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Abstract.

The ability to predict what university course a student may select has important quality assurance and econom-
ic imperatives. The capacity to determine future course load and student interests provides for increased accu-
racy in the allocation of resources including curriculum and learning support and career counselling services.
Prior research in data mining has identified several models that can be applied to predict course selection
based on the data residing in institutional information systems. However, these models only aim to predict the
total number of students that may potentially enrol in a course. This prior work has not examined the predic-
tion of the course enrolments with respect to the specific academic term and year in which the students will
take those courses in the future. Moreover, these prior models operate under the assumption that all data
stored within institutional information systems can be directly associated with an individual student’s identity.
This association with student identity is not always feasible due to government regulations (e.g., student evalu-
ations of teaching and courses). In this paper, we propose an approach for extracting student preferences from
sources available in institutional student information systems. The extracted preferences are analyzed using
the Analytical Hierarchy Process (AHP), to predict student course selection. The AHP-based approach was vali-
dated on a dataset collected in an undergraduate degree program at a Canadian research-intensive university
(N=1061). The results demonstrate that the accuracy of the student course predictions was high and equivalent
to that of previous data mining approaches using fully identifiable data. The findings suggest that a students’
grade point average relative to the grades of the courses they are considering for enrolment was the most im-
portant factor in determining future course selections. This finding is consistent with theories of modern coun-
selling psychology that acknowledges self-efficacy as a critical factor in career planning.

Keywords: course enrollment prediction, decision science, higher education, learning analytics, student infor-
mation systems

1 Introduction

Contemporary higher education is confronted with numerous challenges stemming from increases in student
numbers and diversity, alongside a global competitive education market and significant reductions in govern-
ment funding (Srivastava, Gendy, Narayanan, Arun, & Singh, 2012). These pressures have resulted in universi-
ties re-thinking how education is best delivered and supported. This is well evidenced in the rise of online
learning programs and Massive Open Online Courses (MOOCs) (Allen & Seaman, 2013). Even in this climate of
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economic austerity, changing education models and competition, education providers still need to continue to
maintain efficient yet, effective and personalised student support services (e.g. curriculum support, learning
support and career counselling). The ability to predict student enrolment trends for courses and programs pro-
vides an opportunity for an institution to not only effectively and efficiently allocate student and learning sup-
port resources (Marginson, 2013), but also to establish a higher quality learning experience and to better un-
derstand trends in program demand. However, the rhetoric of accurately predicting student course selections
is far easier than the practice.

Although complex, accurate predictions regarding a student’s future course selection can be developed
through the analysis of student data extracted from institutional information systems (e.g. students’ grades,
course evaluations, and basic demographics). This has been well demonstrated in a number of research studies
in educational data mining (Baker, 2010; Romero & Ventura, 2010). However, the predictive models derived
from these studies tend to assume that all data stored within institutional information systems can be directly
associated with an individual student’s identity. This association with student identity is not always feasible as
government and institutional policies can impose strict regulations to ensure privacy and anonymity. An exam-
ple of such regulations can be found in the student evaluations of teaching and courses. In such cases indis-
criminate use of data mining techniques cannot always be employed when student privacy must be protected
(Vialardi, Bravo, Shafti, & Ortigosa, 2009). Yet, course and teacher evaluations do provide an important source
of information that may influence a student’s future course selections. Thus, there remains an imperative to at-
tempt to incorporate these data into the development of a predictive model (MacFadyen, Dawson, Prest, &
Gasevi¢, in press; Kardan, Sadeghi, Ghidary, & Sani, 2013). To address this issue, we propose and test a novel
approach for identifying a predictive model of student course selections drawing on identifiable and non-
identifiable data. The approach is based on the Analytic Hierarchy Process (AHP) (Saaty, 1980), a well-
established decision making technique for dealing with multi-dimensional and often contradictory preferences
of individuals. As such, the study addresses four related goals. The study firstly aims to develop a predictive
model of student course selections across a program of study. A second aim was to analyze the accuracy of the
proposed AHP-based approach when applying different weights to the extracted preferences. The research al-
so assesses the accuracy of the approach to predict the total number of students that may enrol in each course
within a selected program of study. Finally, the study aims to compare the effectiveness of the findings with
prior research. The study delimits these aims into the following four questions.

Research Question 1 assesses the overall accuracy of the predictive model:

e RQla. What is the accuracy of the predicted number of student enrollments for each course offer-
ing?

e RQlb. What is the impact of each individual concern on the accuracy of the predicted number of
student enrollments for each course offering?

Question 1 (RQla and RQ1b) addresses the need to validate the accuracy of the proposed approach against re-
lated published work — e.g. (Kardan, Sadeghi, Ghidary, & Sani, 2013). Specifically, RQ1lb extends the current ex-
isting body of research to investigate the impact of each individual concern (i.e., the individual types of data
stored in institutional information systems) on the accuracy of the predictions. For both questions, we have fo-
cused on the predictions of the number of enroliments for individual course offerings per semester and term in
different academic years. The anticipated results from the research question may inform the institution of the
number of enrollments for each course offering, and therefore informing the level of support and resource al-
locations.

Research Question 2 examines the accuracy of the prediction for exact course selections undertaken by each
individual student per term/semester.



e RQ2a. What is the accuracy of the predictions of course selections for each individual student per
semester/term?

e RQ2b. Whatis the impact of each individual concern on the accuracy of the predictions of course se-
lections for each individual student per semester/term?

Research Question 3 assesses the accuracy of the prediction for exact course selections of each individual stu-
dent per academic year.

e RQ3a. What is the accuracy of the predictions of course selections for each individual student per
academic year?

e RQ3b. Whatis the impact of each individual concern on the accuracy of the predictions of course se-
lections for each individual student academic year?

Questions 2 and 3 are focused at the individual student level. For each student, the accuracy of the approach to
predict course selection in each semester/term and academic year is evaluated. These questions provide useful
insights into how the model can potentially predict the future study plans for an individual student. To our
knowledge, no study has been undertaken that has developed and reported an approach to predict course se-
lections at the granularity of an individual student and the level of specific academic terms or years in which
they may enrol.

Research Question 4 aims to compare the effectiveness of its contribution with respect to the published litera-
ture and cited methodologies.

e How does the proposed AHP method perform in respect to other adopted methods within the extant
literature?

As the prior literature did not reveal any specific results related to research questions 2-3 (only research ques-
tion 1), we compare the effectiveness of the AHP approach with a noted alternate method used to address the
problem raised in research question 1.

In a broader sense, the study contributes to the body of research knowledge in the field of academic analytics
(Campbell, DeBlois, & Oblinger, 2007). While the proposed research can be connected with the field of educa-
tional data mining and learning analytics, the questions and method adopted generates results and findings
that are more applicable for institutional decision makers to aid their forecasting and resource planning.

