyses also showed that estimates of secondary statistics such as

the ICC can be recovered accurately, with slight positive bias when group sizes

are small. While estimates of group standard deviations were accurate across all

conditions with larger sample sizes, there was evidence of small negative bias in

some conditions with smaller sample sizes, particularly when the location of cut

scores used to coarsen the data are unequally and/or unevenly spaced, thus

providing relatively little information about the original distributions. The bias

was very small when group sample sizes were 100, and modestly larger with

small samples of size 25, though the average bias was never sizable compared to

the true standard deviations or the sampling variance of the estimates. Our

analyses of real test score data sets suggest the primary assumption of respective

normality is reasonable for these particular test scores and likely those developed

under similar conditions. Further simulation studies to evaluate the methodology

across a wider range of conditions, including those where data are not respec-

tively normal, would be a useful extension to this work.

The simulation results and real data analyses suggest a few common consid-

erations for researchers to attend to when applying the HETOP model in practice.

First, because the quality and reliability of HETOP estimates (particularly for

group standard deviations) depend primarily on group sample sizes and cut score

locations, an inspection of the overall proportion of students within each profi-

ciency category and the proportion of groups with zero observations in one or

more categories can be useful indicators of potential problems. Other indicators

include models that will not converge, are slow to converge, or converge but

produce abnormally large standard errors. In these cases, our simulations and

other work with real test score data suggest a PHOP model is a good way to

overcome some data limitations and is generally preferable to a HOMOP model

unless the assumption of homoskedasticity is defensible.

In fitting the PHOP model, the analyst must determine a sample size thresh-

old below which to impose the homoskedasticity constraint. This choice can

be guided by knowledge of the cut score locations, the number and size of

groups, and prior research that provides information about plausible values of

the ICC and CV. When the CV of group variances is approximately 0.2

(roughly the average value observed in the data we analyzed), constraining

the standard deviations of groups smaller than 100 is generally near optimal in

our simulations. Of course, RMSE need not be the only criterion used to

determine the best model. For analysts who are less willing to tolerate bias

than error variance, a smaller constraint threshold would be preferable and

vice versa. In addition, if group means are of primary interest, the choice of a
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PHOP model will matter little; if standard deviations are of interest, the bias-

precision trade-off is more salient. Further development of practical model fit

statistics and diagnostics that can inform PHOP model selection is an impor-

tant direction for future research.

One benefit of the PHOP model is that it improves estimation for small

groups, particularly when cut score locations are suboptimal. The challenges for

estimation posed by small sample sizes or extreme cut scores could also be

addressed with alternative estimation strategies or frameworks, such as Bayesian

or random-effects models. It is possible to estimate a mixed-effects HETOP

model (see, e.g., Gu, Fiebig, Cripps, & Kohn, 2009; Hedeker, Demirtas, &

Mermelstein, 2009) from which one could obtain shrunken estimates of group

means and standard deviations. These Bayesian estimates would have smaller

RMSE than our ML estimates but would also contain more bias. The decision of

whether to prefer more-biased, lower RMSE shrunken estimates over less-biased,

higher RMSE ML estimates depends on how one wants to use the resulting

estimates. If the estimates will be used as outcome variables in subsequent

models or as descriptive statistics, the (less biased) ML estimates may be pre-

ferable to the (more biased) shrunken estimates. If the estimates will be used as

predictor variables in subsequent models, however, the shrunken estimates may

be preferable (although in this case they should, in principle, be shrunken to their

mean conditional on the other covariates to be used in the model). Shear, Cas-

tellano, and Lockwood (2016) present some preliminary comparisons of these

two approaches in the context of coarsened test score data, but additional work

exploring the potential benefits of Bayesian HETOP models would be very

useful.

In our discussion here, we have ignored the potential effects of measurement

error. If we think of the continuous scores in the y metric as containing measure-

ment error, then the key assumption of the HETOP model is that the observed,

error-prone test score distributions are respectively normal. Given this assump-

tion, estimation proceeds as we describe it above, and the resulting estimates are

understood as means and standard deviations of the error-prone scores in the y�

metric. To recover means and standard deviations of true scores in the y� metric,

one would need information about the reliability of the test scores in that metric.

Although this is not identical to the reliability of scores in the metric y (the metric

reported by test score developers) unless the function f is linear, Reardon and Ho

(2015) show that using published reliabilities to adjust group means and standard

deviations on a transformed scale generally produces only trivial bias, given that

widely used standardized tests typically have high reliability. When reliability is

high, distortions of measurement error due to the transformation function f are

trivial unless f is extremely nonlinear. As a result, standard measurement error

adjustments, based on published reliabilities of scores in the y metric, can be
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made to yield estimates of groups’ true test score means and standard deviations

in the y� metric.

