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Abstract

The problem of blind source separation (BSS) of convolved acoustic signals is of great interest for many classes of
applications. Due to the convolutive mixing process, the source separation is performed in the frequency domain,
using independent component analysis (ICA). However, frequency domain BSS involves several major problems
that must be solved. One of these is the permutation problem. The permutation ambiguity of ICA needs to be
resolved so that each separated signal contains the frequency components of only one source signal. This article
presents a class of methods for solving the permutation problem based on information theoretic distance
measures. The proposed algorithms have been tested on different real-room speech mixtures with different
reverberation times in conjunction with different ICA algorithms.
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1 Introduction
Blind source separation (BSS) is a technique of recovering
the source signals using only observed mixtures when
both the mixing process and the sources are unknown.
Due to a large number of applications for example in med-
ical and speech signal processing, BSS has gained great
attention. This article considers the case of BSS for acous-
tic signals observed in a real environment, i.e., convolutive
mixtures, focusing on speech signals in particular. In
recent years, the problem has been widely studied and a
number of different approaches have been proposed [1,2].
Many state-of-the-art unmixing methods of acoustic sig-
nals are based on independent component analysis (ICA)
in the frequency domain, where the convolutions of the
source signals with the room impulse response are
reduced to multiplications with the corresponding transfer
functions. So for each frequency bin, an individual instan-
taneous ICA problem arises [2].
Due to the nature of ICA algorithms, obtaining a consis-

tent ordering of the recovered signals is highly unlikely. In
case of frequency domain source separation, this means
that the ordering of outputs may change for each

frequency bin. In order to correctly estimate source signals
in the time domain, all separated frequency bins need to
be put in a consistent order. This problem is also known
as the permutation problem.
There exist several classes of algorithms giving a solu-

tion for the permutation problem. Approaches presented
in [3-6] try to find permutations by considering the cross
statistics (such as cross correlation or cross cumulants
etc.) of the spectral envelopes of adjacent frequency bins.
In [7] algorithms were proposed, that make use of the
spectral distance between neighboring bins and try to
make the impulse response of the mixing filters short,
which corresponds to smooth transfer functions of the
mixing system in the frequency domain. The algorithm
proposed by Kamata et al. [8] solves the problem using
the continuity in power between adjacent frequency com-
ponents of the same source. A similar method was pre-
sented by Pham et al. [9]. Baumann et al. [10] proposed a
solution by comparing the directivity patterns resulting
from the estimated demixing matrix in each frequency
bin. Similar algorithms were presented in [11-13]. In [14]
it was suggested to use the direction of arrival (DOA) of
source signals, determined from the estimated mixing
matrices, for the problem solution. The approach in [15]
is to exploit the continuity of the frequency response of

* Correspondence: eugen.hoffmann@tu-berlin.de
Berlin Institute of Technology, Chair of Electronics and Medical Signal
Processing, Einsteinufer 17, 10587 Berlin, Germany

Hoffmann et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:14
http://asmp.eurasipjournals.com/content/2012/1/14

© 2012 Hoffmann et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:eugen.hoffmann@tu-berlin.de
http://creativecommons.org/licenses/by/2.0


the mixing filter. A similar approach was presented in
[16] using the minimum of the L1-norm of the resulting
mixing filter and in [17] using the minimum distance
between the adjacent filter coefficients. In [18] the
authors suggest to use the cosine between the demixing
coefficients of different frequencies as a cost function for
the problem solution. Sawada et al. [19] proposed an
approach based on basis vector clustering of the normal-
ized estimated mixing matrices. In [20] a hybrid approach
combines spectral continuity, temporal envelope and
beamforming alignment with a psychoacoustic post-filter,
and in [21] the permutation problem was solved using a
maximum-likelihood-ratio between the adjacent fre-
quency bins.
However with growing number of the independent

components, the complexity of the solution grows. This
is true not only because of the factorial increase of per-
mutations to be considered, but also because of the
degradation of the ICA performance. So not all of the
approaches mentioned above perform equally well for
an increasing number of sources.
The goal of this article is to investigate the usefulness of

information theoretic distance measures for the solution
of the permutation ambiguity problem. For this purpose it
is assumed that the amplitudes of the estimated indepen-
dent signals possess a Rayleigh distribution [22] and the
logarithms of the amplitudes possess a generalized Gaus-
sian distribution (GGD). It should be noted that the
approach in [23] is based on a similar assumption, namely
that the extracted signals are generalized Gaussian distrib-
uted. The authors handle the problem by comparing the
parameters of the GGD of each frequency bin. However
the resulting algorithm solves the permutation problem
only partially and requires a combination with another
approach, for instance [24].a In contrast, the algorithms
proposed in this article deal with the problem in a self-
contained way and require no completion by other
approaches.
The resulting approaches will be tested on different

speech mixtures recorded in real environments with differ-
ent reverberation times in combination with different ICA
algorithms, such as JADE [25], INFOMAX [4,26], and
FastICA [27,28].

2 Problem formulation
This section provides an introduction into the problem
of blind separation of acoustic signals.
At first a general situation will be considered. In a

reverberant (real) room, N acoustic signals s(t) = [s1(t),...
sN(t)] are simultaneously active (t represents the time
index). The vector of the source signals s(t) is recorded
with M microphones placed in the room, so that an
observation vector x(t) = [x1(t), ... xM(t)] results. Due to

the time delay and to the signal reflections, the resulting
mixture x(t) is a result of a convolution of the source sig-
nal s(t) with an unknown filter tensor a = (a1 . . . aK)
where ak is the k-th (k Î [1...K]) M × N matrix with filter
coefficients and K is the filter length. This problem can
be summarized by

x(t) =
K−1∑
k=0

ak+1s(t − k) + n(t). (1)

The term n(t) denotes the additive sensor noise. Now
the problem is to find a filter matrix w = (w1 · · ·wK ′) so
that by applying it to the observation vector x(t), the
source signals can be estimated via

y(t) =
K ′−1∑
k′=0

wk′+1x(t − k′). (2)

In other words, for the estimated vector y(t) and the
source vector s(t), y(t) ≈ s(t) should hold.
This problem is also known as cocktail-party-problem.

