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Abstract

We propose to use high-level visual information to im-

prove illuminant estimation. Several illuminant estimation

approaches are applied to compute a set of possible illu-

minants. For each of them an illuminant color corrected

image is evaluated on the likelihood of its semantic content:

is the grass green, the road grey, and the sky blue, in cor-

respondence with our prior knowledge of the world. The

illuminant resulting in the most likely semantic composition

of the image is selected as the illuminant color. To evalu-

ate the likelihood of the semantic content, we apply prob-

abilistic latent semantic analysis. The image is modelled

as a mixture of semantic classes, such as sky, grass, road,

and building. The class description is based on texture, po-

sition and color information. Experiments show that the

use of high-level information improves illuminant estima-

tion over a purely bottom-up approach. Furthermore, the

proposed method is shown to significantly improve seman-

tic class recognition performance.

1. Introduction

Light reflected by an object which enters the eye, or a

camera, is a product of the object reflectance properties and

the illuminant spectrum. The task of color constancy is to

disentangle the two, allowing to recognize the colors of ob-

jects independent of the color of the illuminant. Computa-

tional color constancy is relevant for many computer vision

task such as object recognition, tracking, and surveillance

[3, 4, 11]. In addition, it allows for illuminant correction

of images, with the aim to present images consistent with

human perception of the world.

Computational color constancy research can be roughly

divided in two approaches. One line of research focusses

on illuminant invariant representations, which are primar-

ily based on color differences between different patches in

the image [14, 16, 17, 30]. The second, and more promi-

nent line of color constancy research aims at estimating the

color of the illuminant, after which the image can be cor-

rected to how it would appear under a canonical, usually

white, illuminant [4, 6, 9, 10, 13, 29]. This second line of

color constancy research has the advantage that it allows for

correcting the image for deviations from a canonical light

source.

Several color constancy methods return a set of possible

illuminants, from which one is to be selected [9, 13]. The

subsequent selection procedures are often based on a heuris-

tic, such as taking the average color of all possible illumi-

nants [1]. Tous [28] considers the low-level image infor-

mation, on which these color constancy methods are based,

insufficient to select between a set of possible illuminants.

Consequently, he proposes to return a set of solutions to

the computer vision application, leaving the selection of the

actual illuminant to the application. Another approach has

been proposed by Gijsenij and Gevers [18], who use image

statistics to decide on the most appropriate color constancy

method given an image. All these methods are similar in

that the illuminant estimation is based purely on bottom-up

information, and high-level top-down information is disre-

garded. In this paper, we will explore the use of high-level

visual information to select the most likely illuminant of a

scene.

A motivation for the use of high-level visual information

for color constancy can be found in recent human vision re-

search. The mechanisms underlying human color constancy

are still poorly understood. Most research uses collages of

color patches in a 2D plane, so called Mondrian images, to

infer mechanism of human color constancy [23]. Experi-

ments on more real world like settings were performed by

Kraft and Brainard [21], in which they proved that bottom-

up clues, such as inter-reflections, specularities, and the

range of colors present in a scene, all contribute to human

color constancy. However, the scene still consisted of ab-

stract objects, such as colored squares, and specular cylin-

ders. Only recently research investigated the use of high-

level visual information to obtain color constancy. Hansen

et al. [19] illuminated fruit objects with an adjustable light

source. They asked human observers to adjust the color of

the light source such that the natural fruit objects appeared



achromatic. When the illuminant was adjusted to the point

that the physical reflectance of the object was achromatic,

observers still perceived a color sensation. The fruit objects

only looked achromatic when the illuminant was shifted fur-

ther away from the grey point in the direction opposite to the

fruit color. This implies that high-level information of the

objects color plays a role in human color constancy.

The first contribution of this article is the use of high-

level visual information to select the best illuminant out of a

set of possible illuminants. We achieve this by restating the

problem in terms of semantic interpretability of the image.

Which of the illuminants results in a likely image interpre-

tation, i.e., an image where the sky is blue and in the top

of the image, and the road is grey and in the bottom can be

considered more likely than an image with purple grass sur-

rounding a reddish cow. Several color constancy methods

are applied to generate a set of illuminant hypotheses. For

each illuminant hypothesis, we correct the image, and eval-

uate the likelihood of the semantic content of the corrected

image. Finally, the most likely illuminant color is selected.

