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Abstract 
Password storage is one of the most important cryptographic topics through the time. Different systems use 
distinct ways of password storage. In this paper, we developed a new algorithm of password storage using 
dynamic Key-Hashed Message Authentication Code function (d-HMAC). The developed improved algorithm is 
resistant to the dictionary attack and brute-force attack, as well as to the rainbow table attack. This objective is 
achieved by using dynamic values of dynamic inner padding d-ipad, dynamic outer padding d-opad and user’s 
public key as a seed. 
Keywords: d-HMAC, MAC, Password storage, HMAC 
1. Introduction 
Information systems in all kinds of organizations have to be aligned with the information security policy of these 
organizations. The most important components of such policy in security management is access control and 
password management. In this paper, we will focus on the password management component and mostly on the 
way of such passwords are stored in these information systems. 
Password is the oldest and still the primary access control technique used in information systems. Therefore, we 
understand that to have an access to an information system or a part of this system the authorized user hast to 
authenticate himself to such system by using an ID (username) and a password 
Hence, password storage is a vital component of the Password Access Control System. In this paper, we are 
proposing a new technique, which is superior to the existing known algorithms in the since that it yields good 
security for password storage and it is simple to use. In this algorithm, we are utilizing improved d-HMAC 
function, which is more resistance to RAINBOW attack than traditional HMAC.  
We will present this new technique and we will compare it with the existing techniques that use HMAC 
algorithm to show the new possibility and potential in this new technique for further development for scientists. 
Moreover, we will give a simple good introduction for the history of evolving the techniques used for password 
storage, which could be a good material and reference for the researchers and students interested in this subject.  
2. Passwords and Passwords Storage History 
Password is the most common access control tool used to authenticate authorized users. The basic definition of 
password is a secret series of characters remembered and known only by the user, used to login to any kind of 
information systems (Forouzan, 2008).  
The security of password means that it must be resistance against dictionary attack and brute force attack and 
must not be guessable by the attacker. In order to have such strong password resistance against various attacks 
(Hitachi, 2016): 1) It must consist of a large alphabet with different combinations such as small letters, capital 
letters, numbers and special characters, 2) The length of password shall be as long as it can be memorized, and 3) 
the complexity of the password has to be very high.  
Most of people think that having a strong none revealed guessable password will protect them, but they are 
wrong!! Because many of the know attack, where hackers were able to steal millions of accounts with their 
password was not a result of the password strength, it was because of how these passwords were stored (Hitachi, 
2016). Password storage is an essential part of the whole Password access control system. Techniques used for 
this storage have to be designed to make it infeasible for the attacker to conclude the password even if the 
password storage system has been compromised.  
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In the following, we will present in which these password storage techniques evolved through the time. 
Storage password systems involved through different stages:  
First stage: Password (p) was saved as plaintext, which was vulnerable to many kinds of attacks (Forouzan, 
2008). The attacker in an easy way could compromise the username and password. 

c = (p) 
Second stage: Programmers start to save passwords in a secret way by using symmetric encryption algorithms 
like Blowfish, DES, 3DES, etc (Stallings, 2011). Such solution was compromised in an easy way by phishing the 
encrypted passwords or the key itself. 

c = Ek(p) 
Third stage: In this technique, one-way cryptographic hash functions like Message Digest MD4, Message 
Digest MD5, and Secure Hash Algorithm 1 SHA-1 are used to save the calculated hash code of the password 
(Forouzan, 2008). Therefore, if the attacker gained an access to saved passwords’ hash codes, it will be infeasible 
to produce the input in an efficient polynomial time. This idea was invented to solve the weaknesses in the 
second stage.  

c = Hash (p) 
When a user wants to login to the system the password is sent to the server by a secure channel. On the server, 
the password is hashed and the result is compared with the hash code already saved in the database if it is 
matched then authentication is granted else the request is rejected. However, an attacker can generate a big 
dictionary with hashed passwords; this attack is called the Rainbow attack (Oechslin, 2003). After this, the 
attacker will be able to crack the system by checking all hashed passwords saved in the system against the built 
dictionary.  
Fourth stage: To prevent dictionary and Rainbow attacks new input parameter was added to the hashing process 
called “salt”, the salt must be long unique random value, which saved with the hash code and used Id (Forouzan, 
2008). Salt is just concatenated to the password before hashing process. Hence, each user password has a 
different hash codes even if they are similar. In this case, previously mentioned Rainbow table attack in the third 
stage will be worthless because the attacker must generate a separate dictionary for every user in the system to 
make a successful attack, which is so difficult to be done. 

