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The relations between multiple imbalanced classes can be handled with a specialized approach which evaluates types of

examples’ difficulty based on an analysis of the class distribution in the examples’ neighborhood, additionally exploiting

information about the similarity of neighboring classes. In this paper, we demonstrate that such an approach can be im-

plemented as a data preprocessing technique and that it can improve the performance of various classifiers on multiclass

imbalanced datasets. It has led us to the introduction of a new resampling algorithm, called Similarity Oversampling and

Undersampling Preprocessing (SOUP), which resamples examples according to their difficulty. Its experimental evaluation

on real and artificial datasets has shown that it is competitive with the most popular decomposition ensembles and better

than specialized preprocessing techniques for multi-imbalanced problems.
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1. Introduction

In imbalanced data at least one of the target classes

contains a much smaller number of examples than

the other classes. This underrepresented class, called

a minority class, gains more importance than the

remaining majority class(es), and its correct recognition

is particularly required in many applications. Standard

learning algorithms are biased toward better recognition

of the majority classes and they met difficulties (or even

are unable) to classify correctly new instances from the

minority class (see He and Ma, 2013).

Up to now many specialized methods for improving

the classification of imbalanced data have been

introduced. Nevertheless, some problems are still worth

to be studied more deeply (Krawczyk, 2016; Stefanowski

et al., 2017). One of them is dealing with multiple

decision classes.

Note that most of the current research concerns

binary classification problems, i.e., with a single minority

class and a single majority class. This formulation is

justified by the nature of typical imbalanced problems,
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where a single minority class is most important from the

application perspective and it is essential to improve its

recognition. Focusing on this single class usually leads

to seeing all the remaining classes as one aggregated

class. However, in some problems it may be reasonable

to focus interest on more minority classes and such class

binarization may be questionable. For instance, in some

medical problems physicians may consider few different

types of an illness as more critical than other less serious

disorders. In such situations, aggregating classes into a

binary version is unacceptable, in particular when one

critical (usually also rare) disease class would be joined

with a majority class of more healthy patients (Lango

et al., 2017). On the other hand, joining minority classes

together will not lead to different therapies for various

types of a disease. Similar needs for distinguishing more

minority classes in medical procedures are discussed by

Wojciechowski et al. (2017).

The current approaches to deal with multiple

imbalanced classes are mainly based on decomposition

of the multiclass problem to special binary subtasks.

The most popular are adaptations of earlier known

one-versus-one (OVO) or one-versus-all (OVA) ensemble
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schemes, which apply resampling methods for binary

problems (Fernandez et al., 2013). Other simpler

preprocessing methods usually straightforwardly

oversample the minority classes to the size of the

majority ones (Zhou and Liu, 2010) or iteratively

duplicate the smallest class with the SMOTE

method (Fernández-Navarro et al., 2011).

Although the selected minority classes are specially

re-sampled in these approaches, the information about

decision boundaries between various classes or its internal

data distributions is lost, while in the original problem

one class may influence several neighboring classes at the

same time. Furthermore, these binary decompositions do

not consider the mutual relations between classes that are

different for majority and minority classes and increase

the complexity of the learning task.

To illustrate the need for dealing with class

interrelations, consider the asthma diagnosis discussed

by Lango et al. (2017). The two types of asthma,

being minority classes, are more closely related to each

other and their treatment procedures do not differ too

much, while the similarity of these classes to the majority

class (nearly healthy patients) is much lower, which is

also reflected in a simpler and less aggressive medicine

therapy. Such different neighbourhood relations between

classes should be taken into account while constructing

new approaches to multiclass imbalances.

Following these motivations, Lango et al. (2017)

recently introduced a new approach to examine the

interrelations of multiclasses in imbalanced data. It

generalizes the previous approach to study the types

of the examples’ difficulty for binary class datasets,

which is based on the analysis of a class distribution

in the neighborhood of the examples (Napierala

and Stefanowski, 2012; 2016). In the multiclass

generalization, it also exploits additional information

about the similarity of neighboring classes to the class

of an examined example. Lango et al. (2017) showed

that this approach is capable of identifying data difficulty

factors in multiclass imbalanced data. Nevertheless, the

question of exploiting the information coming from that

proposal in the design of new methods for improving

classification of imbalanced data remains open.

Therefore, the aim of this paper is to study whether

this approach could be used in a new preprocessing

approach to multiclass imbalanced data. We will

show this by introducing a new re-sampling algorithm,

called Similarity Oversampling and Undersampling

Preprocessing (abbreviated as SOUP), which first

removes the most harmful majority class examples and

than oversamples the most important minority ones

according to their safe levels resulting from analyzing

their neighbourhood. Furthermore, we will demonstrate

that elements of SOUP can be used to modify resampling

in the binarization-based ensembles, particularly those

relying on the OVO principle. In order to validate

the usefulness of these newly introduced methods,

we will experimentally compare them with the most

popular methods specialized for dealing with multiclass

imbalanced data (which do not model interrelations

among classes) covering both preprocessing and ensemble

decomposition ones. Furthermore, we will examine how

different ways of defining class similarities may influence

the SOUP performance.

The paper is organized as follows. Section 2 covers

the most related previous works. In Section 3 we provide

background of the proposal to model class interrelations

and to estimate example difficulty levels. The new

resampling algorithm SOUP and modifications of the

OVO ensemble are introduced in Section 4. Section 5

describes the experimental analysis of the proposed

methods and their comparison with the state-of-the-art

algorithms. Section 6 concludes our study.

2. Related works on multiclass imbalances

Multiclass classification problems are considered to be

more difficult than their binary counterparts. For instance,

Wang and Yao (2012) experimentally demonstrated that

increasing the number of classes is strongly correlated

with a decrease in many popular classification measures

even for more balanced data. The bulk of the proposed

methods for binary imbalanced data are not directly

applicable for multiple classes. The current approaches

to multiclass imbalances are mainly based on adapting

binary preprocessing techniques, special algorithmic

modifications or using misclassification costs; see their

review by Fernández et al. (2018). Following these

authors, the most popular decomposition approaches are

one-vs-all (OVA) and one-vs-one (OVO) strategies.