A common way to deal with the problem is to reduce it
to a set of instantaneous separation problems, for which
efficient approaches exist.
For this purpose, the time-domain observation vectors

x(t) are transformed into a frequency domain time series
by means of the short time Fourier transform (STFT)

X(�, τ ) =
∞∑

t=−∞
x(t)w(t − τR)e−j�t , (3)

where Ω is the angular frequency, τ represents the
frame index, and w(t) is a window function (e.g., Han-
ning window) of length NFFT, τ represents the frame
index and corresponds to the time shift of he window
and R is the shift size, in samples, between successive
windows [29]. Transforming Equation (1) into the fre-
quency domain reduces the convolutions to multiplica-
tions with the corresponding transfer functions, so that
for each frequency bin an individual instantaneous ICA
problem

X(�, τ ) ≈ A(�)S(�, τ ) +N(�, τ ) (4)

arises. A(Ω) is the mixing matrix in the frequency
domain, S(Ω, τ) = [S1(Ω, τ), ..., SN (Ω, τ)] represents the
source signals, X(Ω, τ) = [X1(Ω, τ), ..., XM (Ω, τ)],
denotes the observed signals, and N(Ω, τ) is the fre-
quency domain representation of the additive sensor
noise. In order to reconstruct the source signals unmix-
ing matrix W(Ω) ≈ P-1(Ω)A-1(Ω) is derived using com-
plex-valued ICA, so that

Ŷ(�, τ ) = W(�)X(�, τ ) (5)
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holds. Here Ŷ(Ω, τ) = [Ŷ1(Ω, τ), ..., ŶN(Ω, τ)] is the
time frequency representation of the permutated ICA
outputs. In order to solve the permutation problem a
correction matrix P(Ω) for each frequency bin has to be
found, which is the main topic of this article. The data
flow of the whole application is shown in Figure 1.

3 Permutation correction
This section gives an overview over the applied permu-
tation correction methods. To resolve the permutations,
the probability density functions (pdfs) of the magni-
tudes or of the logarithms of the magnitudes of the
resulting frequency bins are compared. At this point,
the assumption is made that adjacent frequency bins of
the same source signal possess similar distributions.

3.1 Speech density modeling
3.1.1 Distribution of the speech magnitudes
As shown in [22], for speech signals the distribution of
the magnitudes of spectral components can be described
by the Rayleigh distribution. The pdf of the Rayleigh dis-
tribution of a random variable x is given by

f (x|σ ) = x
σ 2

exp
{
− x2

2σ 2

}
, (6)

where s is a shape parameter that can be estimated e.
g., by using the maximum likelihood estimator [30].
For the vector of random variables x = (x1, x2,... xN),

the multivariate Rayleigh distribution can be written as
follows

f (x|�) = det �−1/2
N∏
i=1

x̃i
σ̃ 2
i

exp
{
− x̃2i
2σ̃ 2

i

}⎡⎣ N∑
j=1

exp
{
− x̃2i
2σ̃ 2

i

}
− N + 1

⎤
⎦

−(N+1)

(7)

where

� = (x − μ)T(x − μ) (8)

is the symmetric positive definite covariance matrix of
x,

x̃ = �−1/2(x − μ) (9)

is a vector of the decorrelated random variables and σ̃i
is the shape parameter for the signal x̃i[31][32].

b

3.1.2 Distribution of the logarithms of the speech
magnitudes
For the approximation of the logarithms of the speech
magnitudes the GGD is applied. The PDF of the GGD
of a random variable x is given by

f (x|μ, σ ,β) = β

2a�(1/β)
exp

{
−
∣∣∣∣x − μ

a

∣∣∣∣
β
}
, (10)

where μ is the mathematical expectation of x. The
scale parameter a is obtained by

a = σ

√
�(1/β)
�(3/β)

, (11)

and the Gamma function is given by

�(z) =

∞∫
0

uz−1e−udu. (12)

The b-parameter describes the distribution shape and
s is the standard deviation of x. However, the b-para-
meter is unknown and needs to be estimated e.g., by
using the maximum likelihood estimator [33] or the
moment estimator [34,35].
For the vector of random variables x = (x1, x2,... xN),

the multivariate generalized Gaussian PDF can be writ-
ten as follows

f (x|μ,�,β1 . . . βN) = det�−1/2
N∏
i=1

[
βi

2ai�(1/βi)
exp

{
−
∣∣∣∣ x̃iai

∣∣∣∣
βi
}]

, (13)

where Σ is the covariance matrix of x and x̃ is a vector
of the decorrelated random variables (Equation (9)) [33].

3.2 Distance measures
Suppose the pdfs of magnitudes in two adjacent fre-
quency bins

f
(∣∣∣Ŷ(�k, τ )

∣∣∣) =
[
f
(∣∣∣Ŷ1(�k, τ )

∣∣∣) , . . . , f (∣∣∣ŶN(�k, τ )
∣∣∣)] (14)

and

f
(∣∣∣Ŷ(�k+1, τ )

∣∣∣) =
[
f
(∣∣∣Ŷ1(�k+1, τ )

∣∣∣) , . . . , f (∣∣∣ŶN(�k+1, τ )
∣∣∣)] (15)

Figure 1 Block diagram with data flow.
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of separated speech signals Ŷ(Ω, τ) are known. To
solve the permutation ambiguity problem, it is necessary
to define a pairwise similarity measure d(·, ·) between
two PDFs, so the overall dependence (distance) results
in

