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Abstract – This paper presents an application of 

Information Gain (IG) attribute evaluation to the 

classification of the sonar targets with C4.5 decision tree. 

C4.5 decision tree has inherited ability to focus on relevant 

features and ignore irrelevant ones, but such method may 

also benefit from independent feature selection. In our 

experiments, IG attribute evaluation significantly improves 

C4.5 decision tree. This research also shows that feature 

selection helps increase computational efficiency while 

improving classification accuracy. 
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I. INTRODUCTION 

Feature selection is a fundamental problem in many 

different areas. For some problems, all features may be 

important, but for some target concept, only a small subset 

of features is usually relevant.  

Feature selection reduces the dimensionality of feature 

space, removes redundant, irrelevant, or noisy data. It 

brings the immediate effects for application: speeding up a 

data mining algorithm, improving the data quality and 

thereof the performance of data mining, and increasing the 

comprehensibility of the mining results. 

Finding the best feature subset is usually intractable [1] 

and many problem related to feature selection have been 

shown to be NP-hard [2]. Feature selection has been a 

fertile field of research and development since 1970’s in 

statistical pattern recognition [3]-[5], machine learning and 

data mining [6]-[11]. 

Feature selection algorithms may be divided into filters 

[12], [13], wrappers [1] and embedded approaches [6].  

Some classification algorithms have inherited ability to 

focus on relevant features and ignore irrelevant ones. 

Decision trees are primary example of a class of such 

algorithms [14], [15], but also multi-layer perceptron 

(MLP) neural networks with strong regularization of the 

input layer may exclude the irrelevant features in an 

automatic way [16].  
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Such methods may also benefit from independent 

feature selection. On the other hand, some algorithms have 

no provisions for feature selection. The k-nearest neighbor 

algorithm is one family of such methods that classify 

novel examples by retrieving the nearest training example, 

strongly relaying on feature selection methods to remove 

noisy features.  

Section II presents general feature selection structure. 

Section III describes one of the ranking methods, IG 

attribute evaluation. Section IV presents C4.5 decision tree 

as supervised learning algorithm. Section V describes the 

experiments and results. Section VI concludes and gives 

future investigations. 

II. GENERAL FEATURE SELECTION STRUCTURE 

It is possible to derive a general architecture from most 

of the feature selection algorithms. General architecture 

consists of four basic steps: subset generation, subset 

evaluation, stopping criterion, and result validation [7]. 

The feature selection algorithms create a subset, evaluate 

it, and loop until an ending criterion is satisfied [17]. 

Finally, the subset found is validated with the classifier 

algorithm on real data. 

Subset generation is a search procedure, it generates 

subsets of features for evaluation. The total number of 

candidate subsets is 2
N
, where N is the number of features 

in the original data set, which makes exhaustive search 

through the feature space infeasible with even moderate N. 

Non deterministic search like evolutionary search is often 

used to build the subsets [18]. It is also possible to use 

heuristic search methods. There are two main families of 

these methods: forward addition [19] (starting with an 

empty subset, we add features after features by local 

search) or backward elimination (the opposite). 

Each subset generated by the generation procedure 

needs to be evaluated by a certain evaluation criterion and 

compared with the previous best one with respect to this 

criterion. If it is found to be better, then it replaces the 

previous best subset. A simple method for evaluating a 

subset is to consider the performance of the classifier 

algorithm when it runs with that subset. The method is 
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classified as a wrapper, because in this case, the classifier 

algorithm is wrapped in the loop. On the contrary, filter 

methods do not rely on the classifier algorithm, but use 

other criteria based on correlation notions. 

The feature selection process may run exhaustively 

before it stops without a suitable stopping criterion. A 

feature selection process may stop under one of the 

following reasonable criteria: (1) a predefined number of 

features are selected, (2) a predefined number of iterations 

are reached, (3) whether addition (or deletion) of any 

feature does not produce a better subset, (4) an optimal 

subset according to the evaluation criterion is obtained. 