2 Theoretical Background

2.1 Approaches to Modeling Preferences and Predicting Course Selection

There are numerous examples in the research literature illustrating the use of data mining techniques in order
to develop course recommendation systems (Hsia, Shie, & Chen, 2008; Castellano & Martinez, 2008). For in-
stance, Vialardi and colleagues (2009; 2010; 2011) have over a number of years, analysed historical student da-
ta such as course enrolments, course load, and academic performance to determine an individual’s probability
of success in a selected course. The intention of the research is to optimise the likelihood of an individual stu-
dent’s success through the provision of course recommendations. In terms of accuracy of the applied machine
learning algorithms, Vialardi et al (2011) noted that the decision tree C4.5 outperformed both Naive Bayes and
KNN in predicting student success. Furthermore, the authors reported that the performance of their predictive
model significantly improved (accuracy ~82%) when so-called syntactic attributes (i.e., potential for success and
difficulty to complete the course successfully) are included with variables from the student information sys-
tems (e.g., number of course attempts, grade point average, course credits, number of credits, and final grade).
While the work in this area has clearly demonstrated the potential for machine learning to provide course rec-
ommendations, there are data that could be used to further supplement this approach. Variables related to



course and teacher evaluations, for example, are seldom incorporated despite their importance in influencing
student performance and course selection (Paechter, Maier, & Macher, 2010; Sun, Tsai, Finger, Chen, & Yeh,
2008; Arbaugh & Duray, 2002).

While there has been much research in education focused on developing course recommender systems there
has been comparatively less work examining the extraction and modeling of students' preferences to build de-
cision support systems (Romero & Ventura, 2010). Decision support techniques have been long adopted and
utilised in fields such as medical decision making (Berg, 1997; Sim, et al., 2001). However, the application of de-
cision support techniques in education is only recently receiving attention (Romero, Ventura, Pechenizkiy, &
Baker, 2010; Baker, 2010). Bala and Ojha (2012) argued that a core challenge facing the education sector is how
to better utilise the vast amounts of captured student data to inform and improve managerial decision making.
The application of decision support techniques provides a sound approach for addressing this challenge.

The decision science literature posits that decisions are inherently complex and influenced by an individual’s
expectations, attitudes and preferences. There is no one technique that can effectively model such a process.
Hence, the selection of the most appropriate method for modeling and processing user preferences is based on
the specific needs of the problem under investigation. For this present study, we adopted a framework based
on the Analytical Hierarchical Process (AHP) as reported by Ognjanovi¢ et al. (2013). This framework was
adopted as it can be used to model different preference structures of importance, and rank those preferences
in terms of their importance, for student decision making in their course selection (Brafman & Domshlak, 2002;
Wilson, 2011). The adopted framework is based on Saaty’s (1980) well established Analytical Hierarchical Pro-
cess.

AHP as proposed by Saaty (1980) is a widely adopted multi-criteria decision making method that can assist in
organizing and analyzing complex decisions (Chen & Wang, 2010). AHP enables decision making parties to deal
with both tangible and intangible options and to monitor the degree of consistency in the judgments of the in-
volved parties (Roper-Low, 1990). To date, AHP has predominantly been adopted in the important decision
making domains such as forecasting, quality management, business process management, quality function de-
ployment, and performance management (Chen & Wang, 2010; Forman & Gass, 2001). However, the struc-
tured technique has also been applied in education (Yiksel, 2012). For example, AHP has been used for the
analysis of teaching quality (Liu'an, Xiaomei, & Lin, 2012) and the evaluation of educational effectiveness
(Ylksel, 2012), based on hierarchical models of influencing criteria. The adopted AHP framework for predicting
student course selection is summarized in Figure 1 and includes:

i) extracting the factors influencing course selection from institutional information systems, repre-
senting the extracted factors in a form suitable for processing by AHP, and assigning the values of
the extracted factors to courses (Section 3); and

ii) gauging course selection preferences for each individual student based on the extracted factors
(Section 2.2) in order to make predictions about their course selections as an AHP-based ranking
of available courses (Section 3).

Extraction of course

selection factors
Institutional Infor- = Prediction of

mation Systems ) course selections
Gauging students’
preferences

Figure 1. Overview of the adopted AHP framework. lllustrating the extraction of course selection factors and
gauging student preferences for predicting course selections as an AHP-based ranking of available courses.



2.2 Extracting Factors influencing Students’ Course Selection

This section outlines the factors that influence student course selection to inform a model for extraction from
student information systems in order to transform the data into a suitable format for processing by the AHP
based algorithm. Incoporation of the suite of factors was based on the available data and prior education litera-
ture. The values of the extracted factors are then assigned to courses offered by an institution, so that the pre-
dictions for course enrollments are made based on students’ preferences.

2.2.1 Sources of Data

The student information system was the primary source of data for developing the predictive model. These sys-
tems store a wealth of data relating to a student’s prior course enrolments, cumulative grade point average
(GPA), as well as demographic data (e.g., gender and country of origin), potential career objectives (e.g., sub-
ject area of specialisation, major and minor), course scheduling, instructor demographics and course and
teacher evaluations. In accordance with AHP, the students’ preferences are defined as the relative importance
between the quality characteristics that represent the important matters of interest (hereinafter concerns),
and between the possible values of the concerns (hereinafter qualifier tags) (Ognjanovi¢, Gasevi¢, & Bagheri,
2013). For the present study, this would result in concerns such as disciplinary specialization and class schedul-
ing. As such, the qualifier tags for the concern class scheduling could be early morning classes, mid-day classes,
and evening classes. The hierarchical model adopted in the study (Figure 2) contains two main groups of con-
cerns: (i) course/programme factors and (ii) individual factors (including both students’ personal preferences
and environmental factors). Based on the reviewed literature (referenced in the reminder of the following sub-
sections), the groupings comprised a set of sub-concerns that were also included in the model. Either of the
two groups of concerns is decomposed into three sub-concerns, and these concerns have their own specific
qualifier tags. Details about each of these concerns and their qualifier tags are discussed in the following sub-

sections and summarized in Table 1.
Course characteristics
Course factors Instructor
characteristics
GPA value for a course
Couse
Selection Courses time
scheduling
Individual factors Demogra.ph'lc
characteristics
Student demands

Figure 2. Hierarchical structure of concerns important for courses selection
2.2.2 Course Characteristics
Student evaluations of teaching (teachers and courses) are common occurrences in the higher education sector
(Marsh, 2007; Spooren, Brockx, & Mortelmans, 2013). The vast majority of universities have in place online sys-

tems to administer evaluation surveys, and report results for all courses offered in an academic year. The eval-
uation surveys contain a series of items composed as statements that are ranked on a Likert-scale, which typi-
cally have five-points (strongly agree to strongly disagree). In addition, each item can be associated with a
weight indicating their degree of importance in the entire survey (or each item may be considered of equal im-
portance, and thus equally weighted). Since the arithmetic mean value is falling into exactly one of subintervals
— e.g., for a five-point scale those would be [1,2), [2,3), [3,4), [4,5] — the set of qualifier tags is defined accord-



ingly in our approach for the course characteristics concern. However, the arithmetic mean value is not a suffi-
ciently good descriptive parameter. In fact, confidence intervals provide more meaningful information about
the dissipation of values around the mean value (Blaikie, 2003). Thus, the score of a k-th course is an interval

M, M,
1N ZWI i o1& ZWICU o
Course Score Interval = (WZ Isz -Z- \/ﬁ N 4 '=1M +z- \/ﬁ )

where W; is the weight of i-th question in the evaluation survey, C; denotes the response of j-th student to i-th
question, My is the number of questions about course characteristics in the survey, N is the total number of
students participated in the survey, oy is the standard deviation value for the k-th course and z-score is defined
by the required confidence interval.