D
(
f
(∣∣∣ŶP

(�k, τ )
∣∣∣) , f (∣∣∣Ŷ(�k+1, τ )

∣∣∣)) =
N∑
n=1

d
(
f
(∣∣∣ŶP

n (�k, τ )
∣∣∣) , f (∣∣∣ŶN(�k+1, τ )

∣∣∣)) , (16)

where k Î [1, NFFT - 1] is the frequency index,

Ŷ
P
(�k, τ ) = π

(
Ŷ(�k, τ )

)
(17)

is a permutation of Ŷ(Ωk, τ), π(x) defines a permuta-
tion of the components of the vector x and N is the
number of separated signals. The total distance D
between a permutated vector of frequency bins, ŶP(Ωk,
τ), and a reference vector in bin k + 1, is a sum of dis-
tances between each pair ŶP

n (�k, τ ) and Ŷn(Ωk+1, τ).
Below, several information theoretic similarity mea-

sures will be considered, which seem to be suitable for
the solution of the permutation ambiguity problem. But
first a definition of entropy or “self-information” is
necessary.
The generalized formulation of entropy was given by

Rényi and is known as the Rényi entropy in information
theory [36,37]. The Rényi differential entropy of order
a, where a ≥ 0, for a random variable with a pdf f(x)
whose support is a set X, is defined as

Hα(f (x)) =
1

1 − α
log

⎛
⎝∫

X

f α(x)dx

⎞
⎠ . (18)

It can be shown, that in limit for a ® 1, Ha(f(x)) con-
verges to the Shannon entropy [37,38],

H1(f (x)) = −
∫
X

f (x) log f (x)dx. (19)

Similarly to the marginal entropy above, the joint
entropy of a vector of random variables x = (x1, x2, ...,
xN) is defined as

Hα(f (x)) =
1

1 − α
log

⎛
⎝∫

X

f α(x)dx

⎞
⎠ , (20)

where f(x) is the multivariate pdf.
At this point it is possible to introduce the necessary

dependence measures that will be used as the pairwise
similarity measure d(·, ·) in Equation (16):
- Rényi generalized divergence between two distri-

butions f(x) and g(x) of order a, where a ≥ 0, is defined
[36] as

dα(f (x)||g(x)) = 1
α − 1

log
(∫

f α(x)g1−α(x)dx
)
. (21)

Special cases of Equation (21) [39] are the
- Bhattacharyya coefficient

d1/2(f (x)||g(x)) = −2 log
(∫ √

f (x)g(x)dx
)
, (22)

- Kullback-Leibler divergence

d1(f (x)||g(x)) =
∫

f (x) log
f (x)
g(x)

dx, (23)

- Log distance

d2(f (x)||g(x)) = logE
[
f (x)
g(x)

]
, (24)

where E [·] denotes the statistical expectation accord-
ing to f(x),
- and log of the maximum ratio

d∞(f (x)||g(x)) = log sup
x

f (x)
g(x)

. (25)

Rényi’s divergence describes the alikeness between two
distributions. The smaller the Rényi divergence, the
more similar the distributions are. The main advantage
of the Rényi divergence is the small computational bur-
den. The problem in using the Rényi divergence is the
fact that this measure is not symmetric, so typically da(f
(x)||g(x)) ≠ da(g(x)||f(x)), and not bounded, so infinite
values can arise.
- Mutual information for a vector of random variables

X = (X1, X2, ..., XK) is defined as the Kullback-Leibler
divergence between the product of the distribution func-
tions

∏K
i=1 fXi(xi) and the multivariate distribution fx(x)

I(X) = d1

(
fx(x)

∥∥∥∥∥
K∏
i=1

fXi(xi)

)
(26)

=
∫

fx(x) log
fX(x)∏K
i=1 fXi(xi)

dX (27)

=
∫

fx(x) log fx(x)dx −
∫

fX(x) log
K∏
i=1

fXi(xi)dx (28)

=
K∑
i=1

H1(fXi(xi)) − H1(fx(x)) (29)

where H1(fXi(xi)) is the marginal entropy and H1(fx(x))
is the joint entropy of X.
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Mutual information gives the amount of information
contained in the random variables of X. Since for the
computation of the term fx(x) is taken into account i.e.,
the dependencies are considered, the mutual informa-
tion is a stronger cost function than Rényi divergence
and using it for resolving the permutations, better
results are to be expected.
- The Jensen-Rényi divergence of the vector of ran-

dom variables X = (X1, X2, ..., XK) of order a, where a ≥
0, is defined [40] as

dJRα
(X) = Hα

(
1
K

K∑
i=1

fXi(xi)

)
− 1

K

K∑
i=1

Hα(fXi(x)). (30)

The Jensen-Rényi divergence is based on the Kullback-
Leibler divergence and can be seen as an extension of it
with the difference that it is symmetricc and always of
finite value. On the other hand, due to the fact that the
distributions of the random variables are compared
indirectly using the average 1

K

∑K
i=1 fXi(x), the Jensen-

Rényi divergence can be seen as an alternative to the
mutual information [41]. In fact, as shown in [42], both
measures show similar characteristics.
- The modified Jensen-Rényi divergence. The Jen-

sen-Rényi-divergence from the Equation (30) measures
the distance between two distributions fX(x) and fY(x) in
respect to a third point in the distribution space. In this
case, the third point is chosen as the average of the two
distributions. This approach is justified because of the
concavity of the entropy in distribution space

Hα

(
fX(x) + fY(x)

2

)
≥ Hα(fX(x)) +Hα(fY(x))

2
. (31)

In principle, it is possible to define the distance in
respect to any other point, if the assumption of the con-
cavity for this point holds. Such a point can be chosen
as an average over the random variables, the distribu-
tions of which are currently analyzed.
For the entropy of a random variable X

Hα(fX(x)) ∝ ||fX(x)||α (32)

holds, and for the entropy of the sum of two random
variables X and Y [38,43]