The selected best feature subset needs to be validated by 

carrying out different tests on both the selected subset and 

the original set and comparing the results using artificial 

data sets and real-world data sets. 

III. INFORMATION GAIN ATTRIBUTE EVALUATION 

Diverse feature ranking and feature selection techniques 

have been proposed in the machine learning literature. The 

purpose of these techniques is to discard irrelevant or 

redundant features from a given feature vector. The 

following attribute evaluations are used: IG, gain ratio, 

symmetrical uncertainty, relief-F, one-R and chi-squared. 

In this paper, we consider evaluation of the practical 

usefulness of IG attribute evaluation. 

Entropy is a commonly used in the information theory 

measure, which characterizes the purity of an arbitrary 

collection of examples. It is in the foundation of the IG 

attribute ranking methods. The entropy measure is 

considered as a measure of system’s unpredictability. The 

entropy of Y is 

                           ∑
∈

−=

Yy

ypypYH ))((log)()( 2              (1) 

where p(y) is the marginal probability density function for 

the random variable Y. If the observed values of Y in the 

training data set S are partitioned according to the values 

of a second feature X, and the entropy of Y with respect to 

the partitions induced by X is less than the entropy of Y 

prior to partitioning, then there is a relationship between 

features Y and X. Then the entropy of Y after observing X 

is: 

       ∑ ∑
∈ ∈

−=

Xx Yy

xypxypxpXYH ))((log)()()( 2    (2) 

where p(y |x ) is the conditional probability of y given x. 

Given the entropy as a criterion of impurity in a training 

set S, we can define a measure reflecting additional 

information about Y provided by X that represents the 

amount by which the entropy of Y decreases. This measure 

is known as IG. It is given by 

                )()()()( YXHXHXYHYHIG −=−=     (3) 

IG is a symmetrical measure (refer to equation (3)). The 

information gained about Y after observing X is equal to 

the information gained about X after observing Y. A 

weakness of the IG criterion is that it is biased in favor of 

features with more values even when they are not more 

informative. 

IV. C4.5 DECISION TREE 

Different methods exist to build decision trees, but all of 

them summarize given training data in a tree structure, 

with each branch representing an association between 

feature values and a class label. One of the most famous 

and representative amongst these is the C4.5 decision tree 

[20]. The C4.5 decision tree works by recursively 

partitioning the training data set according to tests on the 

potential of feature values in separating the classes. The 

decision tree is learned from a set of training examples 

through an iterative process, of choosing a feature and 

splitting the given example set according to the values of 

that feature. The most important question is which of the 

features is the most influential in determining the 

classification and hence should be chosen first. Entropy 

measures or equivalently, information gains are used to 

select the most influential, which is intuitively deemed to 

be the feature of the lowest entropy (or of the highest 

information gain). This learning algorithm works by: a) 

computing the entropy measure for each feature, b) 

partitioning the set of examples according to the possible 

values of the feature that has the lowest entropy, and c) for 

each are used to estimate probabilities, in a way exactly 

the same as with the Naive Bayes approach. Although 

feature tests are chosen one at a time in a greedy manner, 

they are dependent on results of previous tests. 

V. EXPERIMENTS AND RESULTS 

Connectionist Bench (Sonar, Mines vs. Rocks) data set 

was used for IG attribute evaluation with C4.5 decision 

tree, taken from the UCI repository of machine learning 

databases [20]. This is the data set used by Gorman and 

Sejnowski in their study of the classification of sonar 

signals using a neural network [21]. The task is to train a 

network to discriminate between sonar signals bounced off 

a metal cylinder and those bounced off a roughly 

cylindrical rock. 

This data set contains 111 patterns obtained by 

bouncing sonar signals off a metal cylinder at various 

angles and under various conditions, and 97 patterns 

obtained from rocks under similar conditions.  The 

transmitted sonar signal is a frequency-modulated chirp, 

rising in frequency.  The data set contains signals obtained 

from a variety of different aspect angles, spanning 90 

degrees for the cylinder and 180 degrees for the rock. 