For example, let us consider that the mean value of a course evaluation is 3.9 with a standard deviation of 0.49
on a five-point Likert scale question. A 95% confidence interval (with critical value z=1.96) for the mean value of
the course characteristics course is ((3.9-1.96*0.49), (3.9-1.96*0.49))=(2.93, 4.86). Hence, the evaluation re-
sults for each particular student in this example would fall into the interval (2.93, 4.86). As such, the course is
annotated with qualifier tags gt2 and gt4 from Table 1 (as subintervals containing the lower and upper bounds
of the course score interval).

The proposed model can support more than one course score. In fact, the model can use as many survey items
as deemed necessary based on the data availability in a given institution. Typically, one of the main influencing
factors for the first course selection is related to its perceived usefulness or value (Kardan, Sadeghi, Ghidary, &
Sani, 2013). The item measuring the ‘overall course’ value in an evaluation survey can be interpreted as the ma-
jor summative evaluation indicator of the course (Babad & Tayeb, 2003). According to Marsh’s (2007) dimen-
sions of students’ evaluations of university teaching, the course evaluations are an integral part of the learning
value cluster and therefore, have been incorporated into the present study (as discussed in Sections 3-4).

Within the broader learning and teaching context, some student and course data are non-identifiable. Gov-
ernment privacy protection policies and legislation in various countries (e.g., Canada) often require an institu-
tion to ensure student anonymity in relation to submitted course evaluations. This can prohibit capacity to
connect course evaluations with an individual student’s identity. In this context, it is only possible to record if
the student has or has not submitted an evaluation — there are no records of the quality or score of the evalua-
tion submission. The absence of such data obviously limits how students’ preferences concerning the specific
characteristics of courses are gauged and requires alternative approaches, to be developed (detailed in Section
3.2).

2.2.3 Instructor Characteristics

Over the past several decades there has been much research undertaken to determine the association be-
tween students’ evaluation scores and effective teaching (Centra, 2003; Babad & Tayeb, 2003; Marsh & Roche,
2000; Spooren, Brockx, & Mortelmans, 2013; MacFadyen, Dawson, Prest, & Gasevi¢, in press). While there con-
tinues to be debate regarding the legitimacy of course and teacher evaluations, Marsh’s (2007) well noted
work in this area demonstrates that student evaluations are reliable measures of teaching effectiveness. As
such, we would surmise that a student’s negative or positive course experience with an instructor (teacher) will
ultimately influence their decision to enrol in future courses associated with an individual instructor or even
disciplinary field. In this context, the data regarding students’ perceived “overall satisfaction" with the instruc-
tor are included in the study in order to calculate the score of the /-th instructor over the k-th course as a confi-
dence interval. The interval was defined in a similar way to the confidence intervals associated with the course
characteristics (Sect. 2.2.2). Thus, the intervals for a k-th course are calculated separately for all instructors who



were involved in teaching the course. The set of qualifier tags (see Table 1) is defined in a similar way as de-
scribed for course characteristics in the prior subsection.

2.2.4 Grade Point Average Value for a Course

Several studies have shown that a positive relationship exists between a student’s academic performance in a
course and their overall evaluations (Marshall, Greenberg, & Machun, 2012; Svanum & Aigner, 2011;
Greenwald & Gillmore, 1997). Based on the work of Marsh and Roche (2000), the GPA value for each student
defines their overall learning effectiveness. As Centra (2003) observed, the learning effectiveness, represented
as a course grade, is influenced by the student’s level of interest and motivation in the particular course.
Hence, the data concerning overall Grade Point Average (GPA) for all enrolled students in a course is a neces-
sary inclusion for the present study. All students enrolled in a specific course are divided into groups based on
their GPA. The numbers of students in each group are then calculated based on the score of j-th course defined
as a quadruplet

GPA-coursei=(qy, gz, g3, G4)

where g; j=1,..,4 is the number of students enrolled to i-th course with GPA falling into GPA ranges [60-70), [70-
80), [80-90), and [90-100], respectively. The set of qualifier tags is defined based on this division of GPA values
on subintervals [60-70), [70-80), [80-90), [90-100]. Those subintervals correspond to distribution of letter
grades A-, A, A+ (over [90-100]), B-, B, B+ (over [80-90)), C-, C, C+ (over [70-80)), and D+, D (over [60-70)),
commonly used in many universities. Qualifier tags provide good insight into the distribution of students’ inter-
ests in taking the course with respect to their previous academic success, i.e., it is a detailed snapshot of the
students who take the course and how they have performed on previous course assessments.

2.2.5 Scheduling Time of Courses

Individual preferences concerning course scheduling are of importance when making decisions about course
selection (Baker, 2010). For example, students may attempt to avoid particular times as a result of personal
conflicts such as part-time work (Schuhmann & McGoldrick, 1999). Similarly, scheduling issues can arise as a re-
sult of the time necessary to travel to and from class. Course scheduling preferences could be elicited from sur-
veys. However, an alternate automated approach can be determined from analysis of the scheduling of elective
courses a student has previously enrolled in. To this end, we divided a period commonly used by many univer-
sities for scheduling classes, from 8:00am to 8:00pm, into the following time intervals: [8:00-10:00), [10:00-
12:00), [12:00-14:00), [14:00-16:00), [16:00-18:00], [18:00-20:00]. These time intervals therefore, define a set
of qualifier tags. Each course is annotated with two of these six intervals denoting both start and end of class.

2.2.6 Demographic characteristics

Several studies have reported a relationship between student characteristics and decisions concerning their
learning and study interests (Dutton, Dutton, & Perry, 2002; Qureshi, Morton, & Antosz, 2002; Stewart,
Bachman, & Johnson, 2010). To include demographic characteristics in the AHP-based model, we took into
consideration the following:

e The analysis of differences between possible values for each particular demographic characteristic,
stored in a student information system, is performed and super-groups are created by merging groups
with no difference;

e A Cartesian product of the created groups is then used as a basis for creating qualifier tags of the de-
mographics considered (e.g., if gender and domestic/international students are characteristics with
significant differences, the following groups are created: domestic-male, domestic—female, interna-
tional-male, and international-female). The numbers of students falling into each group are subse-
quently calculated.

