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Abstract

Aims: Imaging spectroscopy enables measurement of vegetation optical proper-

ties to predict vegetation characteristics that are important for a wide range of

ecological applications. Our aim was to predict fresh above-ground biomass of

heterogeneous alpine grasslands in two areas and at two ecological scales. We

assessed model plausibility for an intensively studied alpine grassland site (plant

community scale) having distinct biomass and ungulate grazing patterns.

Location: Alpine grasslands in the Swiss National Park.

Methods: Biomass data were collected in 51 plots and combined with imaging

spectroscopy data to establish simple ratio models. We analysed the predictive

power and transferability of models developed in two areas (Val Trupchun, Il

Fuorn) and at two ecological scales (regional, local). In a next step, we compared

our results to the broadband normalized difference vegetation index (NDVI).

Finally, we assessed the correlations between model predictions and plant bio-

mass distribution at the plant community scale.

Results: The best local simple ratio models yielded a model fit of R2
= 0.60 and

R2
= 0.30, respectively, the best regional model a fit of R2

= 0.44. NDVI model

performance was weaker for the regional and one local area, but slightly better

for the other local area. However, at the plant community scale only the local

model showed a significant positive correlation (RS = 0.39) with the known bio-

mass distribution. Further, predictive power decreased whenmodels were trans-

ferred from one local area to another or from one ecological scale to another.

Conclusions: Our study demonstrated that imaging spectroscopy is generally

useful to predict above-ground plant biomass in alpine grasslands with distinct

grazing patterns. Site-specific local models based on simple ratio indices per-

formed better than the NDVI or regional models, suggesting that standardized

approaches might not be adequate, particularly in heterogeneous grasslands

inhabited by large ungulates.We emphasize the importance of collecting ground

reference data covering the expected range of productivity and plant species

composition. Moreover, plant community-scale data from a previous study

proved to be extremely valuable to test model plausibility.
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8903Birmensdorf, Switzerland;RemoteSensing

Laboratories,DepartmentofGeography,

UniversityofZurich - Irchel,Winterthurerstrasse
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Introduction

Grasslands are spatially and temporally heterogeneous

landscape elements. The variability of topo-edaphic

parameters creates spatial heterogeneity in soil (texture,

moisture, nutrients; e.g. Frank et al. 1994; Turner et al.

1997) and plant properties (community composition,

biomass; e.g. Lauenroth & Sala 1992; Knapp et al.

1993). Temporal heterogeneity in soil and plant proper-

ties is, in turn, largely related to seasonal and inter-

annual variation in temperature and precipitation

regimes (e.g. Lauenroth & Sala 1992; Epstein et al.

2002; Knapp et al. 2002). Besides these abiotic controls

of spatio-temporal variability, herbivores can act as biotic

drivers of grassland properties, as they have strong direct

and indirect effects on ecosystem processes such as

nutrient cycling or productivity (e.g. McNaughton 1979;

McNaughton et al. 1997; Wardle et al. 2004; Risch &

Frank 2006; De Knegt et al. 2008; De Jager & Pastor

2009). Thus, grassland ecosystems are particularly inter-

esting for assessing interactions between environmental

parameters, their impact on the heterogeneity and spa-

tio-temporal variability of the vegetation and related

activity of the herbivore community.

The spatio-temporal variability in the distribution of for-

age, i.e. nutritient quality or quantity of plant material, is

important for understanding the behaviour of herbivores,

since their activities are linked to specific spatial and tem-

poral scales (Skidmore et al. 2010). Large ungulates show

migration patterns and home range establishment at the

regional or landscape scale, they choose suitable feeding

areas and plant communities at the local scale, and select

certain plant species or plant parts at the plant community

scale (Senft et al. 1987). Consequently, predicting how

vegetation quality and quantity varies in space and time is

critical for understanding ungulate behaviour and is essen-

tial for wildlife conservation (Bailey et al. 1996; Ritchie &

Olff 1999; Hebblewhite & Haydon 2010). As the amount

and quality of vegetation in particular and ecosystem pro-

cesses in general are, in turn, affected by herbivores, also

plant–herbivore interactions change across both temporal

and spatial scales (Bestelmeyer et al. 2011; Tanentzap &

Coomes 2012; Zheng et al. 2012). Thus, spatially continu-

ous information on vegetation characteristics at reasonable

resolution covering large areas would be advantageous for

comprehensively analysing plant–herbivore interactions,

since different properties of ecological phenomena emerge

when viewed at different scales (Skidmore & Ferwerda

2008).

In situ measurements of spatio-temporally heteroge-

neous grassland properties take considerable time and

effort (Aplin 2005; Milton et al. 2009) and often conflict

with the need to cover large areas (Ustin et al. 2004).

Especially inmountainous regions, where the terrain is dif-

ficult to access, systematic in situ sampling of vegetation

traits within traditional field campaigns is extremely labo-

rious. If informative priors, e.g. considering physical factors

such as soil properties, or radiation are readily available,

extrapolations of vegetation traits from research plots to

local scale may sometimes be possible. However, the

extrapolation of findings from research plots usually suf-

fers from uncertainties and knowledge gaps. Air- and

space-borne remote sensing provide the only realistic

mean to fill these gaps, by collecting spatially continuous

information on environmental parameters over large areas

(Kerr & Ostrovsky 2003; Aplin 2005).

In contrast to broadband sensors, such as Landsat with

only a few spectral bands [four (Landsat 1–5) to eight

bands (Landsat 8)], fine spatial resolution imaging spec-

troscopy (IS) offers the advantage of increased spectral

sampling using ‘hundreds’ of spectral bands (Goetz et al.