The OVA method constructs a binary subproblem for

each class, where all other classes are aggregated into one

common class. More precisely, from the original dataset

D, a series of datasets D1, D2, . . . , Dc is constructed

where c is the number of classes. Each dataset Di

contains all the examples of D but the class label y is

replaced by I[y = i] where I is the indicator function.

On each dataset Di a binary classifier Ci is trained. For

a new instance x, the class is usually assigned by the

component classifier with the highest confidence, i.e.,

argmaxi∈{1,2,...,c} Ci(x).
Contrary to one-vs-all, the one-vs-one approach

exploits a decomposition of multiclasses into all possible

pairs of classes. For each pair of classes, a dataset

Dij which contains the examples of classes i and j
is constructed. Again, the class label is replaced

by I[y = i], binary classifiers Cij are trained on

corresponding datasets Dij , and the final decision is made

by argmaxi∈{1,2,...,c}

∑c

j=1
Cij(x). It is noteworthy that

this method creates a quadratic number of classifiers
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(c(c− 1)/2) with respect to the number of classes which

may cause problems when the number of classes is high.

All these approaches have been adopted for the

imbalanced case. The most studied extensions of OVO

and OVA ensembles are those which apply resampling

methods (such as random oversampling, undersampling or

SMOTE) to balance class distribution in binary datasets.

Their experimental evaluation was extensively studied

by Fernandez et al. (2013). Various aggregation methods

of component classifiers outputs were also studied (Galar

et al., 2011). Other decomposition techniques are

surveyed by Fernández et al. (2018).

There are also other ensemble approaches for

multi-class imbalanced data. Abdi and Hashemi (2016)

propose a Mahalanobis distance-based oversampling

method and combine it with a boosting algorithm, creating

MDOBoost. Other combinations of random resampling

with boosting are proposed by Wang and Yao (2012).

Recently, yet another extension of Roughly Balanced

Bagging to multiclass imbalanced data has been proposed

by Lango and Stefanowski (2018).

There are special preprocessing methods for

multiclass imbalanced data. The most well-known

is Global-CS which takes inspirations from rescaling

approaches in cost-sensitive learning, where Zhou and Liu

(2010) proposed to assign an equal weight to every class,

independently of their cardinality. Fernandez et al. (2013)

argue that the simplest way of achieving it is by the means

of random oversampling. In Global-CS each class is

oversampled except the class with the highest cardinality.

First, each instance is copied ⌊nmax/ni⌋ times, where ni

is the size of an example’s class and nmax is the size of the

biggest majority class. Then, (nmax mod ni) examples

are randomly oversampled for each class i. After these

operations every class has an equal number of examples.

Besides this uninformed preprocessing method, also some

informed oversampling methods have been proposed,

most notably Static-SMOTE (Fernández-Navarro

et al., 2011), which works iteratively. In each iteration

the class with the smallest cardinality is selected and

duplicated with the standard SMOTE technique (treating

all examples from nonselected classes as majority

ones). The number of the method’s iterations is set

as the number of classes. There is also a limited

number of works on combinations of oversampling with

undersampling (Agrawal et al., 2015), which include a

selective hybrid resampling SPIDER3 (Wojciechowski

et al., 2017), where relations between classes are captured

by predefined misclassification costs. Moreover, Seaz

et al. (2016) have applied types of minority examples

of Napierala and Stefanowski (2012) to independently

oversample single minority classes, however without

considering any relations between classes. For a more

detailed review of methods for multi-class imbalanced

learning, see the work of Fernández et al. (2018).

3. Modeling multiple class interrelations

and data difficulty factors

The proposal presented by Lango et al. (2017) results

from two inspirations:

(i) the need for richer modeling complex relations

between classes, which is missed by current

approaches, and

(ii) previous studies with handling data difficulty factors

by means of the types of examples for binary

imbalanced classification.

Discussing the first point, please note that one class

may be a majority one when it is compared with some

other classes but at the same time it may be a minority

class with respect to the remaining classes (Krawczyk,

2016; Wang and Yao, 2012). The simple resampling

of single classes is usually insufficient to deal with

these situations. Then, distributions of many classes

are quite complex and boundaries between them may

overlap. As a result, examples from these overlapped

regions, which belong to different classes and have

similar attribute descriptions, usually negatively influence

predictive accuracy. However, their influence on each

class recognition may be different. Thus, when dealing

with multiple classes, one may easily lose performance

on one minority class while attempting to improve it at

another classes (Seaz et al., 2016).

Moreover, the availability of expert knowledge on

the classes’ interpretation and their mutual relations

should influence the solutions to multiclass imbalanced

classification. As discussed in Section 1, some minority

classes can be treated as more closely related to each other

than to the majority class in some practical applications

(see, e.g., the asthma diagnosis case). It may impact

both the evaluation of data difficulty and the development

of methods for improving classification. In the first

perspective, the class similarity should be taken into

account while considering which class misclassifications

are better and which are worse according to an expert

(it is different from the expert’s misclassification costs of

Wojciechowski et al. (2017)).

This is related to a more general problem of

analyzing neighboring examples for the given class

and considering which other class examples are more

preferred to be the closest neighbors of this class

according to the expert knowledge. Such class

neighborhood analysis is particularly useful while

modifying the example distribution in preprocessing

techniques, where one should decide which class

examples should be introduced in the given subregion

of data (where examples of other classes already exist).