Thus, the score of demographic characteristics with k significant groups is a k-tuple



Demographic characteristics score; =(cy, C5,..., Cx)

where ¢, is the number of students previously enrolled in an i-th course with the demographic characteristics
specified within the k-th group. These values outline the distribution of the students’ characteristics depending
on their prior course selections. For instance, using this approach, the number of international female students
interested in a particular course can be demonstrated.

2.2.7 Student Demands
A students’ interest in a course can be influenced by numerous factors such as the subject area, academic abil-

ity and skill, and identified career goals (Babad, Darley, & Kaplowitz, 1999). These criteria can determine the
level of personal interest for each student and can be extracted from existing (course evaluation) surveys avail-
able in the institutional information systems. It is reasonable to assume that a student’s implicit expression of
interest in a subject area can be obtained through the analysis of elective courses he/she has previously en-
gaged in. The student’s interests can be extracted in a similar way as previously shown for the extraction of
preferences over scheduling time for specific courses. Alternatively, the student may want to change their sub-
ject area. In such cases, the student should be asked to explicitly define his/her interest or declare indecision
and ambiguity (in terms of the relative importance between concerns/qualified tags as requested by AHP).

2.2.8 Hard constraints in Courses Selection Process: Program and Institutional Rules and
Requirements

While course selection is a decision making process influenced by an individual’s personal and academic inter-

ests and characteristics, there are also specific institutional rules and requirements for a given program of

study. The present study sought to incorporate:

(i) institutional rules concerning majors in programs (e.g., foundational, core, and elective courses)
and defined prerequisites;
(ii) the number of required credits for each term/semester and academic year to maintain a specific

status (i.e., full or part-time);

(iii) the maximum number of students that can be enrolled in a given course. In such cases, institu-
tions may give a priority for course selection to students with higher academic achievement (i.e.
higher GPA); and

(iv) where the overlap between course offerings is not permitted.

Most existing approaches examining the problem of predicting course selection, consider the program and in-
stitutional rules to be of the same nature as all other factors (Baker, Corbett, & Aleven, 2008; Kardan, Sadeghi,
Ghidary, & Sani, 2013). However, if course selection is modeled as a decision making process (Babad, 2001)
that is required to adhere to the program and institutional rules, there is a need to consider these rules as hard
constraints in the AHP-based course selection method proposed in this paper. Therefore, in order to obtain a
feasible set of courses, we should remove any combination of courses that violate an established hard con-
straint.

2.2.9 Qualifier tags for Two-layered Structure

A two-layered structure of concerns and qualifier tags (outlined in Figure 2), is summarized in Table 1. The con-
cerns and qualifier tags should be used as a basis for extracting students’ preferences, defining the measure-
ment of those preferences, and computing an optimal set of courses gauged as the most appropriate for each

student.
Table 1. Concerns and qualifier tags
Concern Qualifier tags / values
Course characteris- qtl qt2 qt3 qt4
tics [1,2) [2,3) [3,4) [4,5]




Instructor charac- qtl qt2 qt3 qt4
teristics [1,2) [2,3) [3,4) [4,5]
GPA value for qtl qt2 qt3 qt4
Course [60-70) [70-80) [80-90) [90-100]
qt1,1- be- qt1,2- be- qt1,3- be- qt1,4- be- qt1,5- be- | qtl1,6- be-
ginning ginning ginning ginning ginning ginning
hours hours hours hours hours hours
Course time qt2,1- fin- qt2,2- fin- qt2,3- fin- qt2,4- fin- | qt2,5- fin- | qt2,6- fin-
scheduling ishing hours | ishing hours | ishing hours | ishing hours ishing ishing
hours hours
[8:00-10:00) | [10:00- [12:00- [14:00- [16:00- [18:00-
12:00) 14:00) 16:00) 18:00] 20:00]
Demographic char- qt1 qt2 gtn
acteristics Depending on questionnaire contents
Student demands qt1 - qt2 | - - | gtm
Depending on questionnaire contents

3 Analytical Hierarchy Process for Course Selection

This section describes our adaptation of the AHP (Saaty, 1980) over the two-layered structure of factors influ-
encing student course selection (c.f. Table 1 and Section 3.1). The outcomes of AHP (Section 3.3) are the ranks
over the set of available courses that best fit the measured level to students’ preferences extracted from the
institutional information systems (Section 3.2).

3.1 Overview of Analytical Hierarchy Process

In order to use AHP, the relative importance of each of the available criteria (i.e., concerns and qualifier tags)
compared to others was determined. Relative importance is typically defined with odd numbers ranging from 1
(equal importance) to 9 (extreme importance of one over the other). That is, in the concern prioritization step,

the relative importance of each concern {Cl,...,Cn}with respect to the others is defined by the stakeholders.

The concerns are compared in a pair-wise way, and the relative priorities {I’ yeeny I }are calculated for each of
n

them, defining their ranks. The ranking of available options (i.e., course in our case) are then formed. The op-

tions (i.e., courses) {01,...,0n} available to the students are also associated with qualifier tags,

0; = <qt1.1 yeens qt;ﬂ >,1 < j <, as shown in Section 2.2. During the course ranking process, to establish the

actual priority and importance of the available courses, the relative importance of the qualifier tags for each
. . Lo 1 1 n n .
concern is computed by performing AHP, assigning them {I’qtl,...,l’qt‘w },..., {I’qtl,...,l’quTn‘ }, which are the

ranks of qualifier tags of the 1%,..., n concern, respectively. Afterwards, the rank of each course is determined

based on the ranks of the qualifier that associated with the courses. That is

r(<qt}1,...,qtjmm>): f(rCi -rqlIll o Ty 'qu,m )1§ j<n

or mean). The goal of this stage is to assign higher ranks to the courses which are related to the student’s most

tags are

, Where f is a predefined function (i.e., minimum, maximum,

important concerns.

The AHP approach in this paper is applied to develop a predictive model — which makes use of the existing data
from student information systems — to address the tasks introduced in research questions in Section 1. There-
fore, expressions of relative importance — as each student’s preferences — are extracted from data as described
in Section 3.2.



3.2 Extraction of Students’ Preferences as Relative Importance over the Two-

layered Concern Structure
To ascertain the degree to which a course is appropriate for a particular student, a pairwise comparison be-
tween each pair of concerns and each pair of qualifier tags per each concern is required. This provides the es-
sential input values for the AHP algorithm. In the present study, we propose extracting student preferences, (as
described in Figure 2 and Table 1), from the institutional information systems in lieu of asking individual stu-
dents to express their personal judgement.