1985). Thus, IS makes it possible to detect the radiometric

response resulting from subtle changes in the composition

of different land-cover types, typically soil or vegetation

classes (Ustin et al. 2004; Aplin 2005; Wang et al. 2010).

IS was successfully used to discriminate between plant

functional types (e.g. Ustin & Gamon 2010; Schmidtlein

et al. 2012), individual plant species (e.g. He et al. 2011),

plant biochemical compositions (e.g. Skidmore et al. 2010;

Youngentob et al. 2012) or available plant biomass (e.g.

Mirik et al. 2005; Numata et al. 2008; Cho & Skidmore

2009), and thus has proven highly valuable for several

fields of ecosystem research (Ustin et al. 2004; Goetz 2009;

Schaepman et al. 2009).

The radiometric response (i.e. reflectance spectrum) of

vegetation is determined by absorption and scattering of

light, which is caused by chemical bonds and the three-

dimensional structure of the plant and the canopy (Ustin

et al. 2004). Specific regions of the spectrum known to be

sensitive to these different biochemical or biophysical

plant properties (see e.g. Curran 1989) can be combined

to calculate spectral indices (SIs; Oldeland et al. 2010). For

biomass estimation, numerous SIs have been developed

during the past decades (for detailed descriptions and dis-

cussion of their properties see e.g. Broge & Leblanc 2001;

Haboudane et al. 2004; Zarco-Tejada et al. 2005), with

the most commonly used being the normalized difference

vegetation index (NDVI; Rouse et al. 1974). SIs can be

calculated using coarse (broadband) and fine (narrow-

band; i.e. IS) spectral resolution data. Broadband SIs, such

as the broadband NDVI, are regularly used for comparing

vegetation characteristics over large areas (e.g. on a global

scale using satellite data) with constrained spatial detail. If

information on vegetation characteristics is desired in

complex landscapes (with variable percentages of vegeta-

tion cover, litter, woody elements and soil, etc.) and high
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spatial detail, narrowband SIs usually provide better

results (Asner et al. 2000; Thenkabail et al. 2002). In com-

bination with ground reference data narrowband SIs

allow development of predictive models for vegetation

characteristics specifically adapted to a study area.

Although the importance of systematic ground sampling

during satellite or aircraft over-flights was recognized dec-

ades ago (see e.g. Gamon et al. 1993), the lack of sufficient

and high-quality ground reference plots (i.e. covering the

expected variability) still often constrains the development

of robust models and the implementation of validation

and accuracy assessment (Lu 2006).

Generally, the relationship between grassland biomass

and spectral indices holds best for moderate to short cano-

pies that contain a high proportion of green, photosyn-

thetically active material (Tucker 1979; Hill 2004).

Estimating biomass in more complex, heterogeneous sys-

tems is much more challenging (Sims & Gamon 2002; Lu

2006; Cho & Skidmore 2009). Studies using satellite data

investigated the possibility of spatial interpolation for pre-

dicting biomass (canopy to local scale; Numata et al.

2008), measuring the impact of herbivore grazing inten-

sity (Todd et al. 1998; Numata et al. 2007) and assessing

the influence of different plant species and canopy archi-

tecture on biomass prediction (Numata et al. 2008), but

were carried out in managed rangelands with one or two

dominant grass species. Similarly, airborne IS has been

applied to predict variability in biomass patterns in arable

land (e.g. Thenkabail et al. 2000; Hansen & Schjoerring

2003; Liu et al. 2010) and relatively uniform grasslands

(Gamon et al. 1993). Comparatively few studies have

used airborne IS to predict biomass in semi-natural grass-

lands (e.g. Mirik et al. 2005; Beeri et al. 2007; Cho et al.

2007; Cho & Skidmore 2009), and none of these studies

tried to assess both plant biomass and the effects of plant–

herbivore interactions within the same heterogeneous

grassland ecosystem.

The goal of our study is to use airborne IS data to model

vegetation quantity [total aboveground plant biomass

(fresh weight; g�m�2)] in a highly heterogeneous alpine

landscape, where three large ungulate species, red deer

(Cervus elaphus L.), chamois (Rupicapra rupicapra L.) and

ibex (Capra ibex L.), are ubiquitous and therefore strongly

interact with the vegetation. More specifically, we used

airborne IS data from the Airborne Prism Experiment

(APEX; Jehle et al. 2010) and ground reference data to

develop models for the prediction of biomass in alpine

grasslands in two study areas [Val Trupchun (TRU) and Il

Fuorn (FUO)] in the Swiss National Park (SNP). We analy-

sed models developed at different ecological scales, i.e. the

regional scale (entire SNP, ca. 170 km2) and the local scale

(TRU and FUO, ca. 22 and 30 km2, respectively) and tested

model transferability (1) between the regional and the

local scale, and (2) between the two local scales. Further,

we compared our results with a more standardized

approach, the broadband NDVI. In addition, we tested our

models on a small grassland site (Alp Stabelchod, plant

community scale, ca. 11 ha) where additional field data

for biomass were available (see Sch€utz et al. 2006; Thiel-

Egenter et al. 2007).

