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S U M M A R Y

Stacks of ambient noise cross-correlations are more and more routinely used to extract em-

pirical Green’s functions between station pairs. The success of the cross-correlations is due to

waves which are recorded by both stations and that constructively sum at lag times which equal

their propagation time between the station pair. Stacking cross-correlograms corresponding to

different time spans improves the azimuthal noise coverage and further enhances the signals.

Here we show how the instantaneous phase coherence can be used for a more efficient signal

extraction from ambient noise cross-correlations. The instantaneous phase coherence is ob-

tained by analytic signal processing and can be employed through the phase cross-correlation

and/or through the time-frequency domain phase-weighted stack. The phase cross-correlation

is more sensitive to waveform similarity but less sensitive to strong amplitude features than the

conventional cross-correlation. The time-frequency domain phase-weighted stack cleans the

ambient noise cross-correlograms by attenuating incoherent noise and permits an improved

signal identification. We show that both approaches are powerful tools in the recovery of

signals from ambient noise data and show examples where they improve the extraction of P

and Rayleigh waves by considering local and global scale applications.

Key words: Time series analysis; Interferometry; Body waves; Surface waves and free

oscillations.

1 I N T RO D U C T I O N

Green’s functions can be extracted from seismic noise cross-

correlations as theoretically shown with different approaches by

Lobkis & Weaver (2001), Derode et al. (2003), Wapenaar (2004),

Snieder (2004), Roux et al. (2005a), Wapenaar et al. (2006), Snieder

et al. (2007) among others. The Green’s function recovery from

noise fluctuations has now received much attention. A large amount

of recent publications show the different applications in fields such

as ultra sound (Weaver & Lobkis 2001; Derode et al. 2003) helio

seismology (Duvall et al. 1993; Rickett & Claerbout 1999, 2000),

fault and volcano monitoring (Sens-Schönfelder & Wegler 2006;

Wegler & Sens-Schönfelder 2007; Brenguier et al. 2008), explo-

ration seismology (Schuster et al. 2004; Bakulin & Calvert 2006),

crustal seismology (Campillo & Paul 2003; Shapiro & Campillo

2004; Shapiro et al. 2005; Sabra et al. 2005) and global seismology

(Nishida et al. 2009). By now there exist many other noise studies

which all have the main purpose to perform passive monitoring

and/or structural imaging. Indeed, great promises are shown in this

quickly developing field which opens up new applications.

Ideally the cross-correlations can only retrieve the Green’s func-

tions for systems with equipartitioned waves, that is, where energy

is balanced such that its net flux becomes zero. In practice, how-

ever, this is not the case for most seismic ambient noise studies since

the waves are not sufficiently scattered, since the noise sources are

strongest along certain azimuths and since there are only finite num-

ber of independent sources. Averaging the cross-correlations over

long time spans is commonly used to overcome these problems and

to improve the emergence of the Green’s function.

In a simplified manner, the ambient noise cross-correlations be-

tween two sensors can be pictured as a detection tool of waves which

on their journey travel through both sensor positions. The cross-

correlation identifies these waves as a function of lag-time which

is the traveltime from one sensor to the other. The presence of a

significant number of waves which travel through the same path be-

tween the two stations and which can have different waveforms will

lead to constructive contributions in the cross-correlation at given

lag-time. The waveform details are lost by the cross-correlation and

signals are build up which can be understood as due to waves which

are generated by an impulsive source at one of the receiver loca-

tions. The positive or negative lag-time provides the information

from which receiver these waves come from.

Based on this simplified picture one expects to detect these waves

also with other signal detection tools which may even replace the

commonly used cross-correlation and stacking techniques. Alter-

native signal detection approaches may retrieve complementary

pieces of information and enable us to extract signals in a more

efficient way. Efficient signal extraction is important for monitoring
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purposes since faster emerging signals can be detected using smaller

time windows and can therefore improve the time resolution. It may

also be possible to extract more signals from cross-correlograms

due to an improved incoherent noise attenuation.

Due to this motivation we look for new processing techniques

and show the performance of the phase cross-correlation (PCC) by

Schimmel (1999) on ambient noise data. PCC is based on analytic

signal theory and we show that since PCC is amplitude-unbiased, it

does not require pre-processing steps such as the 1-bit normalization

(e.g. Bensen et al. 2007) to remove the disturbing influence of ener-

getic features such as earthquakes. The classical cross-correlation

requires a pre-processing of the noise data which can deteriorate

waveform coherence. The PCC of non-pre-processed noise data

can therefore be more efficient than the classical cross-correlation

as shown in our examples. Besides the correlations, the stacking

of the cross-correlograms is further important to additionally im-

prove the emergence of signals through their coherent appearance.

Here we employ the time-frequency domain phase-weighted stack

(tf-PWS) by Schimmel & Gallart (2007). The tf-PWS strategy has

also been used by Baig et al. (2009) to denoise ambient noise

cross-correlograms for a more efficient Rayleigh- and Love-wave

extraction.

In the following, we first recall the PCC (Schimmel 1999) and

tf-PWS by Schimmel & Gallart (2007) which then are applied to

theoretical and real noise data. We show how to apply these tools and

discuss benefits and limitations of our processing tools. Other ad-

vanced processing techniques may also be used in a similar fashion

and for a robust ambient noise processing.

2 M E T H O D S

The main ambient noise processing steps are (1) pre-processing,

(2) cross-correlation and (3) cross-correlogram stacking. Here, we

focus on the latter two and show how the instantaneous phase co-

herence obtained from the analytic signal can be incorporated in

the ambient noise processing. In the following, we briefly sum-

marize the main concept of the phase cross-correlation (PCC) and

of the tf-PWS which then are used to correlate and stack ambient

noise data. The correlation results are compared with the classical

cross-correlation which is geometrically normalized (CCGN)

cccgn(t) =
∑τ0+T

τ=τ0
u1(t + τ )u2(τ )

√

∑τ0+T

τ=τ0
u1(t + τ )2

∑τ0+T

τ=τ0
u2(τ )2

, (1)

where u1 and u2 are the two time-series and where t and T are the

time lag and correlation window length, respectively. τ0 is the start

time t − T /2 of the correlation window. The time lag t is applied

to u1. The denominator is the geometric mean of the energy within

time window T .