3.2.1 Preferences over Characteristics of Courses and Instructors
Course and instructor evaluation score intervals are based on the standardized mean of the weighted average

of course and instructors characteristics. Since those intervals usually do not correspond to the set of qualifier
tags, the following steps are considered in order to obtain their quantitative measurement:

(i) Qualifier tags are compared based on the assumptions that a course with the highest evaluation score (i.e.
qualifier tag [4, 5]) is the most preferable. Higher course evaluation intervals are more preferable (e.g.,
course evaluations in interval [3-4) are more preferred than scores in interval [2-3)). Thus, the ranks of
qualifier tags about characteristics of courses and instructors can be determined by the standard AHP cal-
culations (see Table Al in Appendix A) by giving the following rank values: r;= 0.06, r,= 0.12, r3= 0.26, r,=
0.56 for grade ranges (i.e., qualifier tags) [1-2), [2-3), [3-4), and [4-5], respectively.

(i) Since each course (and instructor) is annotated (see Section 2.2.2) with a score interval [lower_bound, up-
per_bound] for the course characteristics concerned and where the lower and upper bound values fall into
different grade ranges (i.e., qualifier tags), the continuous measurement is used to generate ranks based
on the specified rank values for grade ranges [1-2), [2-3), [3-4), and [4-5]. The continuous measurements
are defined by constructing a polynomial measure over the obtained ranks of qualifier tags (Ognjanovic,
Mohabbati, Gasevi¢, Bagheri, & Boskovi¢, 2012), and is used for the calculation of the ranks for bound val-
ues with:

X .
ey I )= el )
r(x)_rH+u r r—riy)=ri,+X |,>1 r—r
JE ]

where X € [|J- ,UjJ, and r; is the measure of interval llj , UjJ to which grade x belongs,

on the basis of which, the rank value for the interval is calculated:
r(lower_bound upper_bound) = (r(upper_bound) + r(lower_bound))/2

For example, consider a course with the score interval (2.93, 4.86). The ranks for the lower and upper
bounds are calculated as: r(2.93)=0.06+(2.93-2)*(0.12-0.06)=0.11 and r(4.86)=0.26+(4.86-4)*(0.56-
0.26)=0.52. Finally, the rank for the score interval is r(2.93, 4.86)=(0.11+0.52)/2=0.315. It is also interesting
to compare the obtained value with the rank value for the course average score r(3.9)=0.12+(3.9-3)*(0.26-
0.12)=0.246 < r(2.93, 4.86), quantifying the necessity for considering the confidence interval for course an-
notation and measurement.

When a course is offered for the first time, there is no evaluation available to compute the score of the course.
In such cases, AHP allows for defining the so-called ‘unknown’ preference, which has the rank of value r=0.25
(Ognjanovi¢, Gasevi¢, & Bagheri, 2013) (see Table A2 in Appendix A).

3.2.2 Preferences over GPA Value for a Course
The GPA value for a course describes the academic range of students previously enrolled in a course. The fol-

lowing steps attempt to measure the relative importance of academic ability (i.e. GPA) for a given student in
comparison to other enrolled students when selecting a course:



(i) Letay a, as and a, be a frequency of the students with GPA groups falling into subintervals (i.e. qualifier
tags) [60-70), [70-80), [80-90), and [90-100], respectively.
(i) Ranking of qualifier tag a, which is the subinterval for the GPA value of the given student is defined with:

Ya Ya

r(as) _ lsiss _ Liss

2 100
a.

For instance, let us consider “Student A” with a GPA of 73% (i.e. the student’s GPA interval is [70-80]). If the
distribution of the GPA intervals for an Economics course is a;=15%, a,=30%, a; =35% and a,=20%, the rank for
Student A to enrol in the course is (15+30)/100=0.45. The value of 0.45 can be interpreted that the course is
more preferable for students with better grades, but the student under consideration is academically suffi-
ciently close and thus, can also select the course.

3.2.3 Preferences over the Scheduling Time for a Course and other Personal Preferences
As discussed in Section 2.2.5, each course is annotated with qualifier tags representing the earliest beginning

and latest ending of the classes. Preferences for each individual student over the scheduling time characteris-
tics can be extracted, (as per Section 3.2.2) by defining the preference of a s-th student as a pair of six-tuples.

Course-scheduling score,=((by, b, bs, by, bs, be),(f1, f2 f3 fa s fe))

where b, i=1,...,6 andf, i=1,...,6 are the numbers of elective courses that the s-th student have already selected
with the earliest beginning and the latest ending in an i-th interval. Considering that each beginning time after
the lower bound and each ending time prior to the upper bound are acceptable for the student, the measure-
ment for the students’ preferences over the scheduling time is created by using the historical data for all elec-
tive courses that the student has previously enrolled in. Calculations are analogous to those for GPA values
(Section 3.2.2.) and the mean values for both criteria (beginning and ending hours) are used as rank values for
the scheduling time concern. Similar considerations to those for course scheduling times are used for measur-
ing students’ preferences over other concerns (i.e., demographic characteristics and student demands).

3.3 Predicting Course Enrollment Sequences
Once the student preferences have been extracted (see section 3.2), predicting the selection of a set of courses
for each student (per semester and/or per academic year), is determined through the following steps:

(i) AHP generates the level of suitability of each course, based on the extracted preferences for a given stu-
dent (Section 3.2);

(i) From the AHP calculations, different combinations of available courses are generated by simultaneously
checking the level of satisfaction of the hard constraints and by maximizing the overall suitability of the se-
lected course with respect to the student's preferences.

4 Method

4.1 Context

This study was conducted on a dataset derived from student course enrolments in a Bachelor of Arts (BA) de-
gree in Psychology at a research-intensive university in Canada. The program investigated comprised some 47
courses offered across two semesters — winter and summer. The main academic year is completed in the win-
ter session over two academic terms. Although the summer session is based on a two term model, the overall
term duration is shorter in comparison to the winter semester. The courses offered during the summer period
are generally less well attended and the quantity and diversity of available courses are reduced. Although the
data centers on a psychology program, the students are encouraged to select additional courses offered in al-
ternate departments and faculties in the university. Furthermore, through inter-institutional agreements, stu-



dents were permitted to undertake courses offered by other Canadian universities. Each course was worth a
specific number of credits with a typical one-semester long course being worth three (and in rare cases four)
credits. Adding further complexity to the data, a subset of courses offered the option for students to enrol in a
reduced number of sections (i.e. partial course completion). Upon completion of these sections students are
awarded a pro-rated number of credits. In order to fulfill the requirements for the BA degree psychology, stu-
dents had to complete a set number of credits from the following six groups of courses:1) Writing and Research
intensive courses, 2) Language sources, 3) Science courses, 4) Literature courses, 5) at least 30 credits in senior
psychology courses, and 6) credits in an area of psychology specialization.