It must be noted that the concept of scale can be viewed

from a cartographic or an ecological perspective (Skidmore

& Ferwerda 2008). While small scale in cartographymeans

covering a large area in less detail (e.g. global maps of

1:1 000 000), small scale in ecology means covering a

small area in great detail. We relate ‘scale’the ecological

hierarchy of large herbivore foraging. In this conceptual

model scales are defined by the frequencies of switches

within and between foraging patterns and the boundaries

between scale units reflect the animals’ behaviour (Senft

et al. 1987). In the SNP, some individuals of the three

ungulate species switch between regional scales during the

course of their lifetimes, whereas practically all individuals

change at the local scale several times per year. In contrast,

the ungulates cross plant community boundaries usually

several times per day. Since the three scales of our study

(regional, local and plant community scale) relate to the

way large ungulates interact with their environment, they

are considered as ecologically meaningful subdivisions of

the landscape continuum.

The results of this study, i.e. the assessment of a remote

sensing-based approach to derive spatially continuous

information on biomass in a complex alpine environment,

will be used to facilitate the analysis of plant–herbivore

interactions, which is one of the research priorities in the

SNP (see Sch€utz et al. 2003, 2006; Risch et al. 2004, 2008,

2013; Suter et al. 2004; Thiel-Egenter et al. 2007; Spalin-

ger et al. 2012).

Methods

Study area

The study was conducted in the SNP, located in southeast

Switzerland. Elevation ranges from 1350 to 3170 m�a.s.l.

The SNP encompasses an area of ca. 170 km². About

86 km² are covered by vegetation, with forests occupying

53 km² and grasslands 29 km². The average annual tem-

perature is 0.9 � 0.5 °C (mean � SD), with a mean

annual minimum of �18.8 � 8.6 °C and a mean annual

maximum of 13.6 � 6.1 °C; mean annual precipitation is

744 � 160 mm, with an annual minimum of 667 mm

and an annual maximum of 1013 mm; mean daily wind

speed is 5.3 � 2.2 km�h�1, with hourly maxima of up to

29.2 km�h�1 and peak gusts of up to 100.8 km�h�1

(2008–2012, recorded at the park’s weather station, Buf-

falora, at 1977 m�a.s.l.; MeteoSwiss 2013). The grasslands
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in the SNP are characterized by a heterogeneous mosaic-

like structure caused by small-scale microrelief variability

resulting in variations in microclimate and soil properties.

The heterogeneity is also reflected in high small-scale

plant species richness: up to 40 plant species�m�
². The

plant growing season lasts from mid-May until mid-Sep-

tember. The SNP is known for its large populations of red

deer, chamois and ibex, with densities of 9.6 red deer, 7.7

chamois and 1.7 ibex per km2 (2010 population counts).

We selected two study areas within the SNP (regional

scale) for developing local biomass models: TRU and

FUO (Fig. 1). TRU is a southeast- to northwest-orien-

tated valley that encompasses ca. 22 km2; about 26% of

the area is covered with grassland; bedrock consists of

mainly limestone and calcareous schist. FUO extends

over ca. 30 km2 and consists of several side valleys;

about 20% of the area is covered with grassland and the

bedrock is mainly dolomite. Additionally, we used previ-

ously published biomass data from Alp Stabelchod (plant

community scale), a grassland site of about 11 ha sur-

rounded by forest and located in study area FUO

(Fig. 1). Vegetation and soil properties, as well as the

impact of large ungulates, on Alp Stabelchod have been

studied intensively on a grid covering the entire site,

with cells measuring 20 m 9 20 m (Sch€utz et al. 2003,

2006; Thiel-Egenter et al. 2007).

Ground reference data: Regional and local scale

We established a total of 51 ground reference plots cover-

ing the entire range of exposures and elevations and the

expected range of grassland biomass, plant species compo-

sition and grazing intensity. There were 25 plots in TRU,

26 in FUO (Fig. 2). We defined a minimum of

50 m 9 50 m of grassland area for a ground reference plot

to be established, and a minimum distance of 20 m

between two plots. An individual plot was homogenous in

species composition and cover and measured 6 m 9 6 m

to balance possible imprecision resulting from data pro-

cessing. Plots did not contain large objects (trees, rocks,

buildings) or trails, and were located at least 6 m from such

objects. On 24 June 2010, just after IS data had been

acquired (see below), we clipped the vegetation 1 cm

above the ground on a 1 m 9 1 m subplot in the centre of

each plot (Fig. 2d). The vegetation was immediately sealed

into plastic bags and weighed on the same day to deter-

mine fresh biomass. We then divided the ground reference

data into three equal-sized groups differing in fresh

biomass (low: 20.2–250.7 g�m�2; medium: 250.7–

443.3 g�m�2; high: 443.3–1235.4 g�m�2). From each

group we randomly assigned half the data to the calibra-

tion and half to the validation data set (stratified random

sampling).

Ground reference data: Plant community scale

Spatially continuous biomass data at the plant commu-

nity scale are particularly important for the investigation

of plant–herbivore interactions. Therefore, we addition-

ally obtained ground reference data for Alp Stabelchod

from two previously published data sets to assess model

plausibility. One data set contained information on soil

phosphorus (soil P) as well as the proportion of total

cover of the two main vegetation types found on Alp

Stabelchod (short- and tall-grass vegetation) measured

in a 20 m 9 20-m grid covering the entire grassland

(Sch€utz et al. 2006). The second contained grassland

above-ground net primary productivity (ANPP g dry

weight�m�2) and biomass (g dry weight�m�2) data from

an exclosure experiment. The exclosures were located

along soil P gradients in both vegetation types on

selected 20 m 9 20-m grid cells (Sch€utz et al. 2006;

Thiel-Egenter et al. 2007). In the first step, these data

were used to calculate plant biomass for each grid cell.