As a second contribution, we extend the set of illumi-

nant hypotheses with a set of top-down hypotheses based

on the assumption that the average reflectance of semantic

classes in an image is equal to the average reflectance of

the semantic topic in the database. For each of the seman-

tic classes present in the image we compute the illuminant

which transforms the pixels assigned to this class in such a

way that the average reflectance is in accordance with the

average color of the class in the database. For example, a

patch of grass which turned reddish in the evening light,

will correctly hypothesize a red illuminant, since such an

illuminant will transform it to green under white light.

In contrast with existing work on color constancy, which

uses a purely bottom-up approach, we investigate to what

extent top-down color constancy can improve results. Both

contributions, the selection mechanism based on the seman-

tic likelihood and the generation of top-down illuminant hy-

potheses, are derived from the idea that high-level informa-

tion plays an important role in color constancy.

2. Probabilistic Color Constancy

In this section, we state the illuminant estimation prob-

lem in a probabilistic manner and give an overview of our

method.

Probabilistic approaches compute the probability of an

illuminant given the image data P (c| f). The illuminant

of a scene is that illuminant which is most likely given the

image data

cmax = argmax
c∈C

log (P (c| f)) (1)

where f = (R, G,B)
T

, and C is the set of possible illumi-

nants c, which choice we will discuss later. Bold fonts are

applied for vectors. Now assume that we have a function g

which, if we know the illuminant of the scene, transforms

the image as if it were taken under white light

g (fc, c) = f
w, (2)

where superscript c denotes the image’s illuminant and w

indicates the white illuminant. Then, the probability that

the image f is taken under illuminant c is equal to the prob-

ability that the transformed image g (fc, c) is taken under a

white illuminant:

P (c| f) = P (w| g (f , c)) . (3)

Applying this to Eq. 1 yields

cmax = argmax
c∈C

log (P (w| g (f , c))) . (4)

This equation will be applied to select the illuminant color.

This equation selects that illuminant cmax which maximizes

the probability that the color corrected image g (f , cmax)
was taken under white lighting.

Probabilistic color constancy is based on choosing the

most likely illuminant given the image data. Methods very

close to the formulation in Eq. 4 have been proposed in lit-

erature [5, 10]. However, these methods interpret the prob-

ability in a purely bottom-up way. They are based on the

probability of an RGB value to occur under a particular

light source. Here we will propose an integrated bottom-

up and top-down approach, where both the pixel values in

the image and the semantic interpretation of the image as a

whole influence the probability of the illuminant given the

image data.

The success of color constancy as derived from Eq. 4 de-

pends on two points. Firstly, how do we compute the chance

that an image is taken under white light P (w| f), and how

can we incorporate high-level information in this probabil-

ity. Secondly, since it is unfeasible to evaluate Eq. 4 for all

possible illuminants c, how do we select a plausible set of

color illuminants for a scene. An overview of our approach

is given in Fig. 1. For an input image a set of bottom-up and

top-down illuminant hypotheses are computed (explained in

Section 4). For each of these hypotheses the image is cor-

rected and subsequently evaluated on the likelihood of its

semantic content (explained in Section 3). The illuminant

which results in the most probable image content is con-

sidered to be the illuminant of the input image. In the de-

picted case, the method estimates the illuminant to be red-

dish, since after correcting for this light source the image

could be interpreted as green grass under a blue sky.

For the function g, which transforms an image f
c taken

under illuminant c to an image f
w taken under a white illu-

minant, we use a multiplication with a diagonal matrix.

g (fc, c) = D
c

f
c = f

w (5)



with

D = diag (w) (diag (c))
−1

(6)

This model is called the diagonal model, or von Kries

model, and has been proven to sufficiently approximate re-

ality [2, 8].

3. Images as a Mixture of Semantic Classes

In this section, we describe how to compute the proba-

bility of an image to occur under a white light source. For

this purpose we will model images as a mixture of semantic

classes, such as sky, grass, road and building. Each class is

described by a distribution over visual words, which are de-

scribed by three modalities texture, color and position. As

an example, consider an image with sky and grass. This im-

age will consist of visual words which are drawn form the

distributions of sky and grass. Given these visual words, we

will attempt to infer what classes are present in the image.

Given the inferred classes and the visual words we compute

a likelihood of the image, which we call the semantic like-

lihood of the image. For this purpose we use Probabilistic

Latent Semantic Analysis (PLSA), a generative model in-

troduced by Hofmann [20] for document analysis. Recently,

PLSA models have shown good results for classification of

pixels into semantic classes [27, 31].