The decomposition approaches, which treat all pairs of

classes equally, do not reflect these issues properly (Seaz

et al., 2016).
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Following the second motivation point, class

imbalances are often accompanied by additional data

difficulty factors. These factors referring to internal

characteristics of class distributions may be even more

influential than the global imbalance ratio between

cardinalities of minority and majority classes. They

include the decomposition of the minority class into many

rare subconcepts playing a role of small disjuncts (Jo

and Japkowicz, 2004; Stefanowski, 2016), overlapping

between the classes (Prati et al., 2004; Garcia et al., 2007)

or the presence of many minority class examples inside

the majority class region (Napierala et al., 2010). A

joint combination of all these data difficulty factors with

the class imbalance seriously degrades the recognition

of the minority class; see, e.g., experimental studies

(Lopez et al., 2014; Stefanowski, 2013). Napierala

and Stefanowski (2012) have linked some of these data

difficulty factors to distinguishing different types of exam-

ples forming the minority class distribution.

3.1. Types of examples in imbalanced data and

the approaches for their identification. Napierala and

Stefanowski (2012) proposed to distinguish the following

types of examples. Safe examples are the ones located

in homogeneous regions populated by examples from one

class only. Other examples are unsafe (categorized into

borderline, rare cases and outliers) and more difficult for

learning.

To identify the type of a particular example, they

analyze the ratio between the number of minority

and majority examples in its neighborhood which can

be modeled with either k-nearest neighbors or kernel

functions. Specific thresholds on this ratio are directly

related to particular example types. For instance, if all

or nearly all neighbors belong to the same class, the

example is treated as a safe example; if the prevalence of

both classes inside the neighborhood is quite similar, the

example is treated as a borderline one, etc. (Napierala and

Stefanowski, 2012; 2016).

Besides using labels which depends on such

thresholds, these authors also defined a coefficient

expressing a safe level of the given example x being

a local estimator of the conditional probability of its

assignment to the target class as

p(C|x) =
kC
k
, (1)

where C is the class of example x, k is the number

of neighbors and kC is the number of neighbors which

belongs to class C. Usually these coefficients are

examined for the minority class only, as these are much

diversified and smaller while majority examples often

have very high safe levels (Napierala and Stefanowski,

2016).

The information about the type of examples have

been already successfully applied to binary imbalanced

problems, (see, e.g., Błaszczyński and Stefanowski,

2015). Therefore, new multiclass generalizations have

been expected (Krawczyk, 2016). These new approaches

should also take into account the complexity of different

relations between multiple classes. Using existing binary

class approaches to estimate data difficulty in such a case

is not straightforward (Seaz et al., 2016).

3.2. Handling multiple class relations with sim-

ilarity information. To model relations between

multiple imbalanced classes, Lango et al. (2017) exploit

information about the similarity between pairs of classes.

This information should be acquired from users being

experts in the domain problem. They should say which

classes can be seen as more similar to each other than to

the rest of the classes. Furthermore, this class similarity

may correspond to the expert’s interpretation of a mutual

position of examples in the neighborhood of the example

from a given class. An intuition behind this neighborhood

is the following: if example x from a given class has

some neighbors from other classes, then neighbors from

the class with higher similarity are more preferred.

Consider an illustrative example with three classes:

M1 andM2 minority ones andW majority class. Assume

that example x belongs to M1. While looking at its 5

neighbors, consider several possible situations which are

presented in Table 1.

The neighborhood (a) is the most preferred situation,

as example x is surrounded only by examples from its

class. In situations (b) and (c), the neighborhoods of

example x include one example from class M1 and four

examples from other classes. Within the binary analysis

of example types both these situations will be treated as

the same one, however, knowing relations between classes

will lead to a different interpretation. If an example

x has more neighbors from another minority class M2
(situation b) it is more preferred to neighborhood (c)

where all surrounding examples come from the distant

majority class W . This neighborhood (b) would let the

expert consider the analyzed example to be safer—in other

terms, easier recognized as a member of its class (as it will

be less prone to suffer from the algorithm bias toward the

majority classes). The strength of this preference could

be expressed by the experts asked to define similarity

between classes—stronger between minority classes and

Table 1. Different multiple classes in the neighborhood.

No. Class M1 Class M2 Class W

a 5 0 0

b 1 2 2

c 1 0 4
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much lower between the minority and majority classes1.

More formally, it is assumed that for each pair of

classes Ci, Cj the degree of their similarity is defined

as a real µij ∈ [0, 1]. The similarity of a class to

itself is defined as µii = 1. The degree of similarity

does not have to be symmetric, i.e., for some classes

Ci, Cj it may happen that µij �= µji. Although the

values of µij are defined individually for each dataset,

the general recommendation of Lango et al. (2017) is

to have higher simlarities (µig → 1) for other minority

classes Cg , while similarities to majority classes Ch

should be rather low (µih → 0). This claim is coherent

with the earlier experimental studies showing that the

multimajority case is more difficult than problems with

many minority classes (Wang and Yao, 2012).

The degrees of similarity should be provided by an

expert or can come from the domain knowledge. If neither

is available, some heuristic approaches could be used. In

this work, we propose such an approach which models

the situations where one of minority classes suffers from

imbalance with respect to the majority class but at the

same time may cause imbalances to another, smaller

minority class. This leads us to the following definition:

µij =
min(|Ci|, |Cj |)

max(|Ci|, |Cj |)
, (2)

where |Ci| is the number of examples of Ci class. To

better understand our heuristics, consider the classical

car UCI dataset which has the classes of the following

cardinalities: |Cgood| = 69, |Cvgood| = 65, |Cunacc| =
1210 and |Cacc| = 384. The similarity between two

smallest minority classes is 0.94 and the similarities

between the biggest “unacc” class and other minority

classes is around 0.05 which is in line with our previous

indications. However, the medium size “acc” class may

also act as a minority one with respect to “unacc” but

at the same time may play a role of a majority class in

the proximity of “good” and “vgood” examples. This is

reflected in the similarity values assigned by the proposed

heuristic: µacc,unacc = 0.32, µacc,good = 0.18 and

µacc,vgood = 0.17.