As plant biomass was independent of soil P regardless of

vegetation type (Thiel-Egenter et al. 2007), average

plant biomass per grid cell was calculated by multiplying

the total proportion of short-grass vegetation per grid

cell with the average value for short-grass biomass

(14.81 g�dry weight�m�2) and adding the proportion of

tall-grass cover multiplied by the average value for tall-

grass biomass (110.9 g�dry weight�m�2). In a second

step, ANPP and biomass consumption by ungulates was

calculated at the same scale. As ANPP was independent

of soil P for short-grass (103.3 g�dry weight�m�2), but

depended on soil P in tall-grass (Thiel-Egenter et al.

Fig. 1. Study areas Trupchun (TRU) and Il Fuorn (FUO) located within the

Swiss National Park (SNP). Four APEX flight strips (F1, F2, F3, F4) were

included in our study. The enlargement in the lower right corner shows

Alp Stabelchod.

Journal of Vegetation Science

4 Doi: 10.1111/jvs.12214© 2014 International Association for Vegetation Science

Biomass mapping in alpine grasslands A.K. Schweiger et al.



2007) vegetation, tall-grass ANPP (ANPP_t) was calcu-

lated for each grid cell separately using equation (1).

ANPP tðg dry weight �m�2Þ ¼ 0:67�soilP þ 3:29 ð1Þ

.

Average ANPP per grid cell was then calculated using

the total proportion of short- and tall-grass cover per grid

cell as described for plant biomass. Biomass consumption

by ungulates (g�dry weight�m�2) was calculated for each

grid cell by subtracting plant biomass from ANPP and

converted to percentage (%).

Imaging spectroscopy data

Imaging spectroscopy data were collected under cloud-free

conditions on 24 June 2010 between 11:29 and 12:06 h

Central European summer time (CEST) using the airborne

imaging spectrometer APEX (Jehle et al. 2010). The sun

zenith angle was between 31.8° and 28.1°, the sun azi-

muth between 127.5° and 139.1°, and the mean flight alti-

tude per flight line was between 6665 and 6667 m�a.s.l.

APEX is a dispersive push broom sensor, mounted on a

Dornier DO-228 aircraft operated by Deutsches Zentrum

f€ur Luft- und Raumfahrt (DLR, German Aerospace Cen-

tre), and covers the wavelength region from 380 to

2500 nm in 312 contiguous spectral bands with a full

width at half maximum (FWHM) ranging from 4 to

12 nm.We used 301 bands for our analysis after removing

noisy bands. The spatial sampling interval across track

(ground resolution) depends on the flight altitude above

ground level (AGL) and is between 1.75 m at 3500 m AGL

and 2.5m at 5230m AGL. Therefore, the ground pixel size

was resampled to 2 m 9 2 m using a nearest neighbour

interpolation (for more details see Schl€apfer & Richter

2002). Measured raw digital numbers (DN) of the four

flight lines (Fig. 1) were converted to radiances by apply-

ing calibration coefficients obtained from an after-flight

calibration campaign (Jehle et al. 2010). Calibrated radi-

ance data were then geometrically corrected using a para-

metric geo-rectification approach implemented in the

PARGE software package (Schl€apfer & Richter 2002). Sur-

face reflectances, more specifically, hemispheric conical

reflectance factors (HCRF; see Schaepman-Strub et al.

(a) (b)

(c) (d) (e)

Fig. 2. Maps and photos of the study areas TRU (a, c) and FUO (b, e), respectively, and design of the ground reference plots (d).
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2006) were retrieved from at-sensor radiance data by

applying a physically based atmospheric correction

approach as implemented in the ATCOR-4 software (Rich-

ter & Schl€apfer 2002). ATCOR-4 uses the atmospheric radi-

ative transfer model MODTRAN to describe atmospheric

absorption and scattering processes and to compensate for

their respective impact on themeasured at-sensor radiance

signals. Parameters describing the atmospheric status

required by MODTRAN were set to realistic values (e.g.

CO2 level was set to 380 ppm), while others like aerosol

optical depth or atmospheric water vapour were retrieved

pixel-wise from the image data itself. The aerosol size and

distribution was approximated with the a-priori defined

models ‘mid-latitudinal summer’ and ‘rural atmosphere’.

Geometric mis-registration of the orthorectified data was

evaluated using ground-based differential global position-

ing system (DGPS) measurements, and was found to be

less than one pixel (�2 m) in flat terrain and up to two

pixels (�4 m) on steep slopes (Damm et al. 2012). In cases

where reference plots were covered twice by APEX (over-

lapping flight lines), both flight lines were used as input for

modelling. The twomeasurements can be considered inde-

pendent due to reflectance anisotropy effects (caused by

differing times of day, flight angles, flight heights, etc.) and

are assumed to make our models more robust. Conse-

quently, we had 43 observations for TRU (22 calibration;

21 validation) and 41 observations for FUO (21 calibration;

20 validation).

Model building andmapping

The spectral properties of vegetation are determined by

their chemical composition (e.g. pigment concentration,

water content), structure (leaf internal and external struc-

ture) and the spatial arrangement of these structures

(Tucker 1979; Ustin et al. 2004; Jones & Vaughan 2010;

Wang et al. 2010). Three spectral regions are of primary

interest for plant biomass assessment (Tucker 1979; Hor-

ler et al. 1983; Myneni et al. 1995; Thenkabail et al.

2002): the red (600–760 nm), near-infrared (NIR; 760–

1100 nm) and red edge (transition zone between 640

and 760 nm). The more chlorophyll contained in the

vegetation the higher the absorption in the red (Tucker

1977; Myneni et al. 1995), while a more complex leaf and

canopy structure results inmore scattering and less absorp-

tion in the NIR (Tucker 1979; Curran et al. 1991). The red

edge is defined as the sharp increase in reflectance

between these two regions (Horler et al. 1983) and thus

marks the boundary between chlorophyll absorption and

volume scattering (Curran et al. 1991; Jones & Vaughan

2010).