Images are modelled as a mixture of latent topics. The

topics are semantic classes in the image such as sky, grass,

road, building, etc. They are described by a distribution

over visual words. As visual descriptors we use 20x20

patches which are extracted on a regular grid from the im-

age. Each patch, or visual word, is described by three

modalities: 1. texture, which is described with the SIFT de-

scriptor [24] , 2. color, which is described by the Gaussian

averaged RGB value over the patch, and 3. position, which

is described by imposing a 8x8 grid of regular cells on the

image. Both the texture and color features are discretized

by Kmeans clustering. We use a texture vocabulary of 750

words, and a color vocabulary of 1000 words. The position

is described by 64 words, each referring to one of the 64

cells.

Given a set of images F = {f1, ..., fN} each described in

a visual vocabulary V = {v1, ..., vM}, the words are taken

to be generated by latent topics Z = {z1, ..., zK}. In the

PLSA model the conditional probability of a visual word v

in an image f and an illuminant c is given by:

P (v| f , c) =
∑

zc∈Zc

P (v| zc)P (zc| f) . (7)

where zc indicates that the topic distribution has been com-

puted from a data set which was taken under illuminant c.

Similar to the approach of Verbeek and Triggs [31], we as-

sume the three modalities to be independent given the top-

ics,

P (v|z) = P
(

vT |z
)

P
(

vC |z
)

P
(

vP |z
)

, (8)

illuminant hypotheses

cast bottom−up

illuminant hypotheses

cast top−down

Section 3

Section 4

overview approach

select most likely

compute semantic likelihood for all hypotheses, and

Figure 1. Overview of our approach. See text for details.

where vT , vC , vP , are successively the texture, color and

position word. The distributions P (z|f) and the vari-

ous P (v|z)’s are discrete, and can be estimated using an

EM algorithm [20].

We set out to compute the chance that an image was

taken under white light, which according to Bayes law is

proportional to

P (w|f) ∝ P (f |w) P (w) . (9)

If we assume a uniform distribution over the illuminants

p (w), this can be rewritten using Eq. 7 to,

P (w|f) ∝ P (f |w) =
M
∏

m=1

P (vm|f ,w)

=
M
∏

m=1

∑

zw∈Zw

P (vm|zw)P (zw|f),
(10)

where P (vm|zw) means that the visual word topic distribu-

tions are learned from images taken under white light.

Let us consider what happens with Eq. 10 when we eval-

uate various illuminants. For the sake of simplicity we

consider here that the texture descriptors do not change

when varying the illuminant, although in the real imple-

mentation they are recomputed for each illuminant. By

varying the illuminant color we change the color word vC

and via P
(

vC |z
)

both P (v|z) and the topic distribution in

the image P (z|f). The image will be more likely when



P
(

vC |z
)

corresponds with the combined distribution of

P
(

vT |z
)

P
(

vP |z
)

. This means that illuminants become

more likely when the color words they generate are in ac-

cordance with the texture and position information. Hence,

color words representing green are more likely together

with texture words describing grass, and a sky like texture

in the top of the image is more likely to be blue.

The approach described here is related to the work of

Manduchi [25], who uses the color similarity between a test

image and labelled classes1 in one training image taken un-

der white light to estimate the illuminant color. The classes

are described by a Gaussian color distribution. Each pixel

is assigned to a class and an illuminant to optimize the like-

lihood of the image. The method has the advantage that

multiple illuminants are allowed within an image. How-

ever, the methods is only demonstrated to succeed when a

single training image, similar to the test image, is available.

This might be due to the limited discriminative power of the

class description, in which multi-modality in color space, as

well as texture and position information are disregarded.

4. Casting Illuminant Hypotheses

Evaluating Eq. 4 for all possible illuminants is not feasi-

ble. Instead, we propose to evaluate only a subset of color

illuminants, which we call illuminant hypotheses. From

these illuminant hypotheses the illuminant which is most

likely given the image is selected. We propose two ways to

generate hypotheses: a bottom-up approach and a top-down

approach.

Bottom-up hypotheses: We can use existing color con-

stancy algorithms to generate a set of possible illuminant

colors for a scene. We call this approach bottom-up because

these color constancy methods do not use any high-level vi-

sual information in the image. Here we choose to use a

set of color constancy methods based on low-level features.