2.1 The PCC

The PCC is based on analytic signal theory. The analytic signal

s(t) of a real time-series u(t) is uniquely defined as s(t)= u(t)+
i H [u(t)], where H [u(t)] is the Hilbert Transform of the time-series

u(t). It is a transformation from the real to the complex number

domain. Considering the exponential form s(t) = a(t) exp(i�(t))

one obtains the envelope a(t) and the instantaneous phase �(t). It is

this phase that should be the same for coherent signals at each given

time. The waveform information of the neighbouring samples is

contained implicitly through the Hilbert Transform which one can

express as a heavily localized moving window operation. PCC was

introduced in Schimmel (1999) and is defined as

cpcc(t) =
1

2T

τ0+T
∑

τ=τ0

{
∣

∣ei�(t+τ ) + ei�(τ )
∣

∣

ν −
∣

∣ei�(t+τ ) − ei�(τ )
∣

∣

ν}

. (2)

cpcc is a coherence functional which measures the similarity of

two time-series u1 and u2 as function of lag time t in analogy

to the classical cross-correlation (eq. 1). �(τ ) and �(τ ) are the

instantaneous phases of u1 and u2 which make cpcc(t) an amplitude

unbiased correlation. PCC is normalized to |cpcc| ≤ 1 with cpcc =
1 indicating perfect correlation and cpcc = −1 anticorrelation. The

sensitivity of cpcc(t) can be increased by using power ν > 1 (eq. 2).

This may lead to an improved signal-to-noise ratio (SNR) while

absolute correlation values may decrease. We use ν = 1 throughout

this work.

cpcc is based on the number of phase coherent samples rather

than the sum of products as it is the case for the conventional

cross-correlation. Fig. 1 shows how the different concepts may in-

fluence the correlation results. The example uses time-series a(t),

b(t) and c(t) which are shown as black lines in Fig. 1(a). a(t) and

b(t) consist of two wave trains each. The only difference between

a(t) and b(t) is that the first wave train is delayed by about 0.3 s on

b(t). PCC and CCGN of traces a(t) and b(t) are shown as black and

grey line in Fig. 1(b). The two methods have maximum correlation

at different lag times. CCGN has its maximum at zero lag advocat-

ing best waveform similarity through aligning the large amplitude

Figure 1. (a) Black lines show the time-series a(t), b(t), c(t) used in subsequent illustration. b(t) and c(t) are plotted together with a(t) (grey line) to simplify

the visual inspection of waveform coherence. (b) The black (PCC) and grey line (CCGN) are the cross-correlations of a(t) with b(t). The lag time is applied

to a(t). The different maxima at different lag point to different waveform similarity. (c) Shown are the correlations of a(t) with b(t) (grey lines) and a(t) with

c(t) (black lines). CCGN is less sensitive than PCC to the waveform changes.
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signal at about 5 s (Fig. 1a). PCC finds best waveform alignment

at lag 0.3 s that is by aligning the smaller amplitude wave train

of 3 s duration. PCC is amplitude insensitive and determines the

maximum correlation by the maximum number of coherent sam-

ples. That is, the 0.3 s lag time is favoured since it aligns the longer

wave train. The CCGN does not favour the alignment of this wave

train since the sum of products is largest by aligning the largest am-

plitude signals, thus yielding maximum correlation at zero lag. As

consequence, CCGN is the better choice when looking for the most

energetic signals. Fig. 1(c) illustrates the cross-correlograms for

traces a(t), b(t) (grey line) and a(t), c(t) (black line). c(t) contains

only the large amplitude signal of trace a(t) with changed wave-

form. Striking is the similarity of the CCGN correlograms which

shows that the small amplitude portions have little influence in the

cross-correlation. Conversely, the PCCs have different lag time and

amplitudes. The lag times for maximum correlation are 0.3 s and 0 s

for traces a(t), b(t) and a(t), c(t) and show the preferred alignment

of the small amplitude wave train and of the large amplitude signal,

respectively. The amplitude of maximum correlation for traces a(t),

c(t) and a(t), b(t) are 0.353 and 0.755, respectively. As expected,

the amplitudes of the cross-correlation values are smaller for a(t),

c(t) since their waveforms are less similar. PCC is more sensitive

to waveform changes which depending on data and application in

mind can be an advantage or disadvantage. Anyhow, PCC is an

independent coherence measure based on a different definition for

waveform similarity and which can be more useful in discriminating

closely similar waveforms.

2.2 The time-frequency domain PWS

The tf-PWS is an extension of the PWS presented by Schimmel &

Paulssen (1997). The PWS is a non-linear stack where each sample

of a linear stack is weighted by an amplitude-unbiased coherence

measure, the phase stack

cps(t) =

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

ei� j (t)

∣

∣

∣

∣

∣

∣

ν

. (3)

cps(t) is based on the similarity of the instantaneous phases � j (t) of

the complex signals of the N traces uj(t) at time t. ν is a parameter

to tune the transition between coherent and less coherent signal

summation. In analogy, Schimmel & Gallart (2007) present the tf-

PWS for array processing and adaptive filtering. The backbone of

their tool is the time-frequency phase stack which is based on the

time-frequency decomposition of each trace which they obtained

through the S-transform (Stockwell et al. 1996)

S(τ, f ) =
∫ ∞

−∞
u(t)w(τ − t, f )e−i2π f t dt, (4)

with a Gaussian window function w(τ − t, f ) centred at time τ and

width proportional to |1/ f |.

w(τ − t, f ) =
| f |

k
√

2π
e

− f 2(τ−t)2

2k2 , k > 0 . (5)

The S-transform is a windowed Fourier Transform where the win-

dows (amplitude and width) are frequency (f ) dependent. The win-

dows and thus the resolution can be adjusted using variable k. We

use k = 2 in the following analysis. The S-transform is related to the

wavelet transform through a matrix multiplication (Ventosa et al.