Both the calibration plots from TRU and FUO (43 data

points) were used to calculate a model valid for the entire

SNP (regional model). As the plots measured 6 m 9 6 m

and the pixel size of the IS data was 2 m 9 2 m, a 3 9 3

pixel aggregation was defined to extract the reflectance

measurements from the IS data and to calculate the aver-

age reflectance of all nine aggregated pixels per plot. To test

for boundary effects, we also calculated the average reflec-

tance over 25 aggregated pixels (5 9 5 pixel aggregations),

and found no significant differences between the two

(results not shown). This confirms that our ground refer-

ence plots were located in homogenous areas on a scale of

at least 10 m 9 10 m. We then calculated all simple ratios

(SR = band j/band i) per nine aggregated pixels per plot for

the band combinations located in the spectral regions

described above: band j was located in the NIR (760–

1098 nm; band 76–125) and band i in the red part of the

spectrum (598–756 nm; band 29–75), resulting in a total

of 2350 combinations. All SRs of the calibration plots were

afterwards used as input to model fresh biomass (g�m�2)

with linear, exponential and second-order polynomial

functions. Exponential and second-order polynomial func-

tions were used to account for potential sources of interfer-

ence, such as fractions of different vegetation types,

surface heterogeneity or topographic effects. The best

model was selected using Akaike0s information crite-

rion (AIC) and applied to predict fresh biomass for the

entire SNP (both TRU and FUO validation data). Model

validation was performed using bootstrapping with 100

replications. We evaluated model fit and predictive accu-

racy by calculating the coefficient of determination

(R2 � SD) and the root mean square error (RMSE � SD).

Additionally, we assessed the performance of the regional

model (SNP) when used to estimate fresh biomass at the

two local scales. Therefore, the best SNP model was vali-

dated separately for TRU (using TRU validation data only;

thereafter named SNP_TRU) and FUO (using FUO valida-

tion data only; SNP_FUO), and model fit and predictive

accuracy were calculated.

In a next step, the same method was used to calibrate

two local models TRU and FUO separately, using only the

TRU and FUO calibration data. The best models were again

validated for each study area using the bootstrapping

approach, and model fit and predictive accuracy were

calculated. To assess whether a specific local SR could be

used to predict fresh biomass of another local area, the best

SR selected for FUO was used to calibrate a model for

TRU (using TRU calibration data only; thereafter named

FUO_TRU) and the best SR selected for TRU was used to

calibrate a model for FUO (using FUO calibration data

only; TRU_FUO). Again, the corresponding validation data

sets were used for model validation with bootstrapping,

and model fit and predictive accuracy were calculated. We

refer below to these models (FUO_TRU and TRU_FUO) as

the transferred local models.

Journal of Vegetation Science

6 Doi: 10.1111/jvs.12214© 2014 International Association for Vegetation Science

Biomass mapping in alpine grasslands A.K. Schweiger et al.



In addition, we simulated broadband NDVI to compare

our best regional (SNP) and local models (TRU, FUO) with

a more standardized approach. Therefore, we calculated

the mean reflectance of all APEX bands in the red (630.5–

690.0 nm) and NIR (760.4–898.1 nm), corresponding to

Landsat Thematic Mapper (TM) band 3 and band 4 (i.e.

630–690 and 760–900 nm, respectively) and calculated

broadband NDVI (NDVI = NIR � red/NIR + red). Next,

we fitted linear models for biomass against the simulated

broadband NDVI for the entire SNP and the local areas

TRU and FUO separately, using the corresponding calibra-

tion data sets. As before, we used bootstrapping to validate

the models for each study area and calculated model fit

and predictive accuracy.

Finally, we assessed if our regional, local, transferred

local and NDVI models succeeded in predicting biomass

at the plant community scale on Alp Stabelchod, an

intensively studied grassland site with known biomass

and consumption rates. Pixel size of the IS data used for

the regional and local models was 2 m 9 2 m, whereas

the grid on Alp Stabelchod measured 20 m 9 20 m.

Therefore, the mean predicted biomass was calculated

for the 100 2 m 9 2 m pixels corresponding to each grid

cell using the regional (SNP), local (FUO), transferred

local (TRU_FUO) and NDVI (NDVI_FUO) model. We cal-

culated the correlation coefficient between biomass at

the plant community scale (see method section: Ground

reference data: Plant community scale) and predicted

biomass from our models to assess which of the models

best depicted the pattern. For this purpose, either Pear-

son0s correlation coefficient (R) or Spearman0s rank cor-

relation coefficient (RS) was used, depending on

whether the biomass data met the normality and homo-

geneity criteria.

Since our models were designed to predict only the bio-

mass of grasslands, we applied linear spectral unmixing

(LSU) to exclude areas dominated by forest, rock, snow or

water from mapping (Roberts et al. 1993). Imaging spec-

troscopy data were prepared using ENVI (v 4.7; Exelis

Visual Information Solutions, Boulder, CO, US). For mod-

elling, we used R (v 2.15.1; R Foundation for Statistical

Computing, Vienna, AT), for spatial data handling and

mapping, ArcGIS (v 10.0; Environmental Systems

Research Institute, Redlands, CA, US).