3.3. Data difficulty with respect to a safe level of mi-

nority examples. The degrees of similarity have been

applied to generalize the identification of the type of

examples. Lango et al. (2017) generalized the safe level

coefficient in the following way.

Considering a given example x belonging to the

minority class Ci. Its safe level is defined with respect

1Note that in our proposal of similarity between classes we do not

directly model misclassifications between minority classes, which alter-

natively could be handled by yet another approach with costs of misclas-

sifications between classes (Wojciechowski et al., 2017).

to l classes of examples in its neighborhood as:

safe(xCi
) =

1

n

l
∑

j=1

nCj
µij (3)

where µij is the degree of similarity, nCj
is the

number of examples from class Cj inside the considered

neighborhood of x and n is a total number of neighbors.

Coming back to the illustrative example from the

previous sub-section, calculate the safe level for situations

(b) and (c). If we assume that similarity between minority

classes M1 and M2 is equal to 0.5 while their similarity

to majority class W is equal to 0, then

safe(xb) =
1× 1 + 0.5× 2 + 0× 2

5
= 0.25

while

safe(xc) =
1× 1 + 0× 4

5
= 0.2.

Thus, the situation (b) is interpreted as slightly safer than

its alternative (c). If one increases the minority class

similarities up to 0.8, then safe(xb) = 0.52 and safe(xc)

will be still 0.2. Thus, the difference in interpreting the

safe neighborhood will be much higher. Note that without

modeling class similarities the situations (b) and (c) are

indistinguishable as their safe levels are the same and

equal to 0.2

Lango et al. (2017) carried out few experiments

with mainly artificial datasets and analyzed averaged safe

levels for minority examples together with the predictions

of standard classifiers. They showed that this method

sufficiently well identifies difficulties in learning these

classifiers from the minority classes and their distribution,

in particular for class overlapping.

4. Resampling algorithm SOUP

In this paper we want further exploit the approach

described in Section 3 to improve classification of

multi-class imbalanced data. However, as our aim is to

present a kind of a feasibility study rather than looking for

the most accurate solution, we have decided to consider a

relatively simple and universal pre-processing method.

As a critical motivation for this method we notice

that existing multiclass oversampling methods increase

class cardinalities to the sizes of majority classes (see

Global-CS), which may reinforce difficulties in class

distributions, in particular in the case of class overlapping

or complex boundaries. Moreover, it may too strongly

amplify possible noise of minority class examples with

respect to more complicated relations to many other

classes. On the other hand, undersampling may be

more problematic for imbalanced datasets with a high

disproportion between the cardinality of the biggest and

the smallest class.
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Therefore, we have decided to introduce a hybrid

resampling algorithm, called Similarity Oversampling and

Undersampling Preprocessing (SOUP), which combines

undersampling with oversampling and exploits the

information about the difficulty of examples. Its

pseudocode is presented in Algorithm 1. In what follows

we shall present a rationale behind SOUP algorithm and

describe the proposed approach in more detail.

In SOUP, all majority classes are undersampled and

all minority classes are oversampled to the cardinality

being the average of the sizes of the biggest minority and

the smallest majority class (line 3). It is partly inspired by

experiences with SCUT undersampling (Agrawal et al.,

2015). This provides us not only a dataset with a balanced

class distribution, but also with a reasonable size.

SOUP exploits the knowledge about the examples’

safe levels which were defined in the previous section.

The undersampling of the majority classes is performed

by removing the most unsafe examples until a desired

class cardinality is obtained (line 9). In this way, the

undersampling process is focused on the examples lying

closely to minority examples or inside their regions,

which possibly deteriorate minority class recognition. The

oversampling of minority classes is performed in the

opposite direction, i.e., the safest examples are duplicated

first, enhancing the representation of clear minority

concepts (line 17). In the undesirable situation that there

are not enough examples to achieve the requested number

of examples even by duplicating the whole class, the list of

class examples is processed cyclically from the beginning.

Another aspect of this sampling scheme is that the

safe level of a particular example in the final distribution

is changing while performing consecutive steps of over-

or under sampling for succeeding classes. This leads to

establishing a particular order of performing under- and

oversampling in SOUP, starting from operations which

should have the biggest impact on other examples’ safe

levels and potentially on the recognition of the minority

classes. In this way, undersampling majority classes

is done from the biggest to the smallest one (line 4).

Then, the minority classes are oversampled from the

smallest to the biggest one (line 12). Note that after each

under/oversampling of a class, safe levels of all examples

are recomputed.

The calculation of the safe level which takes into

account the degrees of similarities (lines 7 and 15) as well

as the homogeneity of a k neighborhood is performed as

proposed by Lango et al. (2017) with HVDM distance.

This is the most time-consuming element of SOUP.

Furthermore, in order to check how effective our

resampling technique is in the combination with the OVO

and OVA decomposition approaches, we have developed

two separate sampling techniques based on solutions

coming from SOUP, which will be applied before learning

component binary classifiers. Algorithms 2 and 3 present

Algorithm 1. Similarity Oversampling and

Undersampling Preprocessing (SOUP).

Input: D: original training set of |D| examples with c
classes; Cmin: indexes of minority classes; Cmaj: indexes

of majority classes; µij similarities between classes

Output: D′: balanced training set

1: Split dataset D into c homogeneous parts

D1, D2, . . . , Dc. Each Di contains all examples

from i class

2: D′ = ∅
3: m ← mean(mini∈Cmaj

|Di|,maxj∈Cmin
|Dj |)

4: for all i ∈ Cmaj do

5: for all x ∈ Di do

6: find k nearest neighbours of x
7: calculate safe level of x, according to Eqn. (3)

8: end for

9: remove |Di| − m examples with the lowest safe

level values from Di

10: D′ ← D′ ∪Di

11: end for

12: for all j ∈ Cmin do

13: for all x ∈ Dj do

14: find k nearest neighbours of x
15: calculate safe level of x, according to Eqn. (3)

16: end for

17: duplicate m− |Di| examples with the highest safe

level values in Dj

18: D′ ← D′ ∪Dj

19: end for

20: return D′

the pseudocodes of undersampling and oversampling

approaches for binary imbalanced data. They were created

by extracting and adapting the respective parts from

SOUP. Note that in these approaches only two classes are

considered and the reference sizes of resampled classes

are defined in a new way with respect to a smaller

component Dmin.