2008). Any other time-frequency decomposition method which re-

sults into an analytic representation of the time-series can be used in

full analogy. The advantage of the S-transform is that it is based on

the well-known Fourier theory. In Schimmel & Gallart (2007) it is

shown under which conditions the S-transform decomposition is an-

alytic. In their eq. (13) and following two paragraphs, k should stand

in the numerator rather than the denominator. This writing mistake

does not further change the physics or conclusions. It is shown that

S(τ, f )ei2π f τ is analytic for any real signal at a fixed frequency f .

Consequently, and in analogy to eq. (3) the time-frequency phase

stack can be written as

cps(τ, f ) =

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

S j (τ, f )ei2π f τ

∣

∣S j (τ, f )
∣

∣

∣

∣

∣

∣

∣

∣

ν

, (6)

where S j (τ, f ) is the S-transform (eq. 4) of the j-th time-series (here

cross-correlograms). That is to determine cps(τ, f ) each individual

trace must be transformed into the time-frequency domain. The tf-

PWS Spws(τ, f ) is obtained by a time-frequency multiplication of

the phase stack cps(τ, f ) with Sls(τ, f ) the S-transform of the linear

stack of all N time-series (cross-correlograms).

Spws(τ, f ) = cps(τ, f )Sls(τ, f ). (7)

The phase coherence cps(τ, f ) is thus used to downweight the in-

coherent portions of the linear stack in the time-frequency domain.

The inverse S-transform (Schimmel & Gallart 2005, 2007; Simon

et al. 2007) is then applied to transform Spws(τ, f ) to the time do-

main spws(t). In Schimmel & Gallart (2007) it is shown how the

phase stack can be used as local weight (in space, time, slowness

and frequency) in record sections or array data. Baig et al. (2009)

employ this tf-PWS based on a non-redundant and efficient version

of the S-transform.

3 A P P L I C AT I O N T O N O I S E DATA

3.1 Synthetic data: comparison of cross-correlations

In the following we use synthetic data to give an overview on the

performance and limitations of the different correlation approaches.

Using synthetic data has the advantage that one can determine the ef-

ficiency from controlled experiments with known signals and noise

before applying the methods to real data. Our synthetic data are kept

as simple as possible without intention to mimic real ambient noise.

Real ambient noise are very complicated due to the different noise

generation mechanisms and complex wave propagation in heteroge-

neous media. Here we are only interested in studying the detection

of waves which travel in one direction and which are contaminated

by incoherent background noise and a single strong earthquake.

Earth ambient noise is mainly build up with dispersive surface

waves due to the dominant ubication of noise sources on the Earth

surface. Our test data consist of many surface wave trains, random

noise and optionally one earthquake. The purpose is to show how

the surface wave signal can be extracted from the data. We assume

that the dispersive surface waves are propagating without loss of

energy along the path between two stations. We add background

noise to perturb randomly the waveforms. The background noise is

not assumed to be white. The SNR and number of dispersive surface

waves can be controlled in our test data which are explained with

more details in the following.

3.1.1 Generating test data

A large portion of the ambient noise data consist of dispersive

surface waves and we therefore chose to generate synthetic test

data with dispersive signals to mimic surface wave propagation.

C© 2010 The Authors, GJI, 184, 494–506
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Figure 2. (a) S1, S2, E1, E2 are the waveforms used to construct our test series. The Fourier amplitude spectra of S1 and E1 are shown in (b). The amplitude

scale is linear with relative amplitudes marked in the figure. (c) Grey and black lines show a 5000 s zoom of the synthetic traces used in subsequent correlation

tests. The total length of the time-series is 1 d. The top panel and bottom panel show the noise-free and noise-contaminated traces. The noise amplitude spectrum

is shown in (b).

Test data have been generated using two sinusoidal linear chirp

functions S1(t) and S2(t)

Si (t) =

{

sin(2π f̃ t) if t > 0 and f̃ = f0 + ri t < 0.1 Hz

0 otherwise,
, (8)

where i is 1 or 2, and where f̃ is obtained with f 0 = 0.005 Hz, r 1 =
0.001 s−2 and r 2 = 0.0005 s−2. The Fourier amplitude spectrum

of signal S1 is shown in Fig. 2(b) (grey line). As can be seen

from the equations and Fig. 2(a), the instantaneous frequency f̃ of

the signals increase linearly with time and the two chirp signals

have a different frequency dispersion so that the different frequency

components arrive at different time. This mimics dispersive surface

waves which have been recorded at two different stations. Due to the

dispersion, the cross-correlogram of these chirp functions should

show different lag times as function of frequency which correspond

to the wave propagation time between both stations.

The first test trace SS1(t) (Fig. 2c) is constructed by distributing

the chirp S1(t) randomly hundred times over a day. The second test

trace SS2(t) is obtained by shifting the randomly distributed chirps

by 100 s and by replacing chirp S1(t) by chirp S2(t), that is,

SSi (t) =
100
∑

k=1

Si (t − tk − ti ), (9)

with tk ∈ [0s, 86400 s], t1 = 0 and t2 = 100 s.