Results

Fresh weights of above-ground biomass on our 51 ground

reference plots ranged from 20.2 to 1235.4 g�m�2

(354.7 � 241.7 g�m�2; mean � SD). For the 25 TRU plots

mean biomass was 400.1 � 265.3 g�m�2 (range 37.2–

1235.4 g�m�2), for the 26 FUO plots mean biomass was

311.1 � 212.8 g�m�2 (range 20.2–862.1 g�m�2).

The performance of the best regional model (SNP;

Fig. 3a) was moderate. However, the broadband NDVI

model (NDVI_SNP; Fig. 3b) was considerably weaker, both

in terms of R2 and RMSE.

In area TRU, the site-specific local model (TRU; Fig. 4a)

yielded the best fit of all models. The transferred local

model (FUO_TRU; Fig. 4b), the regional model applied to

this local scale (SNP_TRU; Fig. 4c) and the broadband

NDVI model (NDVI_TRU; Fig. 4d) all clearly performed

less well. However, when model predictions were mapped

for TRU, similar patterns in terms of the high and low bio-

mass became evident (Fig. 5). In area FUO, the site-specific

local model (FUO; Fig. 6a) performed moderately. The

transferred local model (TRU_FUO; Fig. 6b) was slightly

weaker, the regional model applied to this local scale

(SNP_FUO; Fig. 6c) and the broadband NDVI model

(NDVI_FUO; Fig. 6d) performed slightly better, both in

terms of R2 and RMSE.

Most interestingly, only the site-specific local model

(FUO) correctly predicted the known biomass pattern on

Alp Stabelchod (compare Fig. 7a–d with Fig. 8a). Previ-

ously published data from Alp Stabelchod show high

biomass in the western part (Fig. 8a), while high con-

sumption rates of ungulates lead to low biomass in the

eastern part of the meadow (Fig. 8b). A similar pattern

was predicted with the site-specific local model (FUO;

Fig. 7a), whereas both the regional (SNP_FUO; Fig. 7c)

and the broadband NDVI (NDVI_FUO; Fig. 7d) model pre-

dicted the opposite. Predictions of the transferred local

model (TRU_FUO; Fig. 7b) showed an intermediate

prediction, featuring no clear differences between the

western and eastern parts of the meadow. Correlation

analyses revealed that the biomass pattern was, indeed,

only correctly reflected in the site-specific local model, as

we found a positive correlation between measured bio-

mass at the plant community scale and predicted biomass

from the model (FUO: RS = 0.39, P < 0.01). A negative

correlation between measured and predicted biomass was

found for the regional (SNP_FUO: R = �0.44, P < 0.01)

and the broadband NDVI (NDVI_FUO: RS = �0.43,

P < 0.01) model, and a non-significant one for the trans-

ferred local model (TRU_FUO: RS = �0.14, P = 0.10).

Discussion

Suitability of selected vegetation indices

The simple ratio indices used in this study depended, by

definition, on chlorophyll absorption in the red and vol-

ume scattering in the NIR part of the spectrum (Myneni

et al. 1995; Asner 1998; Jones & Vaughan 2010). Both

spectral regions are regularly and successfully used for pre-

dicting plant biomass (e.g. Tucker 1979; Mirik et al. 2005;

Beeri et al. 2007; Cho et al. 2007; Fava et al. 2009). Model

7
Journal of Vegetation Science

Doi: 10.1111/jvs.12214© 2014 International Association for Vegetation Science

A.K. Schweiger et al. Biomass mapping in alpine grasslands



fit of the SNP and TRU models (R2 of 0.44 � 0.13 and

0.60 � 0.16, respectively) were in the range of other stud-

ies estimating biomass in semi-natural grasslands using air-

borne IS data. The fit of the FUO model (R2 of

0.30 � 0.10) was weaker. Cho et al. (2007) and Cho &

Skidmore (2009) reported R2 values of 0.53, 0.56 and 0.64

for biomass estimation in the Italian Apennines, while

Beeri et al. (2007) and Mirik et al. (2005) indicated R2

(a) (b)

(c) (d)

Fig. 4. Best local model (TRU; a), transferred local (FUO_TRU; b), regional (SNP_TRU; c) and broadband NDVI (NDVI_TRU; d) model predicting fresh

biomass at the local scale TRU. Coefficients of determination (R2 � SD), root mean square errors of prediction (RMSE � SD), wavelengths (wvl) for bands j

and i in nm andmodel type (mod, lin = linear, exp = exponential, poly = polynomial) are indicated.

(a) (b)

Fig. 3. Best regional model (SNP; a) and broadband NDVI model (NDVI_SNP; b) predicting fresh biomass at the regional scale. Coefficients of

determination (R2 � SD), root mean square errors of prediction (RMSE � SD), wavelengths (wvl) for bands j and i in nm and model type (mod,

exp = exponential) are indicated.
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values of 0.73 and 0.87 for biomass estimation in the

prairies of North Dakota and Wyoming, respectively.

The RMSE value of the TRU model (RMSE =

165.9 � 29.5 g�m�2) was only slightly higher than the

values between 97.6 and 144.7 g�m�2 of Beeri et al.