c = Hash (p || salt) 
Hackers revert to brute-force attack utilizing fast computers, which calculate billions of hash codes per second 
(Percival & Josefsson, 2016). Hash functions are usually designed to be fast so they are vulnerable to such kind 
of attacks.  
Fifth stage: Developers started using slow cryptographic algorithms such as Password-Based Key Derivation 
Function 2 PBKDF2, Blowfish-based BCrypt and SCrypt against the fast brute-force attacks (Kaliski, 2000), 
(Percival & Josefsson, 2016), (Provos & Mazières, 1999). These algorithms accept using work factor value along 
with the password and salt. The work factor defines the amount of time as an input parameter, which makes it 
possible to control the total time of computing the hash code for the password and the salt. Such technique is 
designed to safeguard against future hardware improvements as predicted in Moore’s law (Moore, 1995). 

c = Hash (“work factor”,p || salt) 
3. Modern Algorithms Used for Password Storage 
Nowadays, most common techniques for password storage uses storing of hash code of the password with a salt 
calculated by any kind of Message Authentication Code (MAC) tools (Stallings, 2011). These MAC tools like 
HMAC or Block cipher, where the password is used as MAC key and the salt as the message, are more secure 
than traditional calculating H(salt||p). However, the main weakness for such solution is brute force attack, which 
still not resolved. 
To overcome this issue, modern algorithms used for password storage depend on slowing the whole process to 
make it more resistant to brute force attack. Such algorithms like BCrypt, PBKDF2 and SCrypt use a technique 
called key stretching (Percival & Josefsson, 2016). 
Most of the modern password storage algorithms take into consideration the control of the calculation time for 
generating hashed password to require more Central Processing Unit CPU power.  Such solutions take into 
consideration Moore's Law. Hence, mean when computers get faster, such algorithms will be modified to request 
more CPU power.  In this way, the attacker must invest more time to be able to calculate the password. 
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All of these techniques use the work factor parameter to slow the used hash function, as work factor will be 
different for each password, thus these algorithms are more resistant to all kinds of brute force attacks.  
3.1. Algorithm BCrypt 
BCrypt is one of the most known modern algorithms used in password storage. It was invented by Niels Provos 
and David Mazières (Provos & Mazieres, 1999). It is based on using Blowfish block cipher as a function of key 
derivation for passwords. BCrypt uses salt to protect against rainbow table attacks and it uses a function, which 
controls time of calculation. This function depends on controlling the iteration count to make the calculation of 
hashed password slower, in order to be more resistant to brute-force attacks. 
Expensive Key schedule Blowfish (Eksblowfish) was developed to calculate keys in Blowfish algorithm (Provos 
& Mazieres, 1999). This technique for key generation starts by using the standard Blowfish key setup with some 
modifications, where password and salt are used to generate sub-keys. A number of rounds depending on work 
factor parameters in which the standard Blowfish keying algorithm is applied by alternating the salt and the 
password as the key, each round starting with the sub-key state from the previous round. Such solution makes the 
number of sub-key calculation rounds modifiable. Using work factor can make the whole process slow, which 
makes it difficult for attackers to use brute-force attack in order to conclude the real password especially that the 
hash code for the same password is different depending on the work factor parameter. 
Bcrypt depends on two main functions Eksblowfish and ExpandKey, and the main Bcrypt algorithm that uses 
these functions to calculate hashed passwords. 
The algorithm includes the following parameters: 
• S – Salt, octet string randomly generated 
• Pass – Password phrase 
• W – Work factor 
• Key – Key 
Bcrypt (WorkFactor, salt, input): 
state ←  EksBlowfishSetup(W, S, pass) 
ctext ←  "OrpheanBeholderScryDoubt" //three 64-bit blocks 
repeat (64) 
ctext ←  EncryptECB(state, ctext)//encrypt using Blowfish in ECB mode 
return Concatenate(W, S, ctext) 

EksBlowfishSetup (W, S, K) 

state ←  InitState() 
state ←  ExpandKey(state, S, K) 
    repeat (2W) 
        state ←  ExpandKey(state, 0, K) 
        state ←  ExpandKey(state, 0, S) 
return state 

 ExpandKey(state, S, K) 

    for(n = 1..18) 
       Pn ←  K[32(n-1)..32n-1] xor Pn //treat the key as cyclic 
   ctext ←  Encrypt(S[0..63]) 
   P1 ←  ctext[0..31] 
   P2 ←  ctext[32..63] 
   for(n = 2..9) 
       ctext ←  Encrypt(ctext xor salt[64(n-1)..64n-1]) //encrypt using the 
                                //current key schedule and treat salt as cyclic 
        P2n-1) ←  ctext[0..31] 
        P2n ←  ctext[32..63] 
   for(i = 1..4) 
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        for(n = 0..127) 
           ctext ←  Encrypt(ctext xor S[64(n-1)..64n-1]) //as above 
            Si[2n] ←  ctext[0..31] 
            Si[2n+1] ←  ctext[32..63] 
    return state 

3.2. Algorithm PBKDF2 
PBKDF2 is newer version of PBKDF1, which was presented in RFC 2898 (Kaliski, 2000). It uses hash function 
technique to create pseudorandom keys. PBKDF2 algorithm is not used for direct password storage; it is used to 
generate keys that are used with hash function to create hashed password with a salt, and then derives a key by 
repeating the process as many times (work factor) as specified. 