To simulate a large event, such as an earthquake, we construct

in addition two chirps E1(t) and E2(t) using eq. (8) and param-

eters f 0 = 0.003 Hz, r 1 = 0.00026 s−2, r 2 = 0.00018 s−2 and

f̃ < 0.15 Hz. We multiply E1(t) and E2(t) by a factor of 10 and use

these chirps to mimic a large event that contaminates at random time

te and te + 40 s the test data SS1(t) and SS2(t), respectively. The

chirp functions E1(t) and E2(t) have different dispersions with the

lowest frequencies arriving first with 40 s lag time. The normalized

traces SS1(t) and SS1(t) + 10E1(t − te) are shown in Fig. 2(c) with

and without random noise contamination. The background noise is

not white as it is for real noise spectra. Its shape is chosen arbitrarily

with amplitude spectrum shown in Fig. 2(b). The background noise

perturb randomly the signal waveforms. The Nyquist frequency of

our test data is 0.5 Hz.

3.1.2 Pre-processing

Our pre-processing is kept simple and leans on the commonly used

pre-processing (e.g. Bensen et al. 2007) for the computation of

ambient noise cross-correlations. It consists in performing a 1-bit

normalization and a spectral whitening of the traces. The 1-bit

normalization (
u(t)

|u(t)| ) removes waveform details and amplitude dif-

ferences in the time domain by dividing at each time the recorded

amplitude by its absolute amplitude. Through this operation the

cross-correlation is made amplitude insensitive. It means that large

amplitude signals such as strong earthquakes should not govern the

correlation through their large amplitudes.

We perform the spectral whitening after application of the 1-bit

normalization. The time-series are transformed to the frequency

domain to normalize their amplitude spectra to 1. The phase spectra

are not changed. The amplitude normalization in the frequency do-

main is useful to remove the influence of signals which manifest in

amplitude spectra such as frequency-localized noise sources. The

26 s resonance (Holcomb 1998) in the Gulf of Guinea as localized

by Shapiro et al. (2006) is such signal which can be removed by the

whitening (Bensen et al. 2007). The normalized spectra are then

transformed back to the time domain. We apply no bandpass filter

to our synthetic data since there are signals almost throughout the

entire frequency range. However, we apply a bandpass filter to the

real data to reduce the frequency interval where one may expect to

extract signals from coherent noise. The frequency range to select

depends also on the interstation distance. Cross-correlations per-

formed at dominate frequencies with corresponding wave lengths

larger than the interstation distance may lead to a perfect correla-

tion between the two stations and converge to the autocorrelation

(Chavez-Garcia & Rodriguez 2007). For far-field Green’s functions

the interstation distance should be several times larger than the

wavelength.

C© 2010 The Authors, GJI, 184, 494–506

Geophysical Journal International C© 2010 RAS



498 M. Schimmel, E. Stutzmann and J. Gallart

3.1.3 Cross-correlations

The cross-correlations between synthetic traces SS1(t) and SS2(t)

with or without noise contamination, with or without pre-processing

are shown in Fig. 3. The four upper and lower panels show the re-

sults for CCGN and PCC, respectively. The cross-correlograms of

Fig. 3(a) are unfiltered while those of Fig. 3(b) have been band-

passed from 0.05 Hz to 0.2 Hz. The black and grey lines are used

to distinguish the correlations for the noise-free and noisy data,

respectively. Further, the label E+ marks that the chirp functions

E1(t) and E2(t) were used to contaminate both test traces to simu-

late the occurrence of a large event. Label E− means that no event

contaminates the test data. Similarly, W+ and W− are used to indi-

cate whether the data have been pre-processed following the steps

described in the previous subsection.

The first line of Fig. 3 shows with black line the CCGN cross-

correlogram for the noise-free traces without pre-processing (W−)

and without the large event contamination (E−). Since this is the

cross-correlation of noise-free data the pre-processing is not re-

quired and the correlation result is what one can ideally expect to

achieve for the following cross-correlograms of the differently ma-

nipulated data. The dispersive signal shape is due to the different

dispersions of the chirps which result in increasing lag times for in-

creasing frequencies. The lowest frequency component has a correct

lag time of 100 s. In the second line we show the cross-correlations

for the same, but pre-processed (W+) traces. The results seem to

be contaminated with high-frequency noise. The spectral normal-

ization (whitening) increased the higher frequency amplitudes due

to the absence of high-frequency signals. The third line contains the

results for E+, W−. Here we see the effect of the strong amplitude

chirp which starts to correlate at lag 40 s for the lowest frequency

components. The 40 s lag corresponds to the time of the shifted

strong amplitude chirp E2(t) with respect to E1(t). The correlation

at t > 40 s is due to the different dispersion of the chirps E1(t)

and E2(t). The correlation of the 10 times smaller amplitude chirps

interferes with the strong event correlation at lags 100 ≤ t < 200 s.

The fourth line shows the correlation of the same data but with

W+. It can be seen that the traces CCGN, E−, W+ and CCGN,

E+, W+ are quite similar thus insensitive to the strong event E+.

That is the 1-bit normalization and whitening fulfill their purpose

of neutralizing the occurrence of strong events in the time and

frequency domain. The pre-processing is therefore important to re-

move these signatures from the input data. The comparison of the

filtered cross-correlograms CCGN, E−, W− and CCGN, E+, W+
however show that the removal of the strong event through W+ may

introduce waveform perturbations.

The following four panels (Fig. 3) show the PCC results for the

data used in the first four lines. The noise-free and unfiltered corre-

lations PCC, E−, W− and PCC, E+, W− have a high correlation at

all lags as can be seen from Fig. 3(a) (5th and 7th black trace). This

is due to the zero amplitude portions of the noise-free data which

also are phase coherent. The filtered correlations PCC, E−, W−
and PCC, E+, W− of the noise-free data are also affected by the

zero amplitude portions. It can be seen from Fig. 3 that the inclusion

of some noise (grey lines) remove this high average correlation. In

practice, real data have no zero amplitude stretches and will there-

fore not show the overall high correlation. Striking is the similarity

of the correlation waveforms PCC, E−, W− and PCC, E+, W−.

It shows that PCC is not sensitive to the high amplitude event E+.

This is due to the strategy of PCC which has been designed as

an amplitude unbiased approach based on the instantaneous phase

coherence. The number of phase-coherent samples for Ei(t) is in

the order of 100 times less than for the small amplitude chirp Si(t).