4.2 Data Collection

The data was collected over five academic years from 2007 to 2011. The data set included course evaluations
(see Table A3 in Appendix A), student grades and demographics. For the analyses, only data about students
who had started and completed their degrees during the five academic years were considered. This decision
was based on the available data. While students may have taken a longer period of time to graduate than the 5
year time span indicated in this study, the available data did not afford opportunity to identify if such students
actually completed the program of study or had left the university. Thus, the total number of students in the
study was 1061. The mean value of GPA for the included participants was 70.89 (SD = 8.46) and the distribution
of GPA over the four GPA intervals defined in Section 3 (c.f. Table 1) was: 6 students in [90-100], 137 in [80-90),
449 in [70-80), and 469 in [60-70). There were 788 female (97 international) and 273 male (38 international)
students. On average students undertook 12.31 courses (SD = 3.25) in Year 1 of their studies, 11.88 (SD = 3.19)
in Year 2, 12.25 (SD = 3.35) in Year 3, and 12.35 (SD = 3.29) in Year 4,

A total of 47 psychology courses were included in the dataset. A total of 192 instructors taught in these cours-
es. Ten psychology courses did not have any pre-requisites. Twelve courses had only one pre-requisite course
and the other courses had different combinations of pre-requisites consisting of one or two courses. Of those,
the students in our dataset enrolled in a total of 37 courses. The total number of courses available at all other
departments in the university was 921, and of those, the students included in the study enrolled in 526 cours-
es. The courses included in the study received on average 120.5 (SD = 168.1) evaluations per academic year.
Due to the confidentiality policy followed by the institution, the number of submitted evaluations per student
was not available nor was the link between course evaluations and individual students who completed them.
Instructors who taught the courses included in our dataset received on average an evaluation score of 3.89 (SD
= 0.49) on a five-point Likert scale. The minimal average evaluation score of an instructor was 2.68 and the
maximal average score was 4.87.

4.3 Ethics and Privacy

The extraction and analysis of student and faculty online behaviour can provide useful insights into the learning
process and the possible impact of implemented pedagogical practices. However, these analyses also raise
concerns about the ethics and privacy of these forms of analysis and research. In this context our approach was
informed by and adhered to the institution’s policies on research involving human subjects and the Tri-Council
Policy Statement: Ethical Conduct for Research Involving Humans (TCPS 2—2nd edition of Tri-Council Policy
Statement: Ethical Conduct for Research Involving Humans, 2010). This study complied with all stated ethics
and privacy policies.

4.4 Measurement

The training data set was used as an input for the proposed AHP-based approach. The output data, that is the
sets of predicted course selections, were then compared to the initial test dataset. The comparison between

ltis important to note that the undergraduate four-year bachelor’s degrees (for both science and arts), in Canada, have a
requirement for students to undertake at least 120 credits (e.g., 40 x 3-credit courses) for degree completion. The present
study is consistent with the literature in identifying that students typically take more courses and therefore accrue more
credits than is required for degree completion.



the predicted course selections and the test dataset was defined as distances between two (predicted and test)
set of courses as follows.

Let us consider that the predicted number of students enrolling into course c is n;. The estimation error of the
actual number of the students enrolled to a course n. was measured as a relative distance of n; to n., i.e.:

M ~Ne  This measure of relative distance is used to address research question 1.

d*(n..m) =

C

and

Let us now consider two sets of courses ol:(cll,clz,,,_,clk,clm,___,chk,c12k+l,...cl3k)

0,= (Cz,lvcz,z----v Cos Coatreens C2,2k7C2,2k+1""C2,3k)’ consisting of courses in (i) term 1 (courses indexed by 1 to k)

and term 2 (courses indexed by k+1 to 2k) of a winter semester and (ii) a summer semester (courses indexed by
2k+1 to 3k). The distance between two options 0; and o0, is defined as

d(o,,0,) = diff ({01,11C1,zv---lc1,k }, {Cz,ucz,zv---lcz,k } + )
diff ({Cl,k+1""’cl,2k }, {Cz,k+1""'cz,2k }) +diff ({01,2k+1""’c1,3k }. {C2,2k+1""’C2,3k })

where diff ({}, {}) denotes the number of different elements between those two sets. The measure allows only

combinations of courses that are valid under hard constraints as defined in Section 2.2.8 and maximizes the
satisfaction of the students’ preferences as extracted through the process introduced in Section 3. The above
measure corresponds to the aim of the proposed AHP-based approach that is to predict course selections over
semesters/terms and academic years, and was therefore used to address research questions 2 and 3. The val-
ues of the proposed measures could take were in the interval 0-1 where 0 meant no correct prediction was
made and 1 all correct predictions were made.

Finally, for each research question, we also calculated: i) Pearson’s R correlation coefficient between the pre-
dicted outcome by the proposed model and the actual values from the test data set; and ii) root mean squared
error (RMSE) to measure how far each observation from the test dataset was from its mean estimated by the
predictive model. These measures were implemented in order to compare the approach undertaken in the
present study with the findings from related studies adopting alternate methods.

4.5 Procedures

To address RQla; RQ2a and RQ3a, we first annotated the courses available in our dataset with the concerns
and qualifier tags as described in Section 2.2. We then used the brute force algorithm to determine all the valid
combinations of courses in order to enforce the hard constraints. Finally, we ran the AHP-based approach on
the set of the allowed combinations of courses. In this process, the preferences of individual students were
qualifier tags extracted as described in Section 3. Each concern had an equal importance.

To undertake RQ1b; RQ2b and RQ3b, we controlled the importance of individual concerns. In the first group of
experiments, we assigned a higher importance to a concern, one at a time, while keeping all other concerns
unchanged (equal) importance. Based on the results of the first group of the experiments, the importance dis-
tributions were created by grouping concerns with similar individual values. Next, the AHP-based approach
with the revised importance distributions was performed for each of the three research questions. The results
were then compared to those obtained under the conditions of the parts a) of the research questions.

To test the accuracy of the proposed approach, we undertook a five-fold cross validation. This approach aimed
to minimize problems such as over fitting and analyse how the model can be used for making predictions of
newly enrolled students, i.e. students with having no prior experience with the University under consideration.
To this end, five-fold cross validation made use of the training and test sets. The training set consisted of data
from the students’ course enrollment and evaluation data during the first two years of their degree programs.
The test set contained the students’ course enrollment and evaluation data during their third and fourth aca-



demic years of their degree programs. The students from the training and testing sets are then randomly split
into five smaller subsets (i.e. five smaller training sets and five corresponding test sets). Finally, the following
procedure is applied to each of the five “folds”: (i) a model is trained using four folds as training data (i.e. 80%
students from years 1 and 2); and (ii) the resulting model is validated on the remaining part of the test sets (i.e.,
remaining 20% of students and enrolment data from years 3-4). The average values for the accuracy of the
predication are then reported in the paper.