Finally, as mentioned above, these methods are applicable whenever data can

be conceptualized as coarsened: the result of some form of polychotomization,

censoring, binning, or rounding. In the case of aggregate proficiency data, such

as that contained in the EDFacts database, such a model is clearly applicable, and

our results show that the HETOP model can provide estimates of means and

standard deviations that can overcome some of the limitations with such data as

described by Ho (2008) and others. In the case of AP exams, where scores are

only reported on a 1 to 5 ordinal scale, one might still presume the existence of a

continuous underlying variable of which the observed scores are a coarsened

version. In such cases, our methods provide a way to estimate the distributions of

this underlying continuous variable in multiple groups. Ordinal data of many

kinds—from Likert-type scale survey data to Apgar scores and from discrete

levels of educational attainment to demographic age or income bins—can be

thought of as representing coarsened versions of latent continuous variables. In

many of these cases, the methods described here could be usefully applied to

estimate moments of group distributions.

Appendix A

Estimating the Total Between- and Within-Group Variances

Given bM0 and bΓ0 , we wish to estimate the within- and between-group variance of

y. As noted in the text, we assume throughout this article that the population

consists of a finite number of groups (g ¼ 1, . . . , G), all of which are observed.

As above, P is the 1� G vector of group population proportions (the pg’s). We

observe a sample of size ng from each group, where ng may or may not be

proportional to pg. Without loss of generality, we assume the model is fit subject

to the constraints that PM0 ¼ 0 and PΓ 0 ¼ 0. If it is not, we transform the

estimates to obtain bM0 and bΣ0 in this metric, as described in Online Appendix

A (available in the online version of the journal).

The between-group and within-group variances are defined as:

s02B ¼ PM02

s02W ¼ PΣ02: ðA1Þ

We can compute (biased) estimates of these using their sample analogs,

P bM02 and PbΣ02. Below we derive the expected values of these estimators to

assess their bias. We use the results of these derivations to obtain approximately

unbiased estimators.
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Estimating s02W

Let wg be the error in ĝg : ĝg ¼ gg þ ŵg. Let �
0

be the sampling variance–

covariance matrix of the g0g’s. The diagonal elements of this are the squared

sampling variances (the o2
g’s). Then:

E½PbΣ°2� ¼ E
hX

g
pgŝ

2
g

i
¼
X

g
E½pge2ĝg �

¼
X

g
E½pge2ðggþŵgÞ�

¼
X

g
E½pge2gg e2ŵg �

¼
X

g
ðpgs2

gÞE½e2ŵg �

	
X

g
ðpgs2

gÞE½1þ 2ŵg þ 2ŵ2
g �

¼
X

g
ðpgs2

gÞð1þ 2o2
g Þ

¼ PΣ°2 � ð1þ 2o2
g Þ þ 2GCovðpgs2

g ;o
2
gÞ;

ðA2Þ

where o2
g ¼ 1

G
1 � vecdiagð�0Þ is the average sampling variance of the ĝ0g’s.

Under the assumption that Covðpgs2
g ;o

2
gÞ 	 0, we have

E½PbΣ°2� 	 PΣ°2 � ð1þ 2o2
g Þ: ðA3Þ

Therefore, we can compute an approximately unbiased estimate of ŝ02W as

ŝ02W ¼
PbΣ°2

1þ 2o2
g

: ðA4Þ

Equation A4 requires an estimate of o2
g , the average sampling variance of the

ĝg’s, which can be obtained from the estimated sampling covariance matrix of the ĝg’s

co2
g ¼

1

G
1 � vecdiagðb�0Þ: ðA5Þ

However, b�0 is prone to sampling variance (i.e., the estimated sampling var-

iances of the gg’s themselves have sampling variances). Our simulations show that

when n is small, the sampling variance of the elements of b�0 can be very large, because

the sparse coarsened data provide little information from which to estimate the sam-

pling variances. As a result E 1
G

1 � vecdiagð b�0Þh i
� 1

G
1 � vecdiagð�0Þ in such cases.
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An alternate method of estimating o2
g is to derive an approximate formula