Hα(fX+Y(x)) ∝ ||fX(x) ∗ fY(x)||α . (33)

||·||a denotes the a norm operator and ٭ stands for
convolution. Using the entropy power inequality [38] for
the case of a = 1, and extending Young’s inequality [44]
for the case of a ≠ 1, it can be shown [45], that

Hα(fX+Y(x)) ≥ max(Hα(fX(x)),Hα(fY(x))). (34)

Since

max(a, b) ≥ a + b
2

(35)

holds, the inequality in Equation (34) can be rewritten
as

Hα(fX+Y(x)) ≥ Hα(fX(x)) +Hα(fY(x))
2

. (36)

So, at this point a modification of the Jensen-Rényi
divergence is proposed. This distance measure of the
vector of random variables X = (X1, X2, ..., XK ) of order
a, where a ≥ 0, is defined as

dmJRα(X) = Hα(fX̄(x)) − 1
K

K∑
i=1

Hα(fXi(x)) (37)

where X̄ = 1
K

∑K
i=1 Xi In the way the modified Jensen-

Rényi divergence is used here, this distance measure
describes the amount of new information coming to a
spectrogram if an adjacent frequency bin Y(Ωk+1, τ) is
included. The lesser the new information provided, the
closer the frequency bins are. This modification has less
computational burden than the classical Jensen-Rényi
divergence, since for Hα(fX̃(x)), only one pdf has to be
calculated instead of K in the Jensen-Rényi divergence.
Furthermore, for the entropy Hα(fX̄(x)) there exists an
analytical solution, which improves the accuracy of the
results.

3.3 The Permutation correction algorithm
In this section the actual permutation correction algo-
rithm will be discussed. As mentioned before, it will be
assumed that subsequent frequency bins of the same
source signal possess similar distributions. The similarity
between the frequency bins is measured by applying the
measures given in Equations (21),(29), (30), and (37) in
the optimization of Equation (16).
However, as mentioned in [14] the use of only one

frequency bin as a reference bin for the correction
causes a risk of a misalignment of the algorithm. To
avoid this problem, the approach presented in [5] uses
an average value of the already corrected frequency bins.
So, the Equation (16) will be redefined as

D

[
f
(∣∣∣ŶP

(�k, τ )
∣∣∣) , f

(
1
L

k+1+L∑
l=k+1

∣∣∣Ŷ(�l, τ )
∣∣∣
)]

=
N∑
n=1

d

[
f
(∣∣∣ŶP

n (�k, τ )
∣∣∣) , f

(
1
L

k+1+L∑
l=k+1

∣∣∣Ŷn(�l, τ )
∣∣∣
)]

(38)

where L is the number of the already corrected fre-
quency bins to be used for the averaging. Then the cor-
rection algorithm can be implemented as described in
Algorithm 1.
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Algorithm 1
1. Initialization: Start with the frequencyd Set k = NFFT/
2.
2. Estimate the parameters of the Rayleigh distribution

of |Ŷ(Ωk, τ)| and of the average of L already corrected

bins 1
L̂

∑L̂
l=k+1 |Ŷn(�l, τ )|, with

L̂ = min(k + 1 + L,NFFT

/
2 + 1) − (k + 1) using Equa-

tions (6)-(9).

3. Calculate D
[
f
(
|ŶP

(�k, τ )|
)
, f
(
1
L̂

∑L̂
l=k+1 |Ŷ(�l, τ )|

)]
as defined in Equation (38) for all possible permutations
of |Ŷ(Ωk, τ)|.
4. Choose the permutation π+(|Ŷ(Ωk, τ)|) with the

most dependent value of D.
5. Correct the current frequency bin in order with the

best permutation π+(|Ŷ(Ωk, τ)|).
6. Decrement k and if k ≠ 0 go to Step 2.
The same scheme can be applied on the logarithms of

the spectral magnitudes of the signals log |Ŷ(Ωk, τ)|
instead of |Ŷ(Ωk, τ)| and using generalized Gaussian
instead of Rayleigh distributions. In that case Algorithm
2 results.
Algorithm 2
1. Initialization: Start with the frequency k = NFFT/2.
2. Estimate the GGD parameters of log |Ŷ(Ωk, τ)| and

of the average of L already corrected bins

log(1
L̂

∑L̂
l=k+1 |Ŷn(�l, τ )|), with

L̂ = min(k + 1 + L,NFFT

/
2 + 1) − (k + 1) using Equa-

tions (10)-(13).e

3. Calculate

D
[
f
(
log |ŶP

(�k, τ )|
)
, f
(
log(1

L̂

∑L̂
l=k+1 |Ŷ(�l, τ )|)

)]
as

defined in Equation (38) for all possible permutations of
|Ŷ(Ωk, τ)|.
4. Choose the permutation π+(log |Ŷ(Ωk, τ)|) with the

most dependent value of D.
5. Correct the current frequency bin in order with the

best permutation π+(log |Ŷ(Ωk, τ)|).
6. Decrement k and if k ≠ 0 go to Step 2.
The Algorithms 1 and 2 will be used in the following

sections for the experimental comparison of the distance
measures given in Equations (21),(29), (30), and (37).

4 Experiments and results
4.1 Conditions
For the evaluation of the proposed approaches, two dif-
ferent sets of recordings were used. In the first data set,
different audio files from the TIDigits database [46]
were used and mixtures with up to four speakers were
recorded under real room conditions. The distance
between speakers and the center of a linear microphone
array was varied between 0.9 and 2 m. The second

dataset was recorded by Sawada [47]. Here also mixtures
with up to four speakers are presented. All of the mix-
tures were made with the same number of microphones
as the number of speakers in the mixture (M = N), i.e.,
in each mixture a determined problem is considered so
the classical ICA algorithms for source separation can
be applied. The experimental setups are presented sche-
matically in Figure 2 and the experimental conditions
are summarized in Tables 1, 2, 3, and 4.