Each pattern is a set of 60 numbers in the range 0.0 to 

1.0, where each number represents the energy within a 

particular frequency band, integrated over a certain period 

of time. 

If the object is a rock, the label associated with each 

record contains the letter "R" and if it is a mine (metal 

cylinder) "M". The numbers in the labels are in increasing 

order of aspect angle, but they do not encode the angle 

directly. 

Fig. 1 shows a sample return from the rock and the 

cylinder. The preprocessing of the raw signal was based on 

experiments with human listeners. The temporal signal 

was first filtered and spectral information was extracted 

and used to represent the signal on the input layer. 
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Fig. 1. Amplitude displays of a typical return from the 

cylinder and the rock as a function of time [21]. 

The preprocessing used to obtain the spectral envelope 

is indicated schematically in Fig. 2 where a set of 

sampling apertures (Fig. 2a) are superimposed over the 2D 

display of a short-term Fourier Transform spectrogram of 

the sonar return. The spectral envelope, Pt0,v0(η), was 

obtained by integrating over each aperture (Fig. 2b and c). 

 

Fig. 2. The preprocessing of the sonar signal produces a 

sampled spectral envelope. (a) The set of sampling 

apertures offset temporally to correspond to the slope of 

the FM chirp, (b) sampling apertures superimposed over 

the 2D display of the short-term Fourier transform, (c) the 

spectral envelope obtained by integrating over each 

sampling aperture [21]. 

 

A supervised learning algorithm, C4.5 decision tree is 

adopted here to build model. The purpose of the 

experiments described in this section is to empirically test 

the claim that IG attribute evaluation can improve the 

accuracy of classification algorithm C4.5 decision tree. 

The performance of learning algorithms with and without 

feature selection is taken as an indication of IG attribute 

evaluation success in selecting useful features, because the 

relevant features are often not known in advance for 

natural domains. Classification accuracy was estimated 

using ten-fold cross validation. 
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Fig. 3. Classification accuracy of C4.5 decision tree with 

IG attribute evaluation. 

Fig. 3 shows for C4.5 decision tree, how much data set 

accuracy was improved and degraded by IG attribute 

evaluation. IG attribute evaluation maintains or improves 

the accuracy of C4.5 decision tree if we used more than 9 

relevant features and degrades, maintains or improves its 

accuracy if we used less than 9 relevant features. The 

accuracy of C4.5 decision tree significantly improves more 

than 10% on this data set with IG attribute evaluation. 

Evaluation of selecting features is fast. 

 
TABLE 1: GENERATING DECISION RULES 

Number of most 

relevant features 

Number 

of leaves 

Size 

of tree 

60 - 52 18 35 

51 - 49 17 33 

48 - 36 18 35 

35 - 34 17 33 

33 - 33 19 37 

32 - 29 16 31 

28 - 22 17 33 

21 - 21 18 35 

20 -18 19 37 

17 - 17 20 39 

16 - 14 18 35 

13 - 13 19 37 

12 - 11 20 39 

10 - 10 23 45 

9 - 9 21 41 

8 - 8 19 37 

7 - 5 14 27 

4 - 4 8 15 

3- 1 2 3 

 

C4.5 decision tree without feature selections is 

generated 18 rules, and  size of the tree is 35. Table 1 

shows that IG attribute evaluation changes the size of the 

trees induced by C4.5 decision tree depends on number of 

most relevant features. Rules for this data set obtained by 

C4.5 decision tree without feature selections are: 

 

If f_11 = <0.197 and f_1 <= 0.0392 and f_4 <= 0.0539 and 

f_28 <= 0.9578 and f_27 <= 0.2771 and f_2 <= 0.0378 

Then Classification = Mine (2.0); 
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If f_11 = <0.197 and f_1 <= 0.0392 and f_4 <= 0.0539 and 

f_28 <= 0.9578 and f_27 <= 0.2771 and f_2 > 0.0378 

Then Classification = Rock (2.0); 