5. Experiments

5.1. Experimental setup. We want to experimentally

evaluate whether SOUP (which exploits additional

information on class similarities and safe levels of

examples) may be competitive to existing single

preprocessing methods and the ensemble specialized

for multiclass imbalance data (which do not use this

information). Additionally, we will examine the

sensitivity of SOUP with respect to various degrees of

class similarity, also including the usefulness of the

automatic methods for defining these degrees.

The related standard approaches are Global-CS

and Static-SMOTE as representatives of over sampling

applied to single classifiers, decomposition with OVA and
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Algorithm 2. Similarity Oversampling (SO).

Input: D: original training set of |D| examples with two

classes;

Output: D′: balanced training set

1: Split dataset D in two parts containing examples from

a single class, denoted Dmin and Dmaj

2: D′ = ∅
3: diff ← |Dmaj| − |Dmin|
4: if diff > 0 then

5: for all x ∈ Dmin do

6: find k nearest neighbours of x
7: calculate safe level of x
8: end for

9: duplicate ‘diff’ examples with the highest safe level

values from Dmin

10: end if

11: D′ = Dmaj ∪Dmin

12: return D′

OVO ensembles with resampling of the binary classes

done with random over sampling (ROS) or random

under sampling (RUS) following recommendations of

(Fernandez et al., 2013) and (Galar et al., 2011) and NCR

as a more informative under sampling (Laurikkala, 2001),

and newly introduced Multi-class Roughly Balanced

Bagging, which showed good experimental results in

the work of Lango and Stefanowski (2018). To

learn component classifiers, we consider three popular

algorithms: J4.8 tree, PART rule and k-NN. All of them

were used with standard parameters except deactivating

pruning options and k = 3 following earlier experiments

on imbalanced data. All experiments were performed

in the WEKA framework. Classification performance is

evaluated by a stratified 10-fold cross-validation.

The predictions of all classifiers are evaluated with

three measures adapted to the multiclass context: G-

mean, average minority and F-score. Let sensitivityi
be the recognition rate of the local class Ci, then

G-mean = n
√

∏n

i=1
sensitivityi; average minority =

1

n

∑

i∈Cmin
sensitivityi, where Cmin denotes minority

classes, while n is their number. F-score is

macro-averaged in a standard way over the sum of

F1 scores for all minority classes.

5.2. Multiclass datasets. Our experiments are carried

out over 19 diversified datasets. Their characteristics

are given in Table 2. Firstly, we choose 15 real-world

imbalanced data sets coming from the UCI repository,

representing a different number of classes, sizes and

imbalance ratios, which have been used in the most

related experimental studies (Fernandez et al., 2013; Galar

et al., 2011; Seaz et al., 2016). We have modified

some data by aggregating classes and made decisions on

Algorithm 3. Similarity Undersampling (SU)

Input: D: original training set of |D| examples with two

classes;

Output: D′: balanced training set

1: Split dataset D in two parts containing examples from

a single class, denoted Dmin and Dmaj

2: D′ = ∅
3: diff ← |Dmaj| − |Dmin|
4: if diff > 0 then

5: for all x ∈ Dmaj do

6: find k nearest neighbours of x
7: calculate safe level of x
8: end for

9: remove ‘diff’ examples with the lowest safe level

values from Dmaj

10: end if

11: D′ = Dmaj ∪Dmin

12: return D′

assigning particular classes into minority ones. It resulted

in constructing two extra variants of cleveland data.

Therefore, datasets include from 1 to 5 minority classes.

Additionally, we choose 4 synthetic data sets coming

from the work of Lango et al. (2017), where art1 is

the easiest while art3 and art4 more difficult ones.

All the considered datasets represent different degrees of

difficulty for learning standard classifiers.

5.3. Class similarities and dataset difficulty. To

study the influence of modeling various potential relations

between classes, we chose six different configurations of

the similarity values µij , cf. Table 3. Their values model

possible various expert understanding of the safer class

neighborhood.

SIM1–SIM3 are coming from the earlier study

(Lango et al., 2017), where, e.g., SIM1 represents an

expert’s acceptance to potential overlapping between

minority classes, while SIM2 adds more acceptance for

similarity with majority classes. Then, the last three

configurations cover the extreme views on which class

similarity could be the most preferred.

In the first step, we evaluate the potential difficulty

of class distributions in each dataset by calculating the

average values of safe levels independently for minority

and majority classes. Due to space limitations we

present in Table 5 their values for SIM2 configuration

only. One can notice that the chosen datasets represent

different categories of difficulty. Following the original

interpretations of Napierala and Stefanowski (2016) the

datasets with high average values (close to 0.9) should be

easier for recognizing classes, see, e.g., dermatology,

car, vehicle, thyroid or some synthetic data. On

the other hand, datasets such as cleveland, cmc,
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Table 2. Characteristics of multi-class imbalanced datasets. Names of classes are given in the first row, while their cardinalities in the