based on group sample sizes. To do so, let ûg be the error in ŝ2
g : ŝ2

g ¼ s2
g þ ûg. If

a population variance s2 is estimated from a sample of size n (using data that

have not been coarsened), the sampling variance of ŝ2 is approximately 2s4

n�1

(Casella & Berger, 2002; Neter, Wasserman, & Kutner, 1990). Note that, for a

normally distributed variable X with mean 0 and standard deviation s,

VarðX þ X 2Þ 	 s2 þ 2s4. We then have

ŝ2
g ¼ s2

g þ ûg

e2ĝg ¼ e2gg þ ûg

e2gg e2ŵg ¼ e2gg þ ûg

e2gg ðe2ŵg � 1Þ ¼ ûg

e2gg ð1þ 2ŵg þ 2ŵ2
g � 1Þ 	 ûg

2e2gg ðŵg þ ŵ2
gÞ ¼ ûg

Var
�

2e2gg ðŵg þ ŵ2
gÞ
�
¼ VarðûgÞ

4e4gg varðŵg þ ŵ2
gÞ ¼ VarðûgÞ

4s4
g ½o2

g þ 2o4
g � 	

2s4
g

ng � 1

o2
g þ 2o4

g ¼
1

2ðng � 1Þ :

ðA6Þ

Applying the quadratic formula to solve for o2
g yields one positive root:

o2
g ¼ �

1

4
þ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

ng � 1

s

	 � 1

4
þ 1

4
1þ 2

ng � 1

0@ 1A
¼ 1

2ðng � 1Þ ;

ðA7Þ

where the approximation holds if ng is even moderately large.

Given Equation A7, we have

o2
g 	

1

G

X
g

1

2ðng � 1Þ ¼
1

2~n
ðA8Þ

where ~n is the harmonic mean of ng � 1 : ~n ¼ 1
G

P
g

1
ng�1

� ��1

.

Note that Equation A8 is based on a formula for the sampling variance of a

population variance based on uncoarsened data. When the data are coarsened, the
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sampling variability of ŝ02g will certainly be larger than that given by the formula

used above
2s04g
ng�1

� �
, but the difference may not be large. For example, suppose the

true sampling variance of s02g were
2css04g
ng�1

, where cs 
 1, then using the approx-

imation in Equation A8 in Equation A4 will inflate our estimate of ŝ02W by a factor

of ~nþcs

~nþ1
. Unless cs is large in relation to ~n, the difference will be trivial.

The approximation in Equation A8 needs to be modified when using either

the HOMOP or PHOP (rather than the HETOP) model. When we fit the HOMOP

model, the sampling variance in the estimate of the ĝg’s will be smaller, because

the estimate is based on the pooled sample of all groups. In this case, o2
g might be

well estimated by Equation A5. Alternately, because the effective sample size for

estimating o2
g is N , and we lose a degree of freedom in estimating each group’s

mean, Equation A8 can be replaced by

o2
g 	

1

2ðN � GÞ : ðA9Þ

In the PHOP model, the average sampling variance of the gg’s can be

approximated as

o2
g 	

1

G

X
g

1

2ð�ng � 1Þ ; ðA10Þ

where �ng ¼ ng if group g’s standard deviation is not constrained, and

�ng ¼
P

g2C
ðng � 1Þ if group g 2 C, where C is the set of constrained groups.

When estimating ŝ02W , we substitute Equations A8, A9, or A10 into Equa-

tion A4 depending upon which model was fit.

Estimating s02B

To compute the expected value of P bM0°2, first note that estimating the variance

of the group means involves error in the overall mean and the individual group

means. The estimate of each group’s mean has two sources of error in it:

m̂0g ¼ m0g � û0 þ ê0g, where û0 ¼
P

pgê0g and ê0g ¼ m̂0g � m0g. Then

E½P bM0°2� ¼ E½PðM0 � bu0 þ be0Þ°2�
¼ E½PM0°2 � 2Pðbu0°be0 Þ þ Pbu0°2 þ Pbe0°2�
¼ PM0°2 � 2PE½bu0°be0 � þ PE½bu0 °2� þ PE½be0°2�
¼ PM0°2 � PV0Pt þ P � vecdiagðV0Þ;

ðA11Þ
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where vecdiagðV0Þ is the G � 1 matrix of sampling variances of the means (the

diagonal of V0). So we can compute an unbiased estimate of ŝ02B as

ŝ02B ¼ P bM0°2 þ PV0Pt � P � vecdiagðV0Þ: ðA12Þ

Equation A12 requires an estimate of V0, the variance–covariance matrix

of the vector of estimated group means, bM0 . One estimate of this is the esti-

mated matrix bV0 . However, like b�0 above, bV0 is prone to sampling variance

(i.e., the estimated sampling variances of the m̂g’s themselves have sampling

variances). Our simulations show that when n is small, the sampling variance of

the elements of bV0 can be very large, because the sparse coarsened data provide

little information from which to estimate the sampling variances. As a result

E½P � vecdiagðbV0 Þ� � P � vecdiagðV0Þ in such cases.