Finally, to address research question 4, we incorporated neural networks as this is a well-regarded methodolo-
gy in the extant literature (Kardan, Sadeghi, Ghidary, & Sani, 2013). The neural networks are designed separate-
ly for each of the three research questions, and each developed system consists of two stages (Zhang, Patuwo,
& Hu, 1998): the input system stage, and the neural networks application stage. The in-sample data-set is used
for the design of the input selection stage and design of neural networks. The out-of-sample set is reserved for
the final test of the system. Five-fold cross-validation was also used for neural network models. We used fixed
ratio of in-sample and out-of-sample sets on approximately 75% and applied repeated random partitioning
procedure for the in-sample set into the training set and validation set, and repeated the training and valida-
tion for the different partitions (Refenes, 1995). Since training a network till ‘death’ for highly noisy applications
can introduce some over-fitting, we incorporated an early stopping procedure. The best number of iterations is
determined with the help of the validation set at 100.

4.6 Data Analysis

Due to the nature and type of the data collected, the analyses employed were standard descriptive statistics
(Blaikie, 2003) including reported mean (M) and standard deviation (SD) values. The ANOVA test was used to
check for significant differences in the accuracy in the prediction as a result of changing the importance of indi-
vidual concerns. The sphericity assumption was checked by Mauchly's sphericity test for all the uses of the
ANOVA test in the paper and this test confirmed the sphericity assumption for all the uses of ANOVA in the
study. A t-test was adopted to assess if the changed distribution of the concern importance significantly im-
proved the accuracy of the predictions as compared to the condition when the concerns had equal importance.
Shapiro-Wilk test of normality was used and confirmed that the t-test assumptions were satisfied for all the us-
es o the t-test in the study. Cohen’s d for the t-tests and partial n for the ANOVA were reported as measures of
effect sizes (Cohen, 1992).

5 Results

The results are organized according to the four research questions. Table 2 provides an overview of the results
for research questions 1-3, according to the evaluation approach outlined in Section 4.5. Table 4 reports the re-
sults of relevance for research question 4.

5.1 Research Question 1

RQ1a. This research question compares the accuracy of the proposed approach to predict the number of en-
roliments per course offering against the reported related literature such as Kardan et al. (2013). The mean
value of the relative distances d‘() between the number of enroliments predicted by the AHP-based approach
and the actual number of enrollments for each course was 22.48% (SD = 15.52%). Thus, the AHP-based ap-
proach accurately predicted 77.52% of course selections in the test dataset. This result shows that presented
approach may be considered as appropriate for making estimations of the total number of students enrolling
to the course. However, the accuracy of the model could be increased in order to enhance its potential practi-
cal value. This aspect is addressed in RQ1b.

RQ1b. The descriptive statistics for each of the six experiments (groups C1-6) are reported in Table 2. As the
collected data were not normally distributed, a one way ANOVA test was used over the log-transformed data
to compare the means of the dependent variable. The results demonstrate a significant difference in the dis-



tances to the test dataset in the case of higher importance coefficients to individual concerns (F(5; 546) =
32.08; p = 0.003, partial n2=0.44). The Tukey post-hoc test revealed that there was no significant difference be-
tween groups C2, C4, C5 and C6. Thus, the accuracy of the proposed approach may be increased by adjusting
the importance of the identified concerns.

Table 2. The descriptive statistics of the three research questions from the conducted study

Part of
research Measure RQ1l RQ2 RQ3
question
d-M,SD 0.2248, 0.1652 0.5707,0.1164 0.4634, 0.1842
A 0.7752 0.4293 0.5366
A R 0.739 0.393 0.542
MSE 0.0085 0.0009 0.0075
RMSE 0.092 0.003 0.087
d-C1 0.2055, 0.1732 0.7412,0.1147 0.6619, 0.2315
d-C2 0.2368, 0.1530 0.6589, 0.1488 0.6148, 0.2145
d-C3 0.2192,0.18.64 0.6523, 0.1256 0.5647,0.3512
d-c4 0.2589,0.1128 0.6625,0.1321 0.7514, 0.1535
d-C5 0.2312,0.1702 0.6489, 0.1544 0.7275, 0.2861
B d-C6 0.2673, 0.1689 0.7566, 0.17.89 0.6965, 0.2273
d-M, SD 0.176, 0.1982 0.4623,0.1235 0.3573,0.2416
A 0.8240 0.5377 0.6427
R 0.791 0.502 0.596
MSE 0.0036 0.0058 0.0040
RMSE 0.06 0.076 0.063

Legend: d — mean and standard deviation values of the distance of the overall as defined in Section 4.4; A —accuracy; R -
Pearson’s R coefficient; MSE — mean squared error; RMSE — root mean squared error; d — C; (i = 1..6) — mean values and
standard deviation values for the distance as defined in Section 4.4 when individual concerns are prioritized: C1 —the
course characteristics concern; C2 — the instructor characteristics concern; C3 —the GPA value for course concern; C4 — the
course time scheduling concern; C5 — the student demands concern; and C6 — the demographic characteristics concern.

Based on the results, we can infer that the course characteristics and GPA distributions of past students en-
rolled to the course have the highest accuracy in predicting the expected number of students. The accuracy is
higher than when all concerns are combined with equal importance as reported in research question RQ1la.
Thus, the model may be improved by assigning a higher importance to the two concerns over others. For ex-
C3F (X Xg) + Xy + Xy + X+ X
- 6

variables x; corresponds to the variables previously emphasized by i-th group. We ran an experiment with the
revised model that used y to evaluate its accuracy against the test dataset. The mean value of the obtained rel-
ative distances in the combinations of courses was 17.6% (SD = 19.82%). Thus, the accuracy of the enhanced
approach was 82.4%. A t-test confirmed that the increase in the accuracy was significant (t(1060)=15.38%,
p<0.05, d=0.56) as compared to the accuracy of the model where all concerns were assigned equal importance.

ample, consider the predictive model was formalized with equation: y , where

5.2 Research Question 2

RQ2a. This research question evaluates how accurately the proposed approach can predict the course enrol-
ments for each student per semester/term. That is, d(.) is a measure that compares sets of courses at the level
of course selections per semester/term for each individual student. This is the most difficult prediction task in
the evaluation due to the requirement to predict a particular set of courses selected in each semester by a stu-
dent — especially given the quantity and diversity of courses available across the University. The mean value of
the obtained relative distances between the combinations of the courses predicted by the AHP-based approach
and those available in the test dataset was 57.07% (SD = 11.64%). Thus, the prediction accuracy of the AHP-




based approach was 42.93% of the students' course selections for each semester in the test set — based on the
extracted preferences of the students and course annotations from the training dataset.