second row.
Dataset Minority classes Majority classes

balance-scale
B L R

49 288 288

car
good vgood unacc acc

69 65 1210 384

cleveland 1
1 2 3 4 0

55 36 35 13 164

cleveland 2
2 3 4 0+1

36 35 13 219

cmc
2 1 3

333 629 511

dermatology
6 1 2 3 4 5

20 112 61 72 49 52

ecoli
pp imUimS omomL cpimL im

52 37 25 145 77

flare
4 5 1 2 3 6

116 51 212 287 327 396

glass
vwf con tab bwf bwnf head

17 13 9 70 76 29

hayes roth
3 1 2

31 65 64

led7digit
5 10 1 2 3 6

52 49 98 94 108 99

new thyroid
2 3 1

35 30 150

vehicle
bus van opel saab

218 199 429

yeast
2 3 5 6 7 1 8 9 10

20 30 35 44 51 463 168 244 429

wine quality red
7 8 5 6

199 81 681 638

art1
MIN1 MIN2 MAJ

120 240 840

art2
MIN1 MIN2 MAJ

120 240 840

art3
MIN1 MIN2 MAJ

120 240 840

art4
MIN1 MIN2 MAJ

120 240 840

glass, yeast and many others may be very difficult.

Furthermore, the choice of similarity degrees influences

the average safe levels, in particular for possibly more

difficult datasets. For instance, the more difficult synthetic

datasets art3 and art4 have smaller safe levels for

SIM3, i.e., 0.4156 and 0.7527, respectively.

Similarly, real datasets; such as, e.g., ecoli, have

SIM3 equal 0.4364 and SIM2 is 0.66316; hayes-roth

SIM3 is 0.36129 while SIM2 is 0.4571. The similar

increases do not occur for easier datasets, see, e.g.,

dermatology SIM3 0.9586 vs. SIM 2 0.96488.

Therefore, modeling higher similarity degrees between

classes increases safe interpretations of possibly more

complex and overlapping classes, which is expected

knowing the approach.

5.4. Impact of similarity degrees on the SOUP

algorithm. Then we check the influence of different

similarity degrees on classification results obtained with

SOUP, including SOUP working with heuristic similarity

values calculated according to Eqn. (2). Due to space
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Table 3. Different configurations of similarity degrees.

Similarity µmin1 min2 µmin maj µmaj1 maj2

SIM1 0.8 0 0.1

SIM2 0.7 0.15 0.2

SIM3 0 0 0

SIM4 1.0 0 1.0

SIM5 0 0.5 0

SIM6 1.0 0 0

Table 4. Average safe levels for all minority and all majority

classes calculated for SIM2 class similarities.
Dataset Minority Majority

balance scale 0.16388 0.88009

car 0.90716 0.96745

cleveland 1 0.62374 0.83104

cleveland 2 0.51762 0.89210

cmc 0.45580 0.59982

dermatology 0.96488 0.97110

ecoli 0.66316 0.83252

flare 0.48246 0.78493

glass 0.51795 0.74309

hayes roth 0.45710 0.66891

led7digit 0.76267 0.77206

thyroid 0.85092 0.98073

vehicle 0.89434 0.89142

wine quality 0.46754 0.64299

yeast 0.56089 0.60316

art1 0.94994 0.96924

art2 0.77986 0.92512

art3 0.61383 0.84882

art4 0.79836 0.90873

limitations, we omit a table with precise results2 and

discuss the main observations.

The first observation is that SOUP in all

configurations improves recognition of the minority

classes while compared with the baseline. Then,

analyzing the G-mean measure for the J4.8 classifier, we

observe that differences between SIM configurations on

individual datasets are high, especially on very difficult

datasets. For instance, differences between SOUP with

different similarity degrees on the cleveland dataset

go up to 30%. Similar observations can be made for

other classifiers: 10% for kNN and 35% for PART.

Furthermore, SIM configurations influence the classifier

performance for various datasets in a diversified way.

For instance, using SIM1 or SIM2 leads to better results

for such data as cleveland1, balance scale,

while SIM6 works better for cleveland2 or wine

2See detailed results on the Web page accompanying this arti-

cle: www.cs.put.poznan.pl/mlango/publications/soup

.html. A SOUP implementation is also available there.

quality. Then, SIM5 is the best for cmc, flare

or glass. In general using higher degrees of class

similarity for difficult data is better than no relations

in SIM3. On the other hand, for safer datasets the

differences are not considerable, e.g., for vehicle or

dermatology the results are the same up to the third

decimal place. Such conclusions also hold for other

considered classification measures they for particular

datasets; go up to 11% for average minority and up to 8%

for F1-measure, both reported for a tree classifier.

Although these differences occurred for particular

datasets, a global statistical analysis does not clearly

indicate the winning configuration. Following the

Friedman rank test, the differences are not significant (the

p value equal to 0.36). In further experiments, we will

use only one similarity function, namely the heuristic

one, as it achieves slightly better results and is adaptive

to different datasets. At this point, we would like to

emphasize that in practice, expert knowledge may be of

key importance to model similarity between classes and

to achieve the best results.

We have also tested SOUP variants with different

orderings of class sampling as well as with different

orders of processing examples with respect to safe levels;

however, since they have not led to better results, we do

not report them. We noted that changing the oversampling

order for minority examples (from the most unsafe ones)

is beneficial to the most difficult data, which is consistent

with results of Błaszczyński and Stefanowski (2015).

5.5. Comparing related approaches. Before the final

comparative experiment for SOUP, we compared only the

related approaches for multi-imbalanced problems. The

results of G-mean for OVO and OVA decompositions,

Global-CS and Static-SMOTE preprocessing methods

while using a J4.8 tree as a base classifier are presented

in Table 5. In OVO and OVA we applied various

resampling methods: random oversampling (ROS),

random undersampling (RUS) and NCR. The results

of the Friedman test are statistically significant (p <
0.0001) indicating differences between methods being

investigated. The performed Nemenyi post-hoc analysis

is summarized in Fig. 1. The results for other measures

and base classifiers are available in the earlier indicated

Web page.

The first observation is that OVO based approaches

are winners compared with OVA and the baseline.