Finlayson and Trezzi [12] unified two simple, broadly used,

color constancy methods, by proving that the two methods

are actually two instantiations of the Minkowski norm of an

image:
(

N
∑

i=1

(fi (x))
p

)

1

p

= kc (11)

where i is counter over the N pixels fi, and k is a con-

stant which is chosen such that the illuminant color c has

unit length. The parameter p is the Minkowski norm. For

p = 1 the illuminant estimate is equal to color constancy

derived from the Grey-World hypothesis, which assumes

the average reflectance in a scene to be grey [6]. Using

p = ∞ the illuminant estimate is equal to the max-RGB

method [22] which assumes the maximum responses of the

1These classes are not semantically meaningful as in this paper and are

labelled ”class I”, ”class II”, etc.

watertrees

assign pixels to classes.

shape and location to

apply PLSA based on

for each detected class
cast one illuminant hypothesis

casting top−down hypotheses

trees

water

select most likely

compute semantic likelihood for all hypotheses, and

Figure 2. Overview of top-down casting of illuminant hypotheses.

See text for details.

separate channels to be equal to the illuminant color. Re-

cently this framework was further extended to include edge-

based color constancy [29]:

(

N
∑

i=1

∣

∣

∣

∣

∂n
fi (x)

∂xn

∣

∣

∣

∣

p
)

1

p

= kc (12)

where n indicates the order of differentiation. For n = 1
the method is equal to assuming that the average edge dif-

ference in a scene is grey.

In the experimental section we apply Eq. 12 to gen-

erate a set of illuminant color hypotheses. We will use

n = {0, 1, 2} and p = {2, 12} to compute six illuminant

estimates. These six hypotheses are subsequently evaluated

with Eq. 4 to select the most probable bottom-up illumi-

nant. In the literature [12, 29] these color constancy meth-

ods were found to achieve comparable results to more com-

plex methods such as color-by-correlation [10] and gamut

mapping [13]. We cast one extra hypothesis which states

that the image was taken under white light and no color cor-

rection is required.

Top-down hypotheses: Bottom-up approaches typically

fail when the statistics of the image values are insufficiently

distributed. For such images ignoring color information for



recognition of semantic classes and relying instead on only

position and texture information might yield a better inter-

pretation of the image. We will here propose a method to

exploit this information to compute a set of top-down color

illuminant hypotheses. This is the second contribution of

our paper.

In an extension to the Grey-World algorithm, which as-

sumes the average reflectance in a scene to be achromatic,

Gershon et al. [15] showed that for a coherent database,

assuming the average of a scene to be equal to the aver-

age reflectance of the database, improves results over the

Grey-World algorithm. As an example, they mention for-

est pictures full of green colors. In that case, most color

constancy methods will predict illuminants biased towards

the green color, whereas the database compensated algo-

rithm resolves this problem. Since the eighties in which this

algorithm has been proposed, the ability to extract the se-

mantic information of an image has improved significantly.

This increased semantic understanding of images can be

used to precise Gershon’s approach to semantic classes in

the image. Therefore we propose the following color con-

stancy hypothesis, which we call the Green-Grass hypothe-

sis: the average reflectance of a semantic class in an image

is equal to the average reflectance of the semantic topic in

the database

∑

i∈T s

fi (x) = k diag (ds) cs

d
s =

∑

i∈Ds

Fi (x),
(13)

where T s is the set of indexes to pixels in image f assigned

to semantic topic s, F is the collection of all pixels in the

training data set, Ds are the indexes to all pixels assigned

to semantic topic s, and c
s is the estimate of the illuminant

color based on topic s.

Fig. 2 presents an overview of the top-down casting of

illuminant hypotheses. For each detected class in the im-

age an illuminant hypothesis is casted. These hypotheses

are subsequently evaluated based on the likelihood of their

semantic content. In the above example the road is wrongly

identified as water. The derived illuminant transforms the

road pixels into blue which is the database average for the

class water. The semantic likelihood, however, will prefer

the hypothesis based on the tree-class, which considers the

image to exist out of green trees above a grey road, thereby

correctly estimating a reddish-yellow evening sun.

As depicted in Fig. 1 the bottom-up and top-down hy-

potheses are combined to compute a most likely illuminant

for an image.

5. Experiments

In the experiments we evaluate the performance-gain of

using high-level visual information. Firstly, we test our

method on a traditional color constancy task, where the aim

is to estimate the color of the illuminant and ground truth

information is available. Secondly, we test the performance

of the color constancy algorithm on a computer vision task,

namely the classification of image pixels into a set of se-

mantic classes.

5.1. Illuminant Estimation

In this experiment we apply our method to estimate the

illuminant color of a scene. For evaluation the angular error

between the estimated light source ce and the actual light

source cl is used:

angular error = cos−1 (ĉl · ĉe) , (14)

where the (̂.) indicates a normalized vector.