4.2 Parameter settings
The algorithms were tested on all recordings, which
were first transformed to the frequency domain at a
resolution of NFFT = 1, 024. For calculating the spectro-
gram, the signals were divided into overlapping frames
with a Hanning window and an overlap of 3/4 · NFFT.

4.3 ICA performance measurement
For calculation of the effectiveness of the proposed algo-
rithm, the improvement ΔSIR of the signal to interfer-
ence ratio


SIRi = 10log10

∑
n y

2
i,si
(n)∑

j�=i
∑

n y
2
i,sj
(n)

− 10log10

∑
n x

2
i,si
(n)∑

j�=i
∑

n x
2
i,sj
(n)

(39)

Figure 2 Experimental Setup. Li is the distance between
speaker i and array center. θi is the angular position of the
speaker i. d is the distance between microphones.
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was used as a measure of the separation performance
and the signal to distortion ratio (SDR)

SDRi = 10log10

∑
n x

2
ksi
(n)∑

n (xksi(n) − αyisi(n − δ))2
(40)

as a measure of the signal quality. Here yi,sj is the i-th
separated signal with only the source sj active, and xk,sj is
the observation obtained by microphone k when only sj
is active. a and δ are parameters for phase and

Table 1 Mixture characteristics

Mixture Mix. 1 Mix. 2 Mix. 3

TU Berlin TU Berlin TU Berlin

Reverberation time TR 159 ms 159 ms 159 ms

Distance between two sensors d 3 cm 3 cm 3 cm

Sampling rate fS 11 kHz 11 kHz 11 kHz

Number of speakers N 2 3 4

Number of microphones M 2 3 4

Distance between speaker i and array center L1 = L2 = 0.9 m L1 = L2 = L3 = 0.9 m L1 = L2 = L3 = L4 = 0.9 m

Angular position of the speaker i θ1 = 50° θ1 = 30° θ1 = 25°

θ2 = 115° θ2 = 80° θ2 = 80°

θ3 = 135° θ3 = 130°

θ4 = 155°

Mean input SIR in [dB] -0.1 dB -3 dB -5 dB

Table 2 Mixture characteristics

Mixture Mix. 4 Mix. 5 Mix. 6

TU Berlin TU Berlin TU Berlin

Reverberation time TR 189 ms 189 ms 189 ms

Distance between two sensors d 3 cm 3 cm 3 cm

Sampling rate fS 11 kHz 11 kHz 11 kHz

Number of speakers N 2 3 4

Number of microphones M 2 3 4

Distance between speaker i and array center L1 = L2 = 2.0 m L1 = L2 = L3 = 2.0 m L1 = L2 = L3 = L4 = 2.0 m

Angular position of the speaker i θ1 = 75° θ1 = 35° θ1 = 30°

θ2 = 165° θ2 = 80° θ2 = 75°

θ3 = 165° θ3 = 125°

θ4 = 165°

Mean input SIR in [dB] -0.04 dB -3.4 dB -6.9 dB

Table 3 Mixture characteristics

Mixture Mix. 7 Mix. 8 Mix. 9

NTT NTT NTT

Reverberation time TR 130 ms 130 ms 130 ms

Distance between two sensors d 4 cm 4 cm 4 cm

Sampling rate fS 8 kHz 8 kHz 8 kHz

Number of speakers N 2 3 4

Number of microphones M 2 3 4

Distance between speaker i and array center L1 = L2 = 1.2 m L1 = L2 = L3 = 1.2 m L1 = L2 = L3 = L4 = 1.2 m

Angular position of the speaker i θ1 = 75° θ1 = 35° θ1 = 30°

θ2 = 165° θ2 = 80° θ2 = 75°

θ3 = 165° θ3 = 125°

θ4 = 165°

Mean input SIR in [dB] 0.02 dB -2.9 dB -4.7 dB
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amplitude chosen to optimally compensate the differ-
ence between yi,sj and xk,sj[19].
For measuring the performance of the proposed algo-

rithms on all speakers present in a mixture recording,
an average ΔSIR


 SIR =
1
N

N∑
i=1


 SIRi (41)

and SDR

SDR =
1
N

N∑
i=1

SDRi (42)

were used, where N is the number of speakers in the
considered mixture.

4.4 Experimental results
In this section the experimental results of the signal
separation will be compared. All the mixtures from
Tables 1, 2, 3, and 4 were separated by JADE, INFO-
MAX, and the FastICA algorithm and the permutation
problem was solved using either Algorithm 1 or 2 from
Section 3.3 and distance measures from Equations (21),
(29), (30), and (37). For each result the performance is
calculated using Equations (39) and (40).
Figures 3 and 4 show the behavior of three different

approaches in terms of ΔSIR and SDR (Equations (41)
and (42)) over the mixtures for the Infomax approach.
In Tables 5 and 6, the separation results are averaged

for each distance measure for the mixtures of 2, 3, and
4 signals separately. M2 in Tables 5 and 6 contains the

Table 4 Mixture characteristics

Mixture Mix. 10 Mix. 11 Mix. 12

TU Berlin TU Berlin TU Berlin

Reverberation time TR 159 ms 159 ms 159 ms

Distance between two sensors d 12 cm 12 cm 12 cm

Sampling rate fS 11 kHz 11 kHz 11 kHz

Number of speakers N 2 3 4

Number of microphones M 2 3 4

Distance between speaker i and array center L1 = L2 = 0.9 m L1 = L2 = L3 = 0.9 m L1 = L2 = L3 = L4 = 0.9 m

Angular position of the speaker i θ1 = 30° θ1 = 30° θ1 = 30°

θ2 = 70° θ2 = 70° θ2 = 70°

θ3 = 150° θ3 = 115°

θ4 = 170°

Mean input SIR in [dB] 0.02 dB -2.5 dB -4.2 dB
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Figure 3 Results obtained by Infomax and Algorithm 1 using ’٭‘ mutual information with a = 1, ‘Δ’ Jensen-Rényi divergence with a =
1 and ‘ο’ modified Jensen-Rényi divergence with a = 1 over the mixtures.
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average ΔSIR/SDR of the separation results of Mix. 1,
Mix. 4, Mix. 7 and Mix. 10, cf. Tables 1, 2, 3, and 4.
Similarly, M3 contains the separation results of Mix. 2,
Mix. 5, Mix. 8 and Mix. 11, and M4 those of Mix. 3,
Mix. 6, Mix. 9 and Mix. 12.