If f_11 = <0.197 and f_1 <= 0.0392 and f_4 <= 0.0539 and 

f_28 <= 0.9578 and f_27 > 0.2771 

Then Classification = Rock (56.0); 

If f_11 = <0.197 and f_1 <= 0.0392 and f_4 <= 0.0539 and 

f_28 > 0.9578 and  f_2 <= 0.0253 

Then Classification = Rock (2.0); 

If f_11 = <0.197 and f_1 <= 0.0392 and f_4 <= 0.0539 and 

f_28 > 0.9578 and  f_2 > 0.0253 

Then Classification = Mine (3.0); 

If f_11 = <0.197 and f_1 <= 0.0392 and f_4 > 0.0539 and 

f_21 <= 0.7894 and f_18 <= 0.2613 

Then Classification = Mine (2.0); 

If f_11 = <0.197 and f_1 <= 0.0392 and f_4 > 0.0539 and 

f_21 <= 0.7894 and f_18 > 0.2613 

Then Classification = Rock (6.0); 

If f_11 = <0.197 and f_1 <= 0.0392 and f_4 > 0.0539 and 

f_21 > 0.7894  

Then Classification = Rock (6.0); 

If f_11 = <0.197 and f_1 > 0.0392 

Then Classification = Mine (8.0/1.0); 

If f_11 > 0.197 and f_27 <= 0.8145 and f_54 <= 0.0205 

and f_53 <= 0.0166 and f_21 <= 0.5959 

Then Classification = Rock (14.0); 

If f_11 > 0.197 and f_27 <= 0.8145 and f_54 <= 0.0205 

and f_53 <= 0.0166 and f_21 > 0.5959 and f_51 <= 0.0153 

and f_23 <= 0.7867 

Then Classification = Rock (13.0/1.0); 

If f_11 > 0.197 and f_27 <= 0.8145 and f_54 <= 0.0205 

and f_53 <= 0.0166 and f_21 > 0.5959 and f_51 <= 0.0153 

and f_23 > 0.7867 

Then Classification = Mine (6.0/1.0); 

If f_11 > 0.197 and f_27 <= 0.8145 and f_54 <= 0.0205 

and f_53 <= 0.0166 and f_21 > 0.5959 and f_51 > 0.0153 

Then Classification = Mine (7.0); 

If f_11 > 0.197 and f_27 <= 0.8145 and f_54 <= 0.0205 

and f_53 > 0.0166 

Then Classification = Mine (12.0/1.0); 

If f_11 > 0.197 and f_27 <= 0.8145 and f_54 > 0.0205 

Then Classification = Mine (13.0); 

If f_11 > 0.197 and f_27 > 0.8145 and f_8 <= 0.0697 and 

f_2 <= 0.0222 

Then Classification = Mine (3.0); 

If f_11 > 0.197 and f_27 > 0.8145 and f_8 <= 0.0697 and 

f_2 > 0.0222 

Then Classification = Rock (2.0); 

If f_11 > 0.197 and f_27 > 0.8145 and f_8 > 0.0697 

Then Classification = Mine (51.0); 

 

The experiments presented in this article show that IG 

attribute evaluation’s ability to select useful features 

improves C4.5 decision tree. 

VI. CONCLUSIONS 

IG attribute evaluation may filter features leading to 

reduce dimensionality of the feature space. In our 

experiments, IG attribute evaluation significantly improves 

C4.5 decision tree, in spite of the fact that C4.5 decision 

tree has inherited ability to focus on relevant features and 

ignore irrelevant ones. In this research feature selection 

helps increase computational efficiency while improving 

classification accuracy. These conclusions will be tested 

on larger data sets using various classification algorithms 

in the near future. 
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