Data set: We test our approach on a data set assembled by

Ciurea and Funt [7]. The database contains 11,000 images

extracted from 2 hours of digital video. Both indoor and

outdoor scenes from a wide variety of locations are repre-

sented, see Fig. 3. A small grey sphere was mounted onto

the video camera, appearing in all images in the right bot-

tom corner. The sphere is used to estimate the illuminant

color in the scene. This color illuminant estimation is avail-

able with the database and is used as a ground truth. The

original images were extracted from 15 different film clips

taken at different locations. Because of the high correlation

between the images in the database, the experiments are per-

formed on a subset of 600 images taken at equal spacings

form the set. We divide the set in 320 indoor images, of

which 160 training and 160 test images, and 280 outdoor

images of which 140 training and 140 test images. The

pixels in the right bottom corner, which contains the grey

sphere, are excluded from color constancy computation.

Training topic-word distribution: For all the images in

the training data set the ground truth of the illuminant is

given. We correct the images in the training data set for

their illuminant using Eq. 6, and obtain a set of images un-

der white light. Subsequently we compute the distribution

of visual words over the topics P (v|zw) on this set. For

these images no labels of the semantic content are available,

therefore we apply PLSA to discover the topics from the

unlabelled data, similarly as in [27, 31]. We found that for

topic discovery it proved beneficial to only use the texture

modality. The assignments of patches to topics based on

texture P (vT |z) were then used to estimate the word-topic

distributions for the other modalities P (vC |z) and P (vP |z).
We used 20 topics for both the indoor and the outdoor set.

Results: The results for the indoor and the outdoor images

are given in Table. 12. For both sets we give the results

without applying color constancy (i.e. assuming the illu-

minant to be white), and for the worst and the best of the

2See also the erratum appended after the ICCV paper



1.8 7.8 1.4

22.1 1.610.4

Figure 3. From left to right. Input image, Grey-World approach and the most likely top-down illuminant hypothesis. The angular error is

indicated in the right bottom corner.

standard color constancy high-level selection using Eq.4

no cc worst BU best BU BU TD BU & TD

indoor 10.2 8.6 4.8 4.8 4.8 4.8

outdoor 5.8 7.7 5.2 4.1 4.5 3.7

Table 1. Mean angular error for several color constancy methods.

From left to right: without applying color constancy, worst and

best result of Eq. 12, select the best estimate for only the bottom-up

(BU) hypotheses, only the top-down (TD) hypotheses, or the com-

bination of bottom-up and top-down hypotheses. The last three

columns use the methods proposed in this paper.

bottom-up approach, when we would use a single approach

on all images. Next we give results where we use the likeli-

hood to select between only the bottom-up hypotheses, only

the top-down hypotheses and both bottom-up and top-down

hypotheses. On the indoor images the proposed approach

is not able to perform better than the best of the bottom-up

approaches (obtained with n = 0 and p = 12 in Eq. 12).

This might be caused by the fact that in an indoor envi-

ronment the semantic topics have a high variety of color

appearances: doors, floors, chairs, clothes, all change color

from one setting to another. On the outdoor set our approach

obtains significantly better results than any of the bottom-up

approaches. Here the best bottom-up approach achieves an

angular error of 5.2, ( obtained with n = 1 and p = 12).

Combining the bottom-up approaches yields a performance

gain of 20%. If we also consider top-down hypothesis we

improve results by almost 30% to an angular error of 3.7.

Fig. 3 shows two images on which the bottom-up ap-

proaches fail and the top-down approach finds a reasonable

illuminant estimate. The bottom-up results are computed

with the Grey-World algorithm. Assuming an average grey

reflectance yields for both images an unsatisfying illumi-

nant estimation. For example, the reddish sand image in

the first row is turned grey by the bottom-up approach. The

top-down method succeeds, because one of the topics de-

scribes brown sand like structures, which resulted in a good

top-down hypothesis with a high semantic likelihood.

In conclusions, the results show that selecting color con-

stancy methods based on the likelihood that an image is gen-

erated by a mixture of topics learned under white lighting,

improves color constancy results significantly for outdoor

data. On indoor data, results are comparable to the best

bottom-up approach.

5.2. Image Pixel Classification

In this experiment we will test the proposed approach on

pixel classification. Pixels are to be classified as one of nine

classes: building, grass, tree, cow, sheep, sky, water, face,

and road. Because we already computed P (vm|f ,w) for

each illuminant, pixel classification is only one step away.

It is simply obtained by taking the most likely topic for each

visual word.