4.5 Discussion
The calculated results show the usefulness of the pro-
posed method for permutation correction, though not
all of the applied distance measures perform equally. As
already mentioned above, the best results were achieved
using mutual information and the modified Jensen-

Rényi divergence, while results obtained using general-
ized Rényi divergence are rather poor. This is especially
the case, if a = 2 is used. Of all the applied distance
measures based on the generalized Rényi divergence, the
best performance was achieved in the case of the Bhat-
tacharyya coefficient, i.e., a = 0.5. A similar tendency
can be seen with “classical” Jensen-Rényi divergence.
Here the best results were achieved using a = 1. In con-
trast, correction based on mutual information and the
modified Jensen-Rényi divergence provides stable good
results.
The poor performance in the case of generalized Rényi

divergence can be explained by fact that the assumed
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Figure 4 Results obtained by Infomax and Algorithm 2 using ’٭‘ mutual information with a = 1, ‘Δ’ Jensen-Rényi divergence with a =
1 and ‘ο’ modified Jensen-Rényi divergence with a = 1 over the mixtures.

Table 5 Average values of the obtained results of
Algorithm 1 in terms of ΔSIR and SDR for each distance
measure

Distance measure ΔSIR SDR

M2 M3 M4 M2 M3 M4

Bhattacharyya coefficient 0.97 1.32 2.5 3.21 2.77 1.78

Kullback-Leibler divergence 0.86 2.12 1.93 5.03 3.01 1.02

Log of the maximum ratio 0.62 2.14 1.22 4.63 2.76 0.82

Jensen-Rényi divergence, a = 0.5 3.00 3.65 5.44 5.33 3.17 1.43

Jensen-Rényi divergence, a = 1 4.00 4.50 6.44 6.08 3.49 2.15

Jensen-Rényi divergence, a = 2 4.01 3.94 6.09 5.75 3.29 1.45

Mod. Jensen-Rényi divergence, a
= 0.5

7.89 7.27 8.99 8.12 4.86 2.78

Mod. Jensen-Rényi divergence, a
= 1

7.89 7.27 8.97 8.12 4.87 2.74

Mod. Jensen-Rényi divergence, a
= 2

7.89 7.28 8.98 8.12 4.87 2.78

Mutual information 7.35 7.66 8.15 7.79 5.23 2.59

Mi stands for the average ΔSIR/SDR value calculated over all mixtures of N = i
signals (cf. Tables 1, 2, 3, and 4). The best performance for each case Mi is
marked in bold.

Table 6 Average values of the obtained results of
Algorithm 2 in terms of ΔSIR and SDR for each distance
measure

Distance measure ΔSIR SDR

M2 M3 M4 M2 M3 M4

Bhattacharyya coefficient 2.21 3.23 3.54 5.53 3.65 1.10

Kullback-Leibler divergence 3.78 5.23 5.47 5.97 4.2 1.46

Log of the maximum ratio 3.52 4.99 4.14 6.32 4.12 1.14

Jensen-Rényi divergence, a = 0.5 3.83 4.93 5.77 6.19 3.92 1.64

Jensen-Rényi divergence, a = 1 4.00 5.04 5.45 6.39 4.12 1.44

Jensen-Rényi divergence, a = 2 2.84 4.42 5.34 6.04 4.14 1.41

Mod. Jensen-Rényi divergence, a
= 0.5

7.31 8.14 8.53 8.01 5.63 2.44

Mod. Jensen-Rényi divergence, a
= 1

7.35 8.15 8.61 8.07 5.67 2.47

Mod. Jensen-Rényi divergence, a
= 2

7.40 8.27 8.43 8.12 5.76 2.50

Mutual information 7.31 8.50 8.37 8.18 6.00 2.60

Mi stands for the average ΔSIR/SDR value calculated over all mixtures of N = i
signals. The best performance for each case Mi is marked in bold.
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models of the probability distribution of the amplitudes
and log amplitudes are not exact enough to be used
with generalized Rényi divergence for a successful solu-
tion of the permutation problem. As can be seen in
Figure 5, the distribution of the lower frequency bins of
a speech signal can be only roughly modeled with Ray-
leigh pdf. In contrast the higher frequencies can be seen
as Rayleigh distributed variables. This causes a high
error rate in the permutation correction at lower fre-
quencies, when the generalized Rényi divergence is used.
Since, as shown in [48], the lower frequencies play a
more significant role in BSS of the speech signals than
the higher frequencies, the low values of the SIR and
SDR are explainable. The same holds for the distribu-
tion of the log amplitudes. This problem can be solved

using a more exact model for the pdf of the speech sig-
nals such as Rayleigh mixture models (RMM) for the
amplitudes or Gaussian mixture models (GMM) for the
log amplitudes and is the subject of the future study.
Furthermore, the effects of the various reverberation

times on the performance of different distance measures
are going to be studied in the future. While, as it can be
seen in Figures 3 and 4, the performance of the separa-
tion system decreases with a growing reverberation time
of the environment, the effect of reverberation time on
different methods of permutation correction should be
analyzed in a more exact way.
On the other hand, the assumption of the Rayleigh