Function of PBKDF2 (Pass, S, c, dkLen) 

The algorithm includes the following parameters: 
• S – Salt, octet string randomly generated 
• Pass – Password phrase 
• c – Iteration counts 
• hLen – Length of the pseudorandom function output in octets 
• dkLen – Output length of key in octets dkLen ≤ (232− 1) * hLen 

If dkLen > (232 - 1) * hLen then go to exit; 
l ← CEIL (dkLen / hLen) //CEIL(x) is smallest integer ≤ x  
r ← dkLen - (l - 1) * hLen 
for j = 1 to l do 
    Y ← F (Pass,S,c,1) 
    Zj ← Y 
end for 
Output ← (Z1 ||  Z2 ||  ... ||  Zl) 

Function F (Pass, S, c, i): 

F(Pass,S,c,i) ← U1 xor U2 xor …  xor Uc   
Z1 ← PRF(Pass,S || INT(i)) //PRF is a pseudrandom function, 
                        //INT(i)is 4-octet encoding of i, 
for j = 2 to c do 
    Y ← PRF(P,Zj-1) 
    Zj ← Y 
end for 
Output ← (Z1 xor Z2 xor ... xor Zc) 

3.3 Algorithm SCrypt 
Scrypt was created by Colin Percival (Percival & Josefsson, 2012) and it depends on function with 
password-based key derivation. Scrypt needs a lot of memory to be implemented, which make it so difficult for 
attackers to use parallel attacks.   
Scrypt needs a very fast hardware and a big amount of memory as opposed to Bcrypt and PBKDF2  algorithms 
(Percival & Josefsson, 2016), which use salting or iteration or both as they do not consume many resources. Any 
attacker with little resources can launch a parallel attack with large scale and sometimes he could have some 
results in reasonable time. 
The algorithm includes the following parameters: 

• S – Salt, octet string randomly generated 
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• Pass – Password phrase 
• R – Block size in octets. 
• N –  CPU/memory cost parameter, where 1<N<2(128*R/8) 
• P – The parallelization parameter, where P ≤ (232-1)*32/(128*R). 
• hLen – Length of hash code HMACSHA256() in octets. 
• dkLen – Output length of key in octets dkLen ≤ (232− 1) * hLen. 

Function Scrypt(Pass, Salt, N, P, dkLen): 
(M0 ... Mp−1) ← PBKDF2HMAC_SHA256(Pass, Salt, 1, P * R) 
for i = 0 to P-1 do 
     Mi ← ScryptR0Mix(Mi,N) 
end for 
Output ← PBKDF2HMAC_SHA256(Pass, M0 || M1 ... Mp−1, 1, dkLen) 

Function ScryptR0Mix(B,N): 

Y ← M 
for i = 0 to N − 1 do 
    Vi ← Y 
    Y ← ScryptBlockMix(Y) 
end for 
for i = 0 to N − 1 do 
    j ← Integerify(Y) mod N  
    Y ← ScryptBlockMix(Y xor Vj) 
end for 
Output ← Y 

Function scryptBlockMix(M): 

(M0, ... , M2r-1) ← M 
Y ← M2r−1 
For i = 0 to 2r − 1 do 
    Y ← H(Y xor Mi) 
    Zi ← Y 
end for 
Output ← (Z0, Z2, ... , Z2r−2, Z1, Z3, ... , Z2r−1) 

4. Improved d-HMAC Function 
Improved d-HMAC (Najjar, 2015) uses dynamic values d-ipad and d-opad instead of using fixed values 
of ipad and opad in HMAC (Krawczyk & Bellare, 1997). Dynamic values in d-HMAC of d-ipad and 
d-opad depend on three parameters (Najjar, 2015):  

• Message m.  
• Public key used by the receive eK.  
• S-Box 

In other words, in case we have different receivers, different message content, or both then d-ipad and d-opad 
values will be different. 
HMAC and d-HMAC require a cryptographic secret key K and hash function h. We assume h to be a 
cryptographic hash function with hash code h(m) not less than 256 bits. Our recommendation is to use at least 
SHA-256 hash function with key length 256 bits or higher.  
d-HMAC can be calculated as the following (Figure 1): 

                    d-HMACK(m) = h(K+ ⊕ d-opad ,  h(K+ ⊕ d-ipad , m)) 
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Figure 1. d-HMAC Algorithm (Najjar, 2015) 