An alternate method of estimating bV0 is to derive an approximate formula

for its diagonal elements based on group sample sizes. We begin by assuming

that the off-diagonal elements of V0 are approximately 0 (they will not be exactly

0, because the estimated means are dependent on one another, since all are

estimated simultaneously and constrained to satisfy P bM0 ¼ 0, but they will be

close to zero when G and n are moderately large). We then assume the sampling

variance of m is given by the standard formula (based on uncoarsened data) for

the sampling variance of a mean: varðm̂Þ ¼ s2

n
. Then the diagonal elements of V0

will be vgg ¼
s02g
ng

. Substituting this matrix into Equation A12, we get

ŝ02B ¼ P bM0°2 þ PV0Pt � P � vecdiagðV0Þ
¼ P bM0°2 þ ðP°2 � PÞ � vecdiagðV0Þ

¼ P bM0°2 þ
P
g

ðp2
g � pgÞ

s02g
ng

¼ P bM0°2 þ
�

n°�1
° ðP°2 � PÞ

�
Σ0°2

¼ P bM0°2 þ

�
n°�1 ° ðP°2 � PÞ

�bΣ0°2

1þ 2
co2

g

¼ P bM0°2 þ

�
n°�1 ° ðP°2 � PÞ

�bΣ0°2

1þ 2
co2

g

;

ðA13Þ

where we substitute in the approximations of o2
g from Equations A8, A9, or A10

as appropriate.

Again, if the sampling variance of the m̂0g estimates is greater than they would

be if the data were not coarsened, then it may be more appropriate to substitute
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vgg ¼ cm
s02g
ng

into Equation A12 above, where cm 
 1 is a constant. Then if we also

use cs as above in the formula estimating Σ0°2
, Equation A13 becomes

ŝ02B ¼ P bM0 °2 þ cm

1þ cs2
co2

g

�
n°�1

° ðP°2 � PÞ
�bΣ0 °2

: ðA14Þ

Given that
�

n°�1 ° ðP°2 � PÞ
�bΣ0°2

will be small when the elements of n are

modestly large, however, setting cm ¼ 1 has very little effect of the estimate of ŝ02B .

Estimating the Population Standard Deviation, s0

Given estimates of s02W and s02B from Equations A4 and A13, we compute

ŝ0 ¼ ðs02W þ s02B Þ
1

2

¼ P bM0°2 þ n°�1 ° ðP°2 � PÞbΣ0°2

1þ 2
co2

g

þ PbΣ0°2

1þ 2
co2

g

0B@
1CA

1

2

¼ P bM0°2 þ

�
n°�1 ° ðPþ n� 1Þ ° P

�bΣ0°2

1þ 2
co2

g

0B@
1CA

1

2

¼
�

P bM0°2 þQbΣ0°2
�1

2

;

ðA15Þ

where

Q ¼

�
n°�1 ° ðPþ n� 1Þ ° P

�
1þ 2

co2
g ;

ðA16Þ

and we again substitute one of the approximations from Equations A8, A9, or

A10 for o2
g depending upon whether a HETOP, HOMOP, or PHOP model is fit.

Appendix B

Computation of Standard Errors of bM� and bΣ�
Once we have constructed bM� and bΣ� via Equation 7, we must estimate the

covariance matrices V� ¼ Covð bM�; bM�Þ, Z� ¼ Covð bM�; bΣ�Þ, and

W� ¼ CovðbΣ�; bΣ�Þ, from which we can obtain standard errors for the parameters

of interest in the model.
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Assuming that E½ bM0 � ¼M0 and E½ŝ0� ¼ s0,10 the g, h element of V� is

v�gh ¼ Covðm̂�g; m̂�hÞ

¼ Cov
m̂0g
ŝ0
;
m̂0h
ŝ0

0@ 1A
	 1

s02
v0gh �

m0g
s03

Covðŝ0; m̂0hÞ �
m0h
s03

Covðm̂0g; ŝ0Þ þ m̂0gm̂
0
hVar

1

s0

0@ 1A
	 1

s02
½v0gh � m�gCovðŝ0; m̂0hÞ � m�hCovðm̂0g; ŝ0Þ þ m�gm

�
hVarðŝ0Þ�:

ðB1Þ

Now let Ih denote the hth column of the G � G identity matrix. Then

define11

rh ¼ Covðŝ0; m̂0hÞ

¼ 1

2s0
Covðŝ02; m̂0hÞ

¼ 1

2s0
CovðP bM0°2 þQbΣ0°2

; m̂0hÞ

¼ 1

s0
P½diagðM0Þ�V0Ih þ 1

s0
Q½diagðΣ0Þ�Z0tIh:

ðB2Þ

Then define the 1� G vector R, with elements rh, as

R ¼ 1

s0
P½diagðM0Þ�V0 þ 1

s0
Q½diagðΣ0Þ�Z0t

¼ P½diagðM�Þ�V0 þQ½diagðΣ�Þ�Z0t:
ðB3Þ

Now we have

V� 	 1

s02
½V0 � ðM�R þ RtM�tÞ þM�M�tVarðŝ0Þ�: ðB4Þ

Similarly, assuming that E½bΣ0 � ¼ Σ0 and E½ŝ0� ¼ s0, the g, h element of the

covariance matrix W� of the ŝ�g’s is

w�gh ¼ Covðŝ�g; ŝ
�
hÞ

¼ Cov
ŝ0g
ŝ0
;
ŝ0h
ŝ0

0@ 1A
	 1

s02
w0gh �

s0g
s03

Covðŝ0; ŝ0hÞ �
s0h
s03

Covðŝ0g; ŝ0Þ þ ŝ0gŝ
0
hVar

1

s0

0@ 1A
	 1

s02
½w0gh � s�gCovðŝ0; ŝ0hÞ � s�hCovðŝ0g; ŝ0Þ þ s�gs

�
hVarðŝ0Þ�:

ðB5Þ
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Define
th ¼ Covðŝ0; ŝ0hÞ

¼ 1

2s0
Covðŝ02; ŝ0hÞ

¼ 1

2s0
CovðP bM0°2 þQbΣ0°2

; ŝ0hÞ

¼ 1

s0
P½diagðM0Þ�Z0Ih þ 1

s0
Q½diagðΣ0Þ�W0Ih:

ðB6Þ

Then define the 1� G vector T, with elements th, as

T ¼ 1

s0
P½diagðM0Þ�Z0 þ 1

s0
Q½diagðΣ0Þ�W0

¼ P½diagðM�Þ�Z0 þQ½diagðΣ�Þ�W0:

ðB7Þ

We then have

W� 	 1
s02 ½W0 � ðΣ�Tþ TtΣ�tÞ þ Σ�Σ�tVarðŝ0Þ�: (B8)

Finally, the element z�gh of the matrix Z� is

z�gh ¼ Covðm̂�g; ŝ�hÞ

¼ Cov
m̂0g
ŝ0
;
ŝ0h
ŝ0

0@ 1A
	 1

s02
z0gh �

m0g
s03

Covðŝ0; ŝ0hÞ �
s0h
s03

Covðm̂0g; ŝ0Þ þ m̂0gŝ
0
hVar

1

s0

0@ 1A
	 1

s02
½z0gh � m�gCovðŝ0; ŝ0hÞ � s�hCovðm̂0g; ŝ0Þ þ m�gs

�
hVarðŝ0Þ�

¼ 1

s02
½z0gh � m�gth � s�hrg þ m�gs

�
hVarðŝ0Þ�:

ðB9Þ

We then have

Z� 	 1
s02 ½Z

0 � ðM�Tþ RtΣ�tÞ þM�Σ�tVarðŝ0Þ�: (B10)

Equations B4, B8, and B10 require Varðŝ0Þ. Note first, that we can derive12 the

sampling variance of ŝ02 as

Varðŝ02Þ ¼ VarðP bM0°2 þQbΣ0°2Þ
¼ 4P½diagðM0Þ�V0½diagðM0Þ�Pt þ 4Q½diagðΣ0Þ�W0½diagðΣ0Þ�Qt

þ 8P½diagðM0Þ�Z0½diagðΣ0Þ�Qt:

ðB11Þ
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Then, by the Delta method,

Varðŝ0Þ 	 1

4s02
Varðŝ02Þ

	 1

s02
½P½diagðM0Þ�V0½diagðM0Þ�Pt þQ½diagðΣ0Þ�W0½diagðΣ0Þ�Qt

þ 2P½diagðM0Þ�Z0½diagðΣ0Þ�Qt�:

ðB12Þ

We substitute Equation B12 into Equations B4, B8, and B10 to obtain

expressions for V�, W�, and Z�. To estimate V�, W�, and Z�, we replace the

relevant terms in the resulting expressions by their estimated values.
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Notes

1. The V statistic is a transformation-invariant metric quantifying the nonover-

lap between two distributions and is equal to a Cohen’s d standardized mean

difference when both distributions are normal (Ho, 2009).