The comparison of PCC, E−, W+, PCC, E+, W+ with PCC, E−,

Figure 3. (a) Black and grey lines show the correlation results for noise-free and noise-contaminated traces (Fig. 2c, either upper or lower panel), respectively.

E+ and E− indicate the inclusion or absence of a large amplitude event and W+ and W− indicate whether the pre-processing included 1-bit normalization

and spectral whitening or not. (b) Same as (a) but the data have been bandpassed between 0.05 and 0.2 Hz.

C© 2010 The Authors, GJI, 184, 494–506
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W− (or CCGN, E−, W−) show that whitening (W+) can degrade

the phase coherence through waveform perturbations. This is also

seen from the filtered cross-correlograms of Fig. 3(b). The bandpass

filter removes signals due to weighting outside the dominant signal

frequency band which increases the SNR of the cross-correlograms.

In real data the frequency band of coherent signals in the ambient

noise is unknown a priori and often difficult to access.

From this analysis, we conclude that the pre-processing can de-

teriorate the correlations, but that the pre-processing is required to

obtain satisfactory results with CCGN whenever one can expect

large amplitude events in the data. PCC has the advantage that it

does not need the pre-processing but since it is based on phase

coherence it may be more sensitive to waveform variations of the

signals one is looking for.

3.1.4 Robustness of cross-correlation results

We now re-do the cross-correlations for different background noise

realizations to investigate the robustness of the results. As back-

ground noise we name the omnipresent noise in time with amplitude

spectrum shown in Fig. 2(b). The degree of noise contamination is

quantified through the SNR which we define using the rms am-

plitude of the noise-free signal considering the non-zero amplitude

portions of SS1(t) and the rms amplitude of the background random

noise.

SNR = 20 log10

(

rmssignal

rmsnoise

)

. (10)

The logarithmic decibel scale (eq. 10) is employed for visual

purpose. The cross-correlations are computed for different random

noise realizations and different SNR. We measure the similarity

between the various PCC and CCGN waveforms by the amplitude

of the zero-lag cross-correlation of each waveform with the noise-

free CCGN, E–, W– for times between 100 s and 175 s. Each cross-

correlation result is represented as a dot as function of its similarity

with the noise-free CCGN, E–, W– and SNR in Fig. 4. The colours

identify the correlation type (CCGN or PCC) and the pre-processing

(W− or W+). The estimated SNR of the test traces from Fig. 2 is

0.485 dB corresponding to an rms amplitude ratio of approximately

1.057. The difference between Figs 4(a) and (b) is that the data from

Fig. 4(a) were not contaminated by a large amplitude event (E−)

while the data from Fig. 4(b) were contaminated by a large event

(E+).

It can be seen from Fig. 4(a) that the CCGN without any data pre-

processing (CCGN, E−, W−) provides the best results followed by

the PCC (PCC, E−, W−). The PCC suffers more from variations in

the waveform details through the noise contamination and therefore

does not exactly reach 1, or in other words similarity with the noise-

free template CCGN, E−, W− is not reached. The high waveform

sensitivity also explains the larger similarity variations for PCC

at positive SNR with respect to CCGN. The green and red dots

correspond to the PCC and CCGN measure for the pre-processed

data (W+). PCC performs on average slightly better than the CCGN.

The 1-bit normalization makes it more difficult to detect the chirps

through the sliding inner products of the correlation.

Fig. 4(b) shows the results for the same data but contaminated ad-

ditionally by a large amplitude event (E+). Striking, but expected,

is the poor performance of the CCGN, E+, W−. The correlation

is strongly biased by E+ and pre-processing W+ is required. As

expected from Fig. 3, the other cross-correlations are not signifi-

cantly changed by the pre-processing. Now, PCC provides clearly

the best results. Performing the same analysis on the 0.05–0.2 Hz

bandpassed data is not changing the results from Fig. 4.

The cross-correlation results depend also on the number of sig-

nals included in the record. The following figure (Fig. 5) shows the

zero-lag CCGN similarity of the cross-correlograms as function of

number of signals (Si) spread randomly over 1 d. The SNR of the

data has been fixed for this figure with an average and standard

deviation of 0.41 ± 0.31 dB. 100 signals spread over the day cover

roughly 10 per cent of the day time. Figs 5(a) and (b) show the results

for E− and E+, respectively. It can be seen from Fig. 5 that there

exists a consistent pattern with respect to Fig. 4. CCGN, E−, W−
provide clearly the best result for no strong signal contamination

(Fig. 5a). However, if there exists a strong amplitude event (E+)

then PCC, E+, W− becomes the better approach since it is less

sensitive to E+ than CCGN. This outcome seems to be indepen-

dent of the number of signals considered. The results of Fig. 5(b)

depend also on the length and amplitude of the strong amplitude

event Ei(t). The stronger this signal is, the less it is contaminated

by the noise and the more its 1-bit pattern remains present after the

pre-processing.

These tests show that PCC is a powerful method that can, un-

der certain conditions, retrieve the expected template which was

Figure 4. Cross-correlation results for the differently processed traces (Fig. 3a) are separated by the different colours. Each dot represents a result as function of

data SNR (eq. 10) and its similarity with the noise-free data cross-correlogram (CCGN, E−, W−). The similarity is the zero-lag CCGN for t ∈ [100 s, 175 s].