Their advantage is particularly visible for more difficult

datasets. The two best performing variants are OVO with

random oversampling (average rank of 2.55) and OVO

with random undersampling (2.55). Interestingly, the

resampling method Global-CS also performs quite well

(4.11). OVO NCR and Static-SMOTE are the last methods

which have overall performance better than the baseline.

The weaker performance of OVA methods goes in tandem

www.cs.put.poznan.pl/mlango/publications/soup.html
www.cs.put.poznan.pl/mlango/publications/soup.html
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Table 5. Comparison of G-mean for decomposition methods and Global-CS for using decision trees as a basic classifier.

Dataset baseline Global Static OVO OVO OVO OVA OVA OVA

CS SMOTE ROS RUS NCR ROS RUS NCR

balance scale 0.000 0.340 0.080 0.526 0.602 0.474 0.302 0.297 0.000

car 0.847 0.940 0.897 0.939 0.876 0.919 0.112 0.184 0.130

cleveland 1 0.227 0.000 0.052 0.255 0.287 0.262 0.254 0.259 0.000

cleveland 2 0.000 0.000 0.037 0.288 0.285 0.000 0.280 0.287 0.000

cmc 0.483 0.478 0.452 0.509 0.514 0.526 0.510 0.511 0.529

dermatology 0.945 0.952 0.927 0.921 0.929 0.948 0.000 0.000 0.000

ecoli 0.728 0.710 0.738 0.805 0.767 0.000 0.000 0.000 0.000

flare 0.446 0.570 0.421 0.544 0.568 0.522 0.000 0.000 0.000

glass 0.625 0.715 0.322 0.699 0.697 0.691 0.000 0.000 0.000

hayes roth 0.843 0.832 0.835 0.843 0.843 0.838 0.000 0.000 0.000

led7digit 0.786 0.770 0.756 0.771 0.779 0.722 0.120 0.162 0.156

thyroid 0.889 0.922 0.879 0.922 0.886 0.913 0.904 0.927 0.898

vehicle 0.912 0.912 0.915 0.916 0.923 0.915 0.133 0.141 0.164

wine quality 0.432 0.464 0.356 0.492 0.476 0.434 0.459 0.489 0.356

yeast 0.000 0.406 0.184 0.442 0.479 0.000 0.000 0.000 0.000

art1 0.945 0.961 0.947 0.958 0.949 0.949 0.039 0.000 0.039

art2 0.686 0.734 0.741 0.758 0.777 0.762 0.250 0.253 0.244

art3 0.410 0.534 0.535 0.615 0.612 0.559 0.307 0.304 0.236

art4 0.785 0.829 0.856 0.840 0.872 0.839 0.000 0.000 0.000

2 3 4 5 6 7 8

CD

OVO ROS
OVO RUS
Global CS
OVO NCR

S. SMOTE
baseline
OVA RUS
OVA ROS
OVA NCR

Fig. 1. Vizualization of Nemenyi post-hoc analysis results for

preprocesing and decomposition methods.

with the earlier experimental studies by Fernandez et al.

(2013). However, the differences between the OVA

methods and the baseline are not statistically significant

according to the post-hoc analysis. Similar observations

hold for other investigated classifiers.

5.6. Comparing SOUP with other methods. We first

compare SOUP’s performance with other preprocessing

methods and later proceed with the comparison with the

best ensemble methods.

The left part of Table 6 presents the results of G-mean

for a tree classifier with different preprocessing methods.

Morover, Table 7 presents the results of paired Wilcoxon

tests between SOUP and other preprocessing methods.

Both the G-mean values as well as the results of

Wilcoxon tests indicate the superiority of SOUP over the

other methods. Using typical significance level α =
5%, one can reject the null hypothesis about the lack

of differences between SOUP and other preprocessing

methods. On the average, SOUP achieves by 5.6%

3 4 5 6

CD

SOUP

MRBB

OVO RUS

OVO SO

OVO ROS

OVO SU

OVO NCR

Fig. 2. Vizualization of Nemenyi post-hoc analysis results for

SOUP and best ensemble methods.

higher results in terms of the G-mean in comparison

with the second best preprocessing method (Global-CS)

with the J48 classifier. It also yields better results than

Static-SMOTE of about 11.6% on the average (median

5.7%). Similarly, for k-NN SOUP outperforms Global-CS

by an average of 4, 9% (median 1.3%) and even for PART,

where the results are not statistically significant, SOUP

achieves better results by about 0.8% (both median and

average).

Then, we proceed with the comparison of SOUP

with the best three performing methods from the previous

experiment: OVO RUS, OVO ROS and OVO NCR.

We have also added to this final comparison the best

performing method from our earlier studies (Lango

and Stefanowski, 2018; Lango, 2019), namely, the

undersampling version of Multi-class Roughly Balanced

Bagging (MRBB). Additionally, we ininvestigated the

performance of new combinations of OVO with the

introduced resampling, i.e., SO and SU variants. The
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Table 6. Comparison of best methods and SOUP with the tree J48 algorithm and G-mean.