(2007). Again, the predictive accuracy of the FUO model

(RMSE = 193.9 � 33.7 g�m�2) was lower. In our opinion,

there are several reasons why biomass prediction in study

area FUO was more challenging than in TRU. First, the

range of biomass values in FUO (20.2�862.1 g�m�2) was

lower than in TRU (37.2�1235.4 g�m�2). Generally, the

trade-off between the range of model parameters and

measurement errors leads to model fit becoming weaker

when the range of values is comparatively low and mea-

surement errors are high (as is naturally the case when

sampling biomass in the field). Additionally, when classify-

ing slope and aspect based on a 2 m 9 2 m digital

elevation model (DEM) using six classes for slope (<10%–

20%–30%–40%–50%–>50%) and eight classes for expo-

sure (N-NO-O-SO-S-SW-W-NW), FUO proved to be more

variable than TRU. In study area FUO the four middle

classes for slope contained between 11% and 31% of all

raster cells and the classes <10% and >50% contained each

more than 5%,while in area TRU 67% of all raster cells fell

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Biomass (fresh weight) mapped for TRU using the best local model (TRU; a, b), the transferred local (FUO_TRU; c, d) and the regional (SNP_TRU; e,

f) model.
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in the classes between 30% and 50%. Similarly, all expo-

sure classes in the area FUO contained between 8% and

17% of all raster cells, whereas in area TRU more than

70% of all raster cells were exposed to either N-NO or

S-SW. Although topographic variation was minimized

using ATCOR (slope and aspect correction for irradiance at

the surface), greater topographic variability in area FUO

could have negatively influenced model performance.

Moreover, TRU featured a higher proportion of grasslands

compared to FUO (26% vs 20%) and the grassland patches

in TRU were larger and less fragmented. Consequently,

scattering effects emerging from boundaries between

adjacent grasslands and forest or between grassland and

rocks (Jiang et al. 2012) probably had a greater influence

in FUO. Differences in soil reflectance are also assumed to

play a role in FUO, where grassland vegetation cover at the

small scale was somewhat less than 100%, while it was

almost always 100% or more in TRU. Probably the most

important factor influencing model performance in FUO

was the high amount of non-photosynthetically active

vegetation (NPV) caused by distinct grazing patterns, as we

discuss in more detail below. While Cho et al. (2007) and

Cho & Skidmore (2009) estimated photosynthetically

active vegetation (PV) only, and Beeri et al. (2007) con-

ducted their study in rangeland where a lower amount of

more evenly distributed NPV is expected, up to 50% NPV

was found in one vegetation type in area FUO (M. Sch€utz,

unpubl. data).

Interestingly, only the site-specific local model FUO cor-

rectly reproduced the known biomass pattern at Alp

Stabelchod, although both standardized approaches (i.e.

the regional SNP_FUO model and the NDVI_FUO model)

indicated better model fit. This suggests that standardized

approaches might not provide the ideal solution for pre-

dicting biomass patterns, particularly in heterogeneous

landscapes with distinct vegetation and grazing patterns. It

has been shown that IS is able to detect subtle changes in

narrowband absorption features (Ustin et al. 2004; Aplin

2005; Wang et al. 2010) that are only partially approach-

able using broadband spectral information (Asner 1998).

For example, narrow bands in the red part of the spectrum

have proven to be much more sensitive to differences in

chlorophyll content (Carter 1998; Jones & Vaughan 2010),

a pattern that cannot be fully detected using broad bands

(c) (d)

(a) (b)

Fig. 6. Best local model (FUO; a), transferred local (TRU_FUO; b), regional (SNP_FUO; c) and broadband NDVI (NDVI_FUO; d) model predicting fresh

biomass at the local scale FUO. Coefficients of determination (R2 � SD), root mean square errors of prediction (RMSE � SD), wavelengths (wvl) for bands j

and i in nm andmodel type (mod, lin = linear, poly = polynomial) are indicated.
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(Curran 1994). Additionally, broadband SIs can be unsta-

ble, varying with soil colour, canopy structure, leaf optical

properties and atmospheric conditions (Huete & Jackson

1988; Middleton 1991; Todd et al. 1998). However, site

and sensor specificity is not only a characteristic of broad-

band SIs, but of statistical models in general, which makes

them unsuitable for application in large areas or different

seasons/scales (e.g. Curran 1994; Gobron 1997; Cho &

Skidmore 2009). Therefore, it was not surprising that our

local models performed better than the regional models,

but were not transferable between sites and scales, as they

are highly parameterized for the specific study areas. How-

(c) (d)

(a) (b)

Fig. 7. Biomass (fresh weight) mapped at the plant community scale (Alp Stabelchod) using the best local model (FUO; a), the transferred local (TRU_FUO;

b), the regional (SNP_FUO; c) and the broadband NDVI (NDVI_FUO; d) model.

(a) (b)

Fig. 8. Biomass (dry weight; a) and biomass consumption (b) mapped at the plant community scale (Alp Stabelchod) using data from Sch€utz et al. (2006)

and Thiel-Egenter et al. (2007).
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ever, while our models are not transferable, our method –

selecting the best site-specific SR index – can also be used

in other study areas and seems to be advantageous in het-

erogeneous grasslands with distinct grazing patterns.

Biomass estimation in a heterogeneous landscape grazed

by large ungulates

Biomass estimation using IS data in diverse and heteroge-

neous communities is challenging (Lu 2006; Cho & Skid-

more 2009), since chemical composition and canopy

structure is known to vary within and between plant spe-

cies (Wright et al. 2001; Westoby et al. 2002). Having, in

addition, large ungulates grazing on heterogeneous grass-

lands makes biomass estimation even more complicated,

as ungulates are known to alter plant growth and resource

allocation (McNaughton 1979; McNaughton et al. 1997;

Sch€utz et al. 2006; Risch et al. 2007; Frank et al. 2011)

and therefore the composition and structure of vegetation

(Collins et al. 1998; Sch€utz et al. 2003; Risch & Frank

2006; Numata et al. 2007).