distribution and GGD is good enough for permutation
correction with mutual information and the modified
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Figure 5 Comparison of the assumed pdfs and the histograms of the speech signal at different frequencies. Histograms of the
amplitudes of a clean speech signal (white bar) and the Rayleigh probability distribution functions (black line) that were calculated for the clean
speech data at (a) 1,000 Hz, (b) 2,000 Hz, (c) 3,000 Hz and (d) 4,000 Hz
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Jensen-Rényi divergence, since these distance measures
are not as sensitive to the inter frequency-bin pdf per-
turbations as the generalized Rényi divergence. Further-
more, in this case there exists an analytical solution for
modified Jensen-Rényi divergence, which reduces the
computational burden of the algorithm and improves
the accuracy of the solution.
As it can be seen in Tables 5 and 6, the separation per-

formance of Algorithm 1 is slightly better than the per-
formance of Algorithm 2. A possible explanation for this
issue is the fact that for the Rayleigh pdf just one para-
meter has to be estimated instead of 2 parameters in case
of GGD. Furthermore the estimation of the GGD para-
meters is more complicated than the estimation of the s
in case of Rayleigh distribution. These might cause the
uncertainties and errors in the permutation correction.
In the next step, the best four of the proposed meth-

ods were compared with some other approaches from
Section 1. In Table 7, the results of the comparison are
shown. As can be seen, the proposed method (Algo-
rithm 1 with the modified Jensen-Rényi divergence, a =
2) performs better than other algorithms in terms of
ΔSIR in most cases.

5 Conclusions
In this article, a method for the permutation correction
in convolutive source separation has been presented. The
approach is based on the assumption that magnitudes of

speech signals adhere to a Rayleigh distribution and the
logarithms of magnitudes can be modeled by a GGD.
The assumption of Rayleigh or GG distributed signals
allows to use information theoretic similarity measures.
The information theoretic distance measures are used to
detect similarities in subsequent frequency bins after bin-
wise source separation is completed, in order to group
the frequency bins coming from the same source. Beside
the existing information theoretic distance measures, a
modification of the Jensen-Rényi divergence is proposed.
This modified distance measure shows very good results
for the considered problem.
The proposed method has been tested on different

reverberant speech mixtures in connection with different
ICA algorithms. The experimental results and the com-
parison with today’s state-of-the-art approaches for per-
mutation correction show the usefulness of the
proposed method. Further, the experimental results have
shown that the method performs best using either the
mutual information or the modified Jensen-Rényi diver-
gence criterion (Tables 5 and 6). This fact may be
explained at least partially by the ability of the Jensen-
Renyi divergence and the mutual information to utilize
temporal dependence structure, which puts these two
criteria ahead of the Rényi generalized divergence and
its special cases of the Kullback-Leibler divergence and
the log maximum ratio, which we considered as
alternatives.

Table 7 Average values of the obtained results in terms of ΔSIR and SDR for each distance measure

Algorithms ΔSIR SDR

M2 M3 M4 M2 M3 M4

Proposed Algorithm 1 with Jensen-Rényi div., a = 2 7.90 7.28 8.98 8.12 4.87 2.78

Proposed Algorithm 2 with Jensen-Rényi div., a = 0.5 7.31 8.14 8.53 8.01 5.63 2.44

Proposed Algorithm 1 with mutual information 7.35 7.66 8.15 7.79 5.23 2.59

Proposed Algorithm 2 with mutual information 7.31 8.50 8.37 8.18 6.00 2.60

Permutation correction based on phase difference [50] 7.38 6.77 7.99 8.11 4.87 2.69

Cross-correlation [4] 7.44 7.61 7.76 8.16 5.35 2.63

Power ratio [51] 7.90 7.86 8.53 8.37 5.42 2.68

Continuity of the impulse response of the calculated mixing system [15] 3.93 1.83 2.14 5.67 2.98 0.89

Amplitutde modulation decorrelation [3] 6.89 7.55 8.02 7.83 5.24 2.64

Cross-cumulants [4] 3.10 2.16 2.42 5.53 2.80 0.61

Continuity of the mixing system [17] -0.33 0.65 0.93 4.37 2.52 0.77

Minimum of the L1-norm of the mixing system [16] 0.04 0.65 1.41 3.94 3.32 1.02

p-Norm distance (p = 1) [8] 6.05 7.60 7.68 7.37 5.51 2.38

Clustering of the amplitudes [9] 6.93 5.17 5.22 8.00 4.56 1.77

Likelihood ratio criterion between the frequency bins [21] 7.47 8.33 8.74 8.07 6.17 2.67

Basis vector clustering [19] 7.08 5.40 6.49 7.63 4.32 1.92

Minima of the beampattern [10] 7.40 3.74 2.81 7.74 3.24 0.82

Cosine distance [18] 5.33 4.78 4.56 6.76 4.26 1.74

GGD parameter comparison and cross-correlation [23] 0.45 4.64 6.39 4.13 3.71 1.77

Mi stands for the average ΔSIR/SDR value calculated over all mixtures of N = i signals, (Tables 1, 2, 3, and 4).

The best performance for each case Mi is marked in bold.
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Appendix 1
To calculate the distance measures from Equation (21),
(29), (30), and (37), in most cases an integral has to be
solved. The Rényi differential entropy (Equation (18)) in
case of the Rayleigh distribution is calculated as

Hα(X) =
1

1 − α
log

⎛
⎝∫

X

f α
X (x)dx

⎞
⎠ (43)

= log
(

σ√
2

)
+

1
1 − α

logA +
1

1 − α
log

(
�

(
α − α

2
+
1
2

))
, (44)

where s is the shape parameter of the Rayleigh distri-
bution and

A = α
(−α+ α

2−1
2 ). (45)

Setting a ® 1 the Equation (44) becomes

H1(x) = 1 + log
α√
2
+

γ

2
, (46)

where g is the Euler-Mascheroni constant g ≈ 0.57722.
For the GG distribution, the entropies can be com-

puted as

HR
α(X) =

1
1 − α

log

⎛
⎝∫

X

f α
X (x)dx

⎞
⎠ (47)

=
1

1 − α
logα−1/βX − log

(
βX

2a�(1
/
βX)

)
(48)

and

H1(X) =
1
βX

− log

(
βX

2a�(1
/
βX)

)
. (49)

The solution of the Equation (46) is given in [38]. The
solutions of the Equations (44) and (48) were derived
using MATHEMATICA. For the distance measures
without an analytical solution the trapezoidal rule for
numerical integration was applied [49].