 
We are using d-HMAC, since it is more difficult to be comprised by brute force attack and birthday attacks than 
HMAC (Najjar, 2015). In d-HMAC hash code changes even if we send same message m and key K for different 
receivers, because these receivers have different public key eR unlike HMAC, where we will have the same hash 
code for different receivers. On the other hand, d-HMAC uses dynamic d-ipad and d-opad values. This will 
make it difficult for the attacker to conclude K offline by collecting and observing band of hash codes generated 
by the same K, where in HMAC is easier because of using fixed ipad and opad.  
In d-HMAC, the pepper already exists and the key represents it. Ordinary pepper is used with many hashed 
passwords with the same key, which makes it easier to the attacker to find k when the whole hashed passwords 
table with salt is compromised. In d-HMAC, such a threat does not exist because we always have different 
dynamic keys. 
According to tests done for improved d-HMAC (Najjar, 2015), we proved in three different tests the strong 
cryptographic characteristics for d-HMAC, which make it a better tool used for password storage than HMAC.  

These are the tests results: 
Speed Test 
As depicted in Table 1, it was proven that improved d-HMAC is slower than HMAC, which make it more 
attractive to be used in password storage. 
Table 1. Test of speed HMAC and d-HMAC 

Size of file (MB) HMAC (s) Improved d-HMAC (s) 
1 0.062 0.107 
5 0.189 0.443 

20 0.901 1.886 
50 1.844 3.634 
100 3.210 6.169 



cis.ccsenet.org Computer and Information Science Vol. 10, No. 3; 2017 

7 
 

Aval anche effect 
As depicted in Table 2 and Table 3, for 10 000 random key samples it was proven that improved d-HMAC has a 
very good avalanche. This mean that the using of dynamic values d-ipad and d-opad in improved d-HMAC did 
not have a negative effect on Avalanche effect characteristic. 
 
Table 2. Results for avalanche effect according to one bit change in message 

Results for XOR HMAC (bits) Improved d-HMAC (bits) 
MIN 97 97 
MAX 157 159 

Average 128.003 127.956 
 
Table 3. Results for avalanche effect according to one bit key change 

Results for XOR HMAC (bits) Improved d-HMAC (bits) 
MIN 103 105 
MAX 152 150 

Average 127.775 128.295 
 

Bal anci ng 
As depicted in table 4, it was proven that improved d-HMAC as HMAC has a very good balancing 
characteristic. 
 
Table 4. Results for balancing according to message one bot change 

Results for XOR HMAC (bits) Improved d-HMAC (bits) 
MIN 98 98 
MAX 162 157 

Average 127.962 128.062 
 
5. D-HMAC Resistance to Known Attacks for Password Storage 
In d-HMAC, we can use any kind of known cryptographic hash functions. Our recommendation in this paper is 
to use a hash function resistance to exhausting attack like SHA-256 with hash code =256 bits length or more.  
We can conclude d-HMAC is more secure than using normal salt, since salt may make the password less secure 
if the random value is not balanced. In our solution, we change the public key parameter for the receiver into a 
random string of characters not less than 20 bytes. In d-HMAC, even if the salt is not a good balanced random 
string of bits then our algorithm solves it and makes it balanced. As well, the salt is not appended to the password. 
It is used to modify the values of d-ipad and d-opad. This makes d-HMAC more resistance against RAINBOW 
attack. 
d-HMAC is a slower function than HMAC because values of k1= K+ ⊕ d-opad and k2= K+ ⊕ d-ipad cannot be 
calculated once and stored like in HMAC, since we have dynamic values for d-ipad and d-opad. 
In PBKDF2 (Kaliski, 2000), it is recommended to have at least 1000 iteration counts to be secure and to increase 
the cost of brute force attack search for passwords significantly. In d-HMAC without S-Box modification, you 
need 500 iteration counts, about half, as recommended in PBKDF2. 
In d-HMAC the pepper is already exist and represented by the key. Ordinary pepper is used with many hashed 
passwords. Therefore, with the same key it is easier to find k when the whole hashed passwords table with salt is 
compromised. In d-HMAC, such threat does not exist because always we have different keys. 
6. Conclusion and Perspectives 
We showed that improved d-HMAC is a very good tool for password storage. Moreover, we showed the using of 
improved d-HMAC in password storage is resistant against Rainbow attack. In improved d-HMAC, for two 
different users having similar passwords, the hash code will not be equal since each of them has a different 
public key. Using such attack against improved d-HMAC will force the attacker to have a different table for each 
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user, because they have different public keys. On the other hand, if we assume that the same user has different 
passwords in the same system for security issues such as different level of security, here also the rainbow attack 
will be infeasible because even for the same user there will be different input because of the dynamic character 
of d-ipad and d-opad.  
In the future work, we will develop the S-boxes to be dynamic in such way to make it a one-way function and we 
will manipulate and expand it to control the speed of the whole algorithm calculation. 
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