Data set: To learn the nine semantic classes we use

the labelled images of the Microsoft Research Cambridge

(MSRC) set [26]. We remove images which we consider

to be taken under non-white light, and those which did not

contain any of the nine semantic classes (resulting in 240

training images). To extend the variability of the training



standard color constancy high-level selection using Eq.4

no cc worst BU best BU BU TD BU & TD

39.6 41.4 52.2 53.4 59.5 64.2

Table 2. Percentage of correctly classified pixels.

data we labelled another ten images collected from Google

Image for each class. As a test set we selected four im-

ages per class from Google Image. These images were not

present in the training set, and contained varying lighting

conditions. The total test set contained 36 hand-labelled

images (see Fig. 4).

Training Topic-Word Distribution: In this case the train-

ing data set is pixel labelled. The distributions of the visual

words over the topics P (v|zw) are then obtained by assign-

ing the visual words in the training data set to the topic dis-

tribution of their label. We did not have a ground truth of

the illuminant for these images, and there exist many small

deviations from white light. We assume, however, that all

classes occur most often under white lighting.

Results: In Table 2 the results of the pixel classification

is given. Not applying color constancy, as is done in most

current state-of-the-art pixel classification systems [27, 31],

obtains unsatisfying results on images with varying lighting

conditions, with only 40% of the pixels correctly classified.

The best bottom-up color constancy method correctly clas-

sifies 52% of the pixels. The top-down hypotheses obtain

a very good score indicating that hypotheses based on the

semantic content often yield reasonable estimates. These

hypotheses often differ from the bottom-up hypotheses, as

shown by the gain in performance when combining bottom-

up and top-down hypotheses.

In Fig. 4 we show illustrations of images for which the

top-down approach improved classification results. For all

four images, classification without the use of any color con-

stancy on the input image completely failed, except for

the face image where the grass was recognized but not the

face. For all images a number of top-down hypotheses were

casted. We only show results of the hypotheses which re-

sulted in the most likely image content. Although the classi-

fication results (see row 3 Fig. 4) still contain wrongly clas-

sified pixels, the results are good considering the difficult

input images. The fourth column shows an example of the

danger of top-down hypotheses. Based on the pixels which

were identified as tree pixels, the illuminant is chosen, such

that these tree pixels turn green. Although this improved

pixel classification, the illuminant estimation is false, be-

cause the image depicts a reddish-brown tree in autumn.

In conclusions, using the likelihood of images to select

the best illuminant to use for pixel classification is proven to

be beneficial. The proposed method significantly improved

results over standard color constancy methods.

6. Conclusions

This paper has presented a method to exploit high-level

visual information for color constancy. Existing color con-

stancy methods, as well as a new method based on prior

knowledge of semantic classes in the world, are used to cast

illuminant hypotheses. For each of the hypotheses we an-

alyze the semantic likelihood based on a PLSA algorithm.

The illuminant resulting in the most likely semantic com-

position of the image is selected as the illuminant color of

the image. Results for both illuminant estimation and pixel

classification into semantic classes demonstrate that using

high-level image information improves results significantly.
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Erratum (23 September 2008)

A bug occurred in our implementation of experiment 5.1.

For the bottom-up approaches we included the whole im-

age in the illuminant calculation. The grey ball should have

been excluded.

The correct results of the experiment are shown in Ta-

ble. 3. Selection of the color constancy method based on

the semantic likelihood of the images is shown to improve

results. For both indoor and outdoor the selected bottom-up

approach outperforms the best hand-picked bottom-up ap-

proaches (obtained with n = 0 and p = 2 for indoor, and

n = 2 and p = 2 for outdoor). Combining the bottom-up

and top-down cues is shown to help in the case of outdoor

images. In conclusion, using semantic likelihood to select

the color constancy method obtains a improvement of 10%

on the outdoor set and of 20% on the indoor set against the

best hand-picked bottom-up approach.

standard color constancy high-level selection using Eq.4

no cc worst BU best BU BU TD BU & TD

indoor 12.8 12.3 6.1 5.3 5.6 5.3

outdoor 5.5 7.4 4.9 4.7 4.7 4.5

Table 3. Mean angular error for several color constancy methods.

From left to right: without applying color constancy, worst and

best result of Eq. 12, select the best estimate for only the bottom-up

(BU) hypotheses, only the top-down (TD) hypotheses, or the com-

bination of bottom-up and top-down hypotheses. The last three

columns use the methods proposed in this paper.

We thank both Peter Gehler and Mark Everingham for

bringing this error to our attention.