Appendix 2
Since information theoretic similarity measures make
use only of the pdfs of the signals, a question may arise,
as to whether temporal dependence structures of the
signals are utilized at all in the suggested framework.
The temporal structure is taken into account indirectly
in the applied similarity measures, since each of the
measures contains a term where either the joint prob-
ability, the pdf of the mean value of the random vari-
ables (Equation (37)), the mean of the pdf or a quotient
of the pdfs is considered. These are the terms where the
values of the distribution functions produced at the
same time domain window are “compared”.
To demonstrate this issue, the following example was

constructed: We compare signal U1(τ), which contains
amplitudes of a speech signal at the frequency f =
3219.2 Hz, U2(τ) which is the same signal as U1(τ) but
time delayed, and U3(τ), which contains a amplitudes of
the same speech signal as U1(τ) at the frequency f =
3230 Hz, the next frequency bin, with additional Gaus-
sian noise, see Figure 6.
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Figure 6 Constructed signals for demonstration. (a) Signal U1(τ) is a speech signal at the frequency f = 3, 219.2 Hz, (b) U2(τ) is the same
signal as U1(τ) but time delayed and (c) signal U3(τ) contains amplitudes of the same speech signal as U1(τ) at the frequency f = 3, 230 Hz (the
next frequency bin) with an additional Gaussian noise.
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For each signal pair 〈U1(τ), U2(τ)〉, 〈U1(τ), U3(τ)〉, 〈log
(U1(τ)), log(U2(τ))〉 and 〈log(U1(τ)), log(U3(τ))〉, the simi-
larity measures from Equations (21), (29), (30), and (37)
were applied. The results of the signal comparison can
be found in Tables 8 and 9.
As can be seen, for this example each similarity measure

that was considered in this article rates U1(τ) more similar
to U3(τ) than to U2(τ),

f which implies that the temporal
dependencies and correlations were not ignored during
the computation of the probability distribution functions.
In contrast to the other measures, in the case of the

Rényi generalized divergence defined in Equation (21),
and in its special cases of the Kullback-Leibler diver-
gence and the log maximum ratio, the time dependency
can not be taken into account in this manner. Still,
these similarity measures can also be used for permuta-
tion correction, since the situation we considered in the
example above is rather artificial and cannot be
expected for realistic situations with two speech signals
as the desired sources.

Endnotes
aIn the cases where no permutation correction by the
means of the comparison of the GGD parameters is

possible, the problem is handled by applying the correla-
tion based permutation correction approach. bEquation
(7) is a special case of the multivariate Weibull distribu-
tion with a = 1 and ci = 2 [32, Equation (14)]. cE.g.
dJRα

(X1,X2) = dJRα
(X2,X1).

dThe proposed algorithm
solves the permutations problem starting with the
higher frequency bins. The first frequency bin in this
case is the bin with k = NFFT/2 + 1. Since there is no
other definition of the correct order of the signals, the
signal order in frequency bin k = NFFT/2+1 will be
assumed as correct. eFor the experiments from the Sec-
tion 4 the parameter b was calculated using the approxi-
mation for the inverse function as proposed in [34].
fThe more dependent the signals are, the higher the
value of the mutual information Equation (29) becomes,
while simultaneously, the values of the similarity mea-
sures from (21), (30), and (37) decrease.
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Table 8 Comparison of signal pairs 〈U1(τ), U2(τ)〉 and 〈U1(τ), U3(τ)〉 with each distance measure

Distance measure 〈U1(τ), U2(τ)〉 〈U1(τ), U3(τ)〉

Bhattacharyya coefficient 0,09 0,59

Kullback-Leibler divergence 0,00 0,16

Log of the maximum ratio 0,00 0,16

Jensen-Rényi divergence with a = 0.5 0,43 0,23

Jensen-Rényi divergence with a = 1 1,92 0,22

Jensen-Rényi divergence with a = 2 68,35 45,4

Modified Jensen-Rényi divergence with a = 0.5 0,12 0,02

Modified Jensen-Rényi divergence with a = 1 0,35 0,04

Modified Jensen-Rényi divergence with a = 2 31,06 2,50

Mutual information 15,53 16,46

The most dependent value of each distance measure is marked in bold.

Table 9 Comparison of signal pairs 〈log(U1(τ)), log(U2(τ))〉 and 〈log(U1(τ)), log(U3(τ))〉 with each distance measure

Distance measure 〈log(U1(τ)), log(U2(τ))〉 〈log(U1(τ)), log(U3(τ))〉

Bhattacharyya coefficient 0,03 0,71

Kullback-Leibler divergence 0,0 0,03

Log of the maximum ratio 0,0 0,30

Jensen-Rényi divergence, a = 0.5 17,83 7,48

Jensen-Rényi divergence, a = 1 7,54 1,58

Jensen-Rényi divergence, a = 2 0,99 0,01

Mod. Jensen-Rényi divergence, a = 0.5 4,79 1,26

Mod. Jensen-Rényi divergence, a = 1 1,23 0,26

Mod. Jensen-Rényi divergence, a = 2 0,11 0,01

Mutual information 4,59 6,43

The most dependent value of each distance measure is marked in bold.
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