Solid lines mark the local mean and a total of 4 × 1940 correlations were computed per figure. (a) and (b) show the results without (E−) and with (E+) strong

event contamination, respectively. The SNR of our test data Fig. 3(a) is 0.485 dB.
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Figure 5. Cross-correlation results for the differently processed traces (Fig. 3a) which are separated by different colours. Each dot represents a result as

function of number of signals in the input data and its similarity with the noise-free data cross-correlogram (CCGN, E−, W−). 100 signals cover about 10 per

cent of the day. SNR is 0.41 ± 0.31 dB. Solid lines mark the mean and a total of 4 × 1486 correlations were computed per figure. The similarity is the zero-lag

CCGN for t ∈ [100 s, 175 s]. The green and blue symbols were shifted horizontally by +2 and −2 to improve the inspection of similarity variability. (a) and

(b) show the results without (E−) and with (E+) strong event contamination, respectively.

obtained from the noise-free cross-correlograms (CCGN, E−,

W−). PCC was the better approach in retrieving this template when

the data were contaminated by one large amplitude event. In this

case CCGN needs the pre-processing to remove the amplitude bias

but which may degrade signal waveforms in the noise. It is observed

that on average PCC (with and without pre-processing) performs

better than CCGN (Fig. 5b).

3.1.5 Group velocities

Finally, we analyse the cross-correlations in the time-frequency do-

main. Ambient noise cross-correlations are mostly used to extract

the dispersion of surface waves through phase and group veloc-

ity measurements. Here we assume for simplicity that our syn-

thetic cross-correlations are for two stations which are separated by

300 km and measure their group velocities. The group velocities

are determined from the maxima of the time-frequency amplitude

spectra. The S-transform (Stockwell et al. 1996) is used to obtain

the time-frequency representation of the cross-correlograms. We

plot group velocities for all maxima which are larger than 30 per

cent of the extremum in each time-frequency representation. The

cross-correlograms used, CCGN and PCC, are shown in Figs 6(a)

and (b), respectively. These traces are the same as those shown in

Fig. 2(a). Figs 6(c) and (d) show their corresponding group veloci-

ties. The legend in Fig. 6(d) is for the entire figure and the colours

correspond to traces in Figs 6(a) and (b). The two different disper-

sions shown in Fig. 6(c) are due to the randomly distributed chirps

Si(t) and the strong event Ei(t). Their highest corner frequencies

of about 0.18 and 0.3 Hz correspond to the highest resolved chirp

corner frequencies shown in Fig. 2(b). This figure shows that E+
dominates the cross-correlation over all frequencies for the CCGN

approach without applied pre-processing (CCGN, E+, W−). The

higher frequency noise (isolated maxima at frequencies larger than

0.2 Hz) belong to the cross-correlations of the pre-processed (W+)

data. Their SNR in the time-frequency domain is decreased due to

the whitening and these maxima enter through the chosen 30 per

cent threshold.

Fig. 6(d) shows the dispersion curves for PCC. It is striking

that all the measured group velocities resemble each other which

confirms that the results are not influenced by the strong event E+.

Further, there appear also other maxima at the higher frequencies

which are again explained by the decrease of the SNR caused by

W+ and the chosen 30 per cent threshold.

3.2 Real data: high-frequent regional-scale

cross-correlations

We now employ the data from a temporary broad-band array which

has been deployed during 1 yr in the province of Almeria (South

Spain) to investigate the deep Alboran area with advanced array

processing. A map of the array is shown in Fig. 7. The array has

an aperture of about 35 km and consists of 10 stations which are

irregularly placed with interstation distances ranging from 2.5 km to

35 km. In the following we show the performance of the described

tools in the detection of high-frequency surface waves and body

waves.

We use continuous vertical component recordings which we cut

into 24 h traces to later perform cross-correlations on daily records

for all possible station pairs. The data were bandpass filtered be-

tween 0.3 and 3 Hz. No additional pre-processing was applied for

PCC in harmony to our synthetic data results. For CCGN the data

were pre-processed using the time-domain and frequency-domain

whitening as described in the previous section. The mentioned

bandpass filter was applied after the spectral whitening. The daily

cross-correlograms, either CCGN or PCC, were stacked linearly

and non-linearly using tf-PWS (eq. 7) for each station pair. The

final cross-correlograms are based on the data of a minimum of

20 d to a maximum of 110 d, depending on data availability. The

cross-correlations are performed such that positive lag is applied to

the station to the South. Most of the sources are expected to be in

the Mediterranean Sea and will cause larger amplitude signals at

positive lag.

In Fig. 8, we show the cross-correlograms as function of inter-

station distance and lag time. The linear stack of the daily CCGN

and PCC traces are shown in Figs 8(a) and (b). The Rayleigh-wave

arrival is seen as aligned signals at negative and positive lag time.

The waves are better visible at positive lag due to the dominance

of sources in the Mediterranean Sea. The stations were located in a

complicated mountain area (Sierra Nevada mountain range) which
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Figure 6. (a,b) The cross-correlograms from Fig. 3(a) using CCGN and PCC, respectively, are plotted on top of each other. The colours correspond to the

labels of (d). (c) and (d) show the measured group velocities for the CCGN and PCC in (a) and (b). N+ and N− stand for noise-contaminated and noise-free

data. W and E are used as in Fig. 3.

Figure 7. The temporary seismic array was deployed in the province of Almeria (South Spain) and consisted of 10 three-component broad-band sensors.

may explain waveform variations of cross-correlograms for neigh-

bouring interstation distances.

The PCC section looks cleaner than the CCGN result which

contains more energy at higher frequencies. The daily cross-

correlograms have also been stacked using the tf-PWS and the

results for CCGN and PCC are shown in Figs 8(c) and (d). Power

ν = 2 (eq. 7) and factor k = 2 (eq. 5) were employed to obtain

these results. The results were further cleaned from the noise with

respect to the linear stack, as can be seen from a comparison of these

figures. The improvement over the linearly stacked PCC traces is

not as strong as over the CCGN traces since the PCCs (Fig. 8b) are

already less contaminated by noise than the CCGNs (Fig. 8a).