2. Note that we do not require that pg ¼ ng=N ; that is, the size of the sample in

each group need not be proportional to the group’s share of the population.

3. These specific constraints are not essential; other constraints will identify the

parameters and may be preferable in some settings. The default in many

software programs is to define some group r as the ‘‘reference group’’ and to

constrain m0r ¼ 0 and g0r ¼ 0. These constraints imply that the reference

group has a mean of 0 and a standard deviation of 1, with the means and

standard deviations of the other groups then interpreted relative to group r.
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This is a reasonable default where there is a substantively important refer-

ence group and standardization is not needed. It is not the obvious default

when there is no substantively important reference group and we would like

to estimate each group’s mean and standard deviation relative to the overall

population distribution.

4. If we are using the default constraint of PbΓ 0 ¼ 0, then this together with the

additional homoskedasticity constraint implies the single combined con-

straint ĝ01 ¼ ĝ02 ¼ : : : ¼ ĝ0G ¼ 0.

5. The modified program is a Stata ado-file called -hetop-; it can be downloaded

from within Stata by typing ‘‘sscinstallhetop’’ from the command line.

6. Even in cases where all groups have sufficient data to identify the model

parameters, small sample sizes may slow or impede convergence of the

maximum likelihood algorithm, because the likelihood function may be very

flat over a wide range of the parameter space. In such cases, we have found

that replacing the constraints P bM0 ¼ 0 and PbΓ 0 ¼ 0 with a reference group

constraint (i.e., constrain m̂0r ¼ 0 and ĝ0r ¼ 0 where r indicates a reference

group) sometimes improved the speed of convergence. In such cases, con-

vergence is improved when the reference group is one with a large sample

size and a distribution of frequency counts that is similar to the population

distribution. The speed of convergence can also be improved by providing

the algorithm with feasible starting values, which can be obtained by using

the two-group methods described in Ho and Reardon (2012) to separately

estimate each group’s mean and standard deviation relative to that of the

selected reference group.

7. We used the median rather than the mean estimated standard error to reduce

the impact of extreme standard error estimates, primarily in conditions with

small sample sizes and wide or skewed cut scores.

8. The National Assessment of Educational Progress (NAEP) is administered

to a sample of students in the nation, and special scoring and scaling tech-

niques result in ‘‘plausible values’’ (e.g., Mislevy, Johnson, & Muraki, 1992)

instead of individual scores. For each of the eight year-grade-subject com-

binations in the data set, we had five plausible values for each student. To

generate a data set with a single score for each student that could be used to

compare with HETOP estimates, we created a synthetic data set using the

first set of plausible values for all students. In order to avoid complications

from comparisons using multiple plausible values and sampling weights, we

generated an artificial sample for each state using the following procedure.

We drew a random sample with replacement from the set of nonmissing first

plausible values, with probability of selection proportional to original sam-

pling weights. This created a random sample from a population defined by

the (weighted) observed first plausible values in each state. We sampled Ng

values for each state, where Ng was the original number of unique students

with nonmissing data in state g. Using NAEP’s actual proficiency cut scores
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for each subject/grade combination, we calculated the number of students in

the synthetic sample scoring in each proficiency category.

9. We could have used more than 20 categories, but given the finite number of

possible scale scores and size of the groups, additional categories add van-

ishingly little additional information.

10. Even under the assumption that the HETOP estimator provides unbiased

estimates of M0 and Σ0, the assumption that E½ŝ0� ¼ s0 is not strictly valid,

given nonlinearities in Equations 9 and 10, but is a good approximation

in practice.

11. Note that Q in these formulas depends upon whether a HETOP, HOMOP, or

PHOP model is being used, as defined in Equation A16.

12. Note that if A and B are 1� G scalar vectors, D and E are G � G scalar

matrices, and bX and bY are G � 1 column vectors of random variables, then

CovðA½DbX�°2
;B½EbY�°2Þ 	 4A½diagðXÞ�½DtD�C½EEt�½diagðYÞ�Bt;where C is

the G � G covariance matrix of bX and bY.
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