The interaction between ungulate grazing and vegeta-

tion community structure can be illustrated for Alp Stabel-

chod, a grassland site within study area FUO. The

vegetation of the eastern part of Alp Stabelchod has been

shown to be more nutrient-rich compared to the western

part due to differences in former land use (for more details

see Sch€utz et al. 2006). Therefore, large ungulates graze

much more intensively (around 60% consumption) on

the eastern compared to the western part of the site

(around 16% consumption; cf. Sch€utz et al. 2006). As a

consequence of differences in soil nutrient concentrations

and grazing intensity, very short (grazed down to 2 cm)

but nutrient-rich vegetation containing high levels of chlo-

rophyll predominates in the eastern part of Alp Stabelchod.

The dominating plant species are grasses, mainly Festuca

rubra L. and Briza media L., and total NPV (senescent grass,

litter) is <5% (M. Sch€utz, unpubl. data). On the western

part of Alp Stabelchod, poorer soils resulted in lower plant

quality and therefore lower grazing pressure (higher vege-

tation; around 20 cm). The dominating plant species is the

sedge Carex sempervirens Vill., and 30% to 50% of plant

material in this vegetation type is NPV (M. Sch€utz, unpubl.

data).

Even small amounts of NPV can mask the spectral

response in the red part of the spectrum (Roberts et al.

1993; Asner 1998; Beeri et al. 2007; Numata et al. 2007)

and lead to underestimation of biomass in NPV-rich com-

munities (He et al. 2006; Beeri et al. 2007; Verrelst et al.

2010). Asner (1998) found that a NPV content of 10%

almost doubles, a NPV content of 20% triples and a

NPV content of 50% causes a six-fold increase in grassland

canopy reflectance in the red part of the spectrum.

Additionally, since our SR indices depended on the green-

ness of the vegetation (Tucker 1979; Cohen & Goward

2004), biomass in the chlorophyll-rich short-grass might

have been overestimated by the regional (SNP_FUO),

transferred local (TRU_FUO) and NDVI (NDVI_FUO)

model. Model improvements might be achievable when

separating NPV from PV and introducing an empirical can-

opy greenness factor (Gamon et al. 1993) or modelling PV

only, as done in other studies (He et al. 2006; Beeri et al.

2007; Boschetti et al. 2007). However, in our opinion

including both NPV and PV for estimating biomass is

important, since both contribute to biogeochemical cycling

and are essential components of ecosystem functioning

(Beeri et al. 2007). For grazed systems, Numata et al.

(2008) suggested sorting NPV from PV after clipping the

biomass in the field and combining two separate indices,

one for NPV and one for PV. However, this approach

would be extremely laborious since single grass leaves are

often composed of both dead and living parts that would

need to be separated. A less time-consuming approach

would be spectral unmixing to determine the proportion

of NPV and PV per pixel (see e.g. Gamon et al. 1993;

Roberts et al. 1993; Asner & Heidebrecht 2002; Numata

et al. 2007). However, both endmembers, PV and NPV,

produce volume scattering, which generates ambiguities

in the unmixing process. Thus, a non-linear unmixing

approach would be most appropriate here. This would

require additional field spectrometer measurements, since

the spatial resolution of APEX is too coarse to collect pure

pixels from the image when the vegetation is highly heter-

ogeneous and mosaic-like (as in our case). Nevertheless, it

would be worth testing this approach in a future study.

The differences in vegetation communities and NPV distri-

bution between heavily and lightly grazed areas were

expected to be less distinct in TRU, which additionally

explains why the TRU models had higher predictive

power. As more forage is available in this area (TRU:

400.1 � 265.3 g�m�2 (mean � SD); FUO: 311.1 �

212.8 g�m�2), grazing is more evenly distributed. There-

fore, overall grazing pressure is lower and grazers do not

increase vegetation heterogeneity as much as in FUO.

The challenge in applying satellite or aircraft images to

ecological studies lies in relating spectral and spatial infor-

mation in an image to the vegetation pattern and processes

on the ground (Gamon et al. 1993). Although some

improvement through the application of different model-

ling techniques (e.g. spectral unmixing) might be possible,

the fact that the local FUO model correctly predicted the

biomass pattern on Alp Stabelchod known from previous

studies was thus a success. Recalling the high predictive

accuracy of the TRUmodel, we are confident that our sam-

pling design covered vegetation heterogeneity within both

local areas, and that our site-specific local models are
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suited as baseline data for detailed analysis of plant–herbi-

vore interactions.

Conclusions

Our study shows that fine spatial resolution imaging spec-

troscopy can be successfully used to predict fresh above-

ground biomass in a highly heterogeneous alpine land-

scape with distinct grazing patterns. More specifically, our

site-specific local models based on SR indices performed

better than regional or NDVI models, suggesting that stan-

dardized approaches might not always provide the best

solution for predicting biomass in challenging landscapes.

However, when following our modelling approach, two

issues should be considered: first, since statistical models

are highly site- and sensor-specific (Curran 1994; Gobron

1997), attention should be given to understanding the

applicable scale defined by the characteristics of input data

to the original model (Lu 2006). As demonstrated in our

study, statistical models developed for one study site

should not be transferred to another or used to predict pat-

terns at other scales without checking for plausibility. For

this purpose, independent data, ideally sampled on a con-

tinuous, relatively fine grid, are highly advantageous. Sec-

ond, since the availability of sufficient and high-quality

ground reference plots often limits the development of

robust biomass models and the validation of the results (Lu

2006), a sampling design covering the entire expected

range of biomass and heterogeneity should be used. If the

distribution of NPV and PV is uneven, separating NPV from

PV in themodelling phase should be considered.
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