The normalized amplitude spectra for two station pairs and the

corresponding cross-correlograms are compared in Fig. 9. The

C© 2010 The Authors, GJI, 184, 494–506

Geophysical Journal International C© 2010 RAS



502 M. Schimmel, E. Stutzmann and J. Gallart

Figure 8. Ambient noise cross-correlation results for data recorded at the stations shown in Fig. 7. The daily cross-correlograms were computed and stacked

using (a) CCGN and linear stack, (b) PCC and linear stack, (c) CCGN and tf-PWS and (d) PCC and tf-PWS. tf-PWS power ν = 2 were used.

Figure 9. Noise and cross-correlation amplitude spectra for the two station pairs TA02-TA04 (a) and TA08-TA10 (b) with interstation distances 10 km and

30 km (Fig. 8). From left to right: The first panel shows the amplitude spectra of 200 s noise. The second panel contains the spectra for cross-correlations (PCC

and CCGN) of 1 d of noise. See text for processing details. The third and fourth panel show the amplitude spectra after stacking 40 cross-correlations using

CCGN and PCC, respectively. LS and PWS are abbreviations of linear stack and tf-PWS (ν = 2). Lag times of all cross-correlograms range from −100 s to

100 s.

interstation distances are 10 km (Fig. 9a) and 30 km (Fig. 9b).

TA02, TA04, TA08 and TA10 are station identifications. Figs 9(a)

and (b) use data from different days. The first panel contains the

amplitude noise spectra determined by a Fast Fourier Transform of

the vertical component noise records. It is roughly similar at both

stations. The second panel shows the PCC (solid line) and CCGN

(grey line) amplitude spectra obtained for 1 d of noise with cor-

relation lag time range −100 s ≤ t ≤ 100 s. The high-frequency
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Figure 10. Vertical component ambient noise cross-correlograms for the stations shown in Fig. 7. Record sections were obtained using (a) CCGN and linear

stack, (b) CCGN and tf-PWS, (c) PCC and linear stack and (d) PCC and tf-PWS, respectively. tf-PWS power ν = 2 were used. The amplitudes are clipped at

95 per cent of the maximum amplitude on each trace. The theoretical P- and S-phase traveltimes are shown as blue and red curves, respectively. P phases are

visible on all record sections.

signals in the CCGN spectra are due to the whitening of the data pre-

processing. The last two panels contain the amplitude spectra of the

linear stack (LS) and tf-PWS (PWS) of 40 CCGN and PCC traces,

respectively. The LS and tf-PWS are shown with the solid and grey

line. A comparison of these figures shows that the LS of the CCGN

traces has higher frequencies than the LS of the PCC traces. We

attribute this to the pre-processing of the CCGN data It is further

seen that tf-PWS attenuates the higher frequencies of the CCGN

time-series with respect to the LS. This high-frequent incoherent

noise cleaning is not visible for PCC where the amplitude spec-

tra remain similar. This is consistent with the little improvement

archived with tf-PWS on the PCC traces as seen from Figs 8(b)

and (d).

We observe in our ambient noise cross-correlograms also P

phases which are shown in Fig. 10. The plotting style was changed

for this figure to increase the visibility of these less commonly

observed body waves in regional scale settings with stations at the

Earth’s surface. In Fig. 10 each trace was clipped at 95 per cent of its

maximum amplitude. The cross-correlograms were processed using

CCGN and linear stack (10a), CCGN and tf-PWS (10b), PCC and

linear stack (10c), PCC and tf-PWS (10d). The blue and red dashed

lines mark the theoretical P- and S-phase arrivals for a source at

the Earth surface using the spherically symmetric seismic velocity

model AK135 (Kennett et al. 1995). The P phases line up with

their theoretical traveltime curve. In other words the interstation

distances correspond with the epicentral distances for P waves gen-

erated at one of the stations used in the correlation. S phases are not

visible and their theoretical traveltimes are plotted for orientative

purposes. The Rayleigh waves are visible after the S arrival times.

The P phases are recognized in all record sections from Fig. 10.

The identification of the P phases on the linearly stacked traces

(Fig. 10a) alone is difficult. However, the incoherent noise cleaning

using tf-PWS (Figs 10b and d) improves their visibility and increases

their significance since tf-PWS attenuates signals if they do not

appear with a certain regularity and coherence on the individual

cross-correlograms.

We see also from Fig. 10 that P and Rayleigh waves are mainly

observed on the causal part of the cross-correlograms. Most of

the noise wavefields are generated in the Mediterranean Sea which

explains the observed dominant wave directions. A consistent ob-

servation of these signals can permit to do ambient noise body

wave tomography, with the advantage that source positions and ab-

solute traveltimes are well determined by the station position and

the cross-correlation lag time.

3.3 Real data: global-scale cross-correlations

We use now globally distributed stations from the GEOSCOPE

network to show the performance on long range noise cross-

correlations. For a detailed study of the noise characteristics of the

global network see Stutzmann et al. (2009). Here, the continuous

vertical component records were cut into 24 hr long time-series and

bandpass filtered with corner frequencies 0.003 Hz and 0.04 Hz.

Then, daily cross-correlograms were computed between data

from different station pairs using CCGN and PCC. The data used

in the CCGN correlations were pre-processed by performing the 1-

bit normalization and spectral whitening while the PCC data were

employed without any further pre-processing. The CCGN data was

bandpass filtered after the spectral whitening.

The cross-correlograms for 1 yr were stacked to build the record

sections from Fig. 11 where distance is the interstation distance for

each station pair. The station pairs used for this figure are written to

the right-hand side of Figs 11(b) and (d). In Figs 11(a) and (b), we

show the linearly stacked cross-correlations using CCGN (a) and

PCC (b) while the corresponding tf-PWS are shown in Figs 11(c)

(CCGN) and d (PCC). The tf-PWS were computed with power

ν = 2.

All record sections show the minor-arc Rayleigh waves which are

labelled as R1 in Fig. 11(b). The corresponding major-arc waves

R2 are only visible in the PCC sections of Figs 11(b) and (d). R2

Rayleigh waves travel between both stations using the larger great

circle arc which complements the closed 360 degree circle.