Dataset Global Static SOUP OVO OVO OVO OVO OVO MRBB

CS SMOTE ROS RUS NCR SO SO

balance scale 0.340 0.080 0.585 0.526 0.602 0.474 0.542 0.547 0.683

car 0.940 0.897 0.941 0.939 0.876 0.919 0.940 0.794 0.907

cleveland 1 0.000 0.052 0.266 0.255 0.287 0.262 0.268 0.302 0.021

cleveland 2 0.000 0.037 0.303 0.288 0.285 0.000 0.284 0.312 0.055

cmc 0.478 0.452 0.535 0.509 0.514 0.526 0.522 0.524 0.517

dermatology 0.952 0.927 0.962 0.921 0.929 0.948 0.925 0.939 0.959

ecoli 0.710 0.738 0.735 0.805 0.767 0.000 0.791 0.739 0.768

flare 0.570 0.421 0.566 0.544 0.568 0.522 0.582 0.506 0.542

glass 0.715 0.322 0.667 0.699 0.697 0.691 0.701 0.697 0.400

hayes roth 0.832 0.835 0.835 0.843 0.843 0.838 0.843 0.775 0.823

led7digit 0.770 0.756 0.778 0.771 0.779 0.722 0.765 0.704 0.778

thyroid 0.922 0.879 0.922 0.922 0.886 0.913 0.897 0.896 0.932

vehicle 0.912 0.915 0.915 0.916 0.923 0.915 0.904 0.880 0.943

wine quality 0.464 0.356 0.471 0.492 0.476 0.434 0.524 0.490 0.525

yeast 0.406 0.184 0.451 0.442 0.479 0.000 0.000 0.484 0.201

art1 0.961 0.947 0.960 0.958 0.949 0.949 0.959 0.951 0.960

art2 0.734 0.741 0.777 0.758 0.777 0.762 0.754 0.804 0.808

art3 0.534 0.535 0.608 0.615 0.612 0.559 0.627 0.634 0.631

art4 0.829 0.856 0.899 0.840 0.872 0.839 0.831 0.878 0.893

Table 7. p-Values of the paired Wilcoxon signed rank test be-

tween SOUP and other preprocessing methods on G-

mean measure for various classifiers.

Alg. baseline Global-CS Static-SMOTE

J4.8 < 0.001 0.036 < 0.001
PART < 0.001 0.153 < 0.001
kNN < 0.001 0.005 0.002

Table 8. Average rank of compared algorithms (the lower, the

better) from Friedman tests on G-mean measure for

various classifiers.

Alg. SOUP MRBB OVO

RUS

OVO

SO

OVO

ROS

OVO

SU

OVO

NCR

J4.8 3.29 3.37 3.82 3.97 4.00 4.13 5.42

PART 3.8 3.05 4.05 4.0 4.45 4.2 4.45

kNN 3 3.95 4.1 4.45 4.55 3.85 4.1

results of the G-mean for a tree classifier are presented

in Table 6.

Note that from the Friedman test did not reject the

null hypothesis on equal performance of all classifiers

with p = 0.058, although it is nearly at the typical

confidence level. The Nemenyi post-hoc analysis of

average ranks is presented on Fig. 2. The best method

in our comparison, according to the average rank, is

SOUP and the next is the MRBB method. Following

the Wilcoxon test, the differences between these methods

are insignificant (p = 0.45). According to average

ranks, SOUP outperforms all decomposition approaches,

although it uses one classifier only. The third best method

is the combination of OVO with random undersampling.

We also observed that new resampling is more useful for

oversampling: OVO SO is always better than OVO ROS

in Table 8, while it is not the case for OVO RUS.

Results for kNN are also favorable for SOUP since

it has the lowest rank in such a comparison. For this

component classifier, our extensions of OVO outperform

their random counterparts. Interestingly, the position of

MRBB is lower in this ranking. We relate this to the fact

that kNN is a rather stable classifier while bagging-based

algorithms work better with more unstable classifiers like

trees or rules. For instance, MRBB with PART component

classifiers again achieves the best ranks (even better than

SOUP). Other top-performing methods for PART are

SOUP and OVO SO.

We have also analyzed the size of the constructed

trees (expressed by the number of nodes) for two less safe

datasets: flare and yeast. The application of SOUP

on the flare dataset resulted in the construction of trees

which were, on the average, twice as large as the baseline

tree without any pre-processing method. Conversely, the

trees in the OVO approaches had considerably smaller

sizes. However, since those methods required many trees

to be constructed, the sum of tree sizes exceeded the size

of SOUP’s tree almost four times. Another observation

was that the trees for undersampling approaches was

always smaller than those for oversampling methods.

Regarding the yeast dataset, the results were quite

similar with the exception that SOUP constructed a tree
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slightly smaller (341.6 nodes) than the baseline (350.8).

As SOUP requires only one classifier to be constructed, it

helps human to interpret it easier than complex ensembles

without significantly sacrificing predictive abilities.

6. Conclusions

In this work, we have considered a new approach to deal

with multiclass imbalanced data, wherein interrelations

between classes are modeled by means of analyzing

the neighborhood of minority examples and taking into

account an expert’s information about the degrees of

similarity between classes. It estimates the examples’ safe

levels which indicate to what extent these examples are

problematic for learning an accurate classifier.

The main contribution of our paper is demonstrating

that those safety coefficients can be efficiently exploited

in resampling techniques to improve classifiers. To this

end, we have introduced a new preprocessing algorithm

SOUP, whose key elements are a resampling with

respect to examples’ safe levels and a particular ordering

of undersampling majority classes and oversampling

minority ones.

Its experimental evaluation has clearly shown that

defining similarity degrees influences the estimation of

the multiclass dataset difficulty. Moreover, increasing

these degrees between minority classes improves SOUP

classification of the most unsafe datasets. SOUP

with all considered configurations of similarity degrees

has outperformed baseline, no-preprocessing classifiers.

It also works significantly better than Static-SMOTE

and Global-CS two—popular preprocessing methods for

multiclass imbalances. The next comparative experiments

have demonstrated that SOUP can be slightly better then

MRBB—one of the best bagging ensembles for some

types of component classifiers. SOUP is also better

than OVO decompositions which are the most frequently

recommended in the literature. Additionally, the

components of SOUP preprocessing have demonstrated to

be useful to improve OVO ensembles, mainly in the case

of oversampling. Finally, unlike the complex structure

of ensembles, SOUP results in a much smaller single

classifier, which may be more interpretable for humans

while using, e.g., tree classifiers.

Nevertheless, as a future research direction, we plan

to use SOUP inspirations in generalizing an underbagging

ensemble, such as Neighborhood Balanced Baging, in

order to further improve predictive ability.
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