It can be seen from the comparison of the linearly stacked traces

with the corresponding tf-PWS cross-correlograms that the tf-PWS

sections contain less noise. tf-PWS further improves the visibility of
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Figure 11. The daily cross-correlograms were computed and stacked for 1 yr of data using (a) CCGN and linear stack, (b) PCC and linear stack, (c) CCGN

and tf-PWS and (d) PCC and tf-PWS. tf-PWS power ν = 2 were used. R1 and R2 mark the minor-arc and major-arc Rayleigh waves. Station pairs are written

to the right of (b) and (d).

the signals. There are less high-frequency noise visible on the PCC

traces than on the CCGN traces. This is due to the more sensitive

phase coherence measure of PCC which finds less waveform sim-

ilarities at the higher frequencies than CCGN. A 0.003–0.006 Hz

bandpass filter reveals that R2 signals are also visible on the CCGN

sections at lower frequencies as shown in Fig. 12. Nevertheless, a

comparison between the CCGN and PCC shows that the bandpassed

CCGN section does contain less R2 signals than the PCC section.

The ambient noise at the frequencies used in this example are due

to infragravity ocean waves (Nishida et al. 2009).

4 D I S C U S S I O N A N D C O N C LU S I O N

We show that our processing tools improve the signal extraction

from ambient noise data. The PCC is based on the phase coherence

which we obtain from the phase of the analytic signals. Signals are

therefore detected by their phase coherence while with the classi-

cal cross-correlations (CCGN) signals are identified by the largest

sum of amplitude products, thus energy. This is the main differ-

ence between PCC and CCGN and both methods can therefore be

considered as independent functionals. Based on their different phi-

losophy the correlation results may differ due to signal and noise

properties. If the signals should be detected by their waveform co-

herence then PCC is the better approach since it is the more sensitive

measure as shown in Fig. 1 [more examples in (Schimmel 1999)].

Conversely, CCGN is amplitude biased and may not discriminate

between closely similar waveforms.

Another important aspect of our analysis is the amplitude bias of

the classical approach. In contrast to CCGN, PCC is not amplitude

biased and therefore no special pre-processing is required to remove

large amplitude events. The main advantage is not in omitting pre-

processing steps, but is using as little as possible processed/altered

waveforms for signal identification. For best results with CCGN the

spectral whitening is often performed in a selected frequency band

(e.g. Roux et al. 2005b) where coherent seismic noise is expected to

be present. Our data (with or without pre-processing) were bandpass

filtered into the frequency band where we expected to extract signals.

We performed no quantitative analysis to select the frequency range.

It is shown that under these conditions PCC provides the better

results, thus being less sensitive to the frequency range than CCGN.

This is seen in both examples, at local and global scale (Figs 8–12).

The global scale example (Figs 11 and 12) shows that filtering the

CCGNs to a low-frequency band increases the visibility of the R1

and R2 phases in the CCGN section. PCC still provides the better

result due to the implicit data-adaptive coherence filtering. R1 and

R2 phases were also shown by Nishida et al. (2009) who used stacks

over 15 yr of data and who used their dispersion curves for global

tomography. Our figures are based on 1 yr of data which is more

than sufficient for PCC to extract clear R1 and R2 arrivals.
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Figure 12. The cross-correlograms from Fig. 12 have been bandpass filtered between 0.003 Hz and 0.006 Hz. R2 becomes now visible with CCGN, but still

most R2 signals are detected with PCC.

The high waveform sensitivity of PCC can also turn into disad-

vantage. For instance, if the signal waveforms have high amplitudes

and/or are very corrupted by noise then CCGN is expected to be the

better approach. With PCC one can not expect to detect signals if

they are not more phase-coherent than the noise. None of the corre-

lations is understood to be the better approach. Their performance

is related to their different strategies and depends on the signal and

noise characteristics.

Another important processing step in the analysis of ambient

noise data is the stacking of cross-correlograms. This way, the em-

pirical Green’s functions are emerging from the data over a larger

time window which improves their SNR and the azimuthal cover-

age. A more efficient signal extraction may enable the use of shorter

time windows which would increase the time resolution of moni-

toring studies. The incoherent noise attenuation during the stack-

ing becomes therefore an attractive property. We use the tf-PWS

(Schimmel & Gallart 2007) which is a time-frequency domain ex-

tension of PWS (Schimmel & Paulssen 1997). tf-PWS has also been

used successfully by Baig et al. (2009) to show their benefits in the

noise monitoring and signal extraction based on a non-redundant

S-transform for the time-frequency representation. More generally,

tf-PWS can be determined with any time-frequency representations

which provides an analytic signal representation of the data in the

time-frequency domain. Baig et al. (2009) show a significant im-

provement by identifying more Love and Rayleigh waves in their

data. It is seen from our examples that the relative benefits of tf-PWS

are larger when applied to CCGNs than to PCCs. This is because

PCCs are already intrinsically cleaned from incoherent noise due to

their larger waveform sensitivity. Nevertheless, tf-PWS can further

remove incoherent noise or isolated signals on individual cross-

correlograms.

Our 35-km aperture array in South Spain permits the observation

of P waves in the cross-correlations as shown in Fig. 10. It is still

rare to observe P or S phases from cross-correlations of ambient

noise recorded at surface stations and separated by at least a couple

of kilometres. They are more observed at higher frequencies and

smaller scale studies such as performed in seismic exploration.

Nevertheless, P waves were also clearly observed by Roux et al.

(2005b) and Nishida et al. (2008) at local and regional scale. Roux

et al. (2005b) used stations located in an 11 km square and saw

the P waves up to 1.3 Hz. Nishida et al. (2008) observes body

waves up to distances of 400 km on cross-correlations of Hi-net

tiltmeter recordings in Japan which were bandpass filtered from

0.02 to 0.5 Hz. In our data we observe the P waves at frequencies

between 0.5 and 2.5 Hz.
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