RQ2b. The results showed a significant difference in the distances to the test dataset in case of higher im-
portance coefficients to individual concerns (F(5; 546) = 25.47; p = 0.000, partial r72=0.33). The Tukey post-hoc
test revealed that there was no significant difference between groups C1 and C6, C4 and C2-3. Thus, the accu-
racy of the proposed approach may be increased by adjusting the importance of the identified concerns.

Based on the results we can conclude that the data about a student’s interests and preferences are more im-

portant contributors to the accuracy of the predictive model than other data types. The model may be im-

proved by assigning a higher importance to this concern, lower importance to the concerns from groups C3, C2

and C4, and a further reduction in the importance of the remaining concerns. For example, consider the predic-

3FX + 2% (X, + X, + X)) + X+ Xg
6

the variables previously emphasized by i-th group. We ran an experiment with the revised model with y that

tive model formalized with equation: y = , Where variables x; corresponds to

used to evaluate its accuracy against the test dataset. The mean value of the obtained relative distances in the
combinations of courses was 46.23% (SD = 12.35%). Thus, the accuracy of the enhanced approach was 53.77%.
A t-test confirmed that the increase in the accuracy was significant (t(1060)=4.71%, p<0.05, d=0.34) as com-
pared to the accuracy of the model was had all concerns with equal importance (reported under research ques-
tion RQ2a).

5.3 Research Question 3

RQ3a. The final research question tests the accuracy of the proposed AHP-based approach when the prediction
task was relaxed to predict the course enrolments for each student per academic year (i.e. semesters and
terms belonging to the same academic year were joined). That is, d(.) is a measure that compares sets of
courses at the level of course selections per academic year for each student. The mean value of the obtained
relative distances between the combinations of courses predicted by the AHP-based approach and those avail-
able the test dataset was 46.34% (SD = 18.42%). Thus, the prediction accuracy of the AHP-based approach was
53.66% of the students' course selections for each semester in the test set, based on the extracted preferences
of the students and course annotations from the training dataset.

RQ3b. The results indicate a significant difference in the distances between the test dataset in the case for
higher importance coefficients of individual concerns (F(5; 546) = 48.25; p = 0.018, partial n°=0.45). The Tukey
post-hoc test revealed that there was no significant difference only between groups C3 and C1-2, C4-6 and be-
tween groups C2-4.

The findings from the study suggest that the data about a student’s interests and preferences in the subject ar-
eas has a corresponding positive impact on the accuracy of the course prediction model for each student per
semester/term. Thus, the model may be improved by elevating the importance of this concern over the other
concerns in the remaining groups. For example, consider the predictive model formalized in the equation:
3*X, + 2% (X, + X, + X5 + Xg) + X . . . .
y = 8 (X4 + X, X5+ X5) + X, , where variables x; corresponds to variables previously emphasized by
6

the i-th group. We ran an experiment with the revised model that used y to evaluate its accuracy against the

test dataset. The mean value of the obtained relative distances in the combinations of courses was 35.73% (SD
= 24.16%). Thus, the accuracy of the enhanced approach was 64.27%. A t-test confirmed that the increase in
the accuracy was significant (t(1060)=4.13, p<0.05, d=0.55) as compared to the accuracy of the model where all
concerns were assigned equal importance (reported under research question RQ3a).



5.4 Research Question 4

Table 4 shows the results obtained by the use of neural networks for the tasks addressed in the previous three
research questions and applying the procedure described in Section 4.5. The use of neural networks (Table 4)
revealed a considerable decrease in the performance compared to the results of the proposed method (Tables
2-3). Specifically, the accuracy values for the neural network model compared to the accuracy values of the
cross-validated model (Table 3) are lower by 17.26% for the task covered by research question 1, by 13.02% for
research question 2, and by 20.56% for research question 3.

Table 4.The descriptive statistics of the three research questions from the use of neural networks

Measure RQ1 RQ2 RQ3
A 0.6514 0.4075 0.4371
R 0.691 0.318 0.373
MSE 0.0052 0.0046 0.0039
RMSE 0.072 0.068 0.062

Legend: A — accuracy; R — Pearson’s R coefficient; MSE — mean squared error; RMSE- root mean squared error

6 Discussion

The results of the evaluation of the prediction task studied in research question RQ1 produced the highest ac-
curacy. This was most pronounced when the importance of the concerns about course characteristics and the
GPA value for courses were increased in comparison to the other concerns. To assist in the interpretation and
impact of these findings, we compared the accuracy level of the AHP-based approach with those of other relat-
ed published studies. Although, to date there have been limited investigations of this kind to undertake a com-
prehensive comparison and evaluation. However, in a similar study, Kardan et al. (2013)applied neural net-
works to predict course selection in two fully online master’s program. Table 5 provides a comprehensive com-
parison of the proposed AHP-based approach adopted in the present study in comparison to the neural net-
works-based model proposed by Kardan et al. (2013).

Table 5. A comparative comparison of the AHP-based course selection prediction approach and the neural
network-based model proposed by Kardan et al. (2013)

Approach Experimental Measures Variables

PP condition R MSE |Cc1]c2|c3|ca|cs5|c6]c7|c8]colcio
Kardanetal’s | o o6 100036 | X | x | x | x | x | x | x | x
experiment 1

Neural Kardan et al.’s

network experimentlb 0.923 | 0.0029 X X X X X X X X X

Experiment in

. 0.691 0.0052 X X X X X X X
this study

AHP Different 0.802 | 00037 | X | x x | x| x x | x
Importance

Legend: ° - Kardan et al’s (2013) study regression calculated without considering student demands and b_ considering stu-
dent demands; R — Pearson’s correlation coefficient; MSE — mean squared error; C1 — course characteristics; C2 — instruc-
tors’ characteristics; C3 — students’ workload; C4 — course grade; C5 — course type; C6 — course time; C7 — number of time
conflicts; C8 — final examination time; C9 — student demands; and C10 — demographic characteristics; " hard constraints, not
as a variable included in the model.

A comparison between alternate approaches (AHP vs. Neural networks) indicates there is a considerable over-
lap between the sets of variables employed in developing the predictive models. However, there were also
some observed differences. For example, the neural network-based model employed by Kardan et al. (2013)



incorporated a larger set of variables than those employed in the present study. As detailed in Table 5, the
added variables included (C3) student workload; (C7) number of time conflicts; and (C8) the final examination
time. In contrast to the Kardan et al. (2013) study, the AHP-based model incorporated demographic variables.

The values of Pearson’s R correlation coefficient and MSE (see Table 5) can be used as a comparison for the two
modeling approaches3. A higher R value associated with the neural network model with the overall number of
registrations trained with dataset from the the Kardan et al. study was observed in comparison to the AHP-
based approach. However, when neural networks were applied to the dataset used in our study, the values for
R coefficients were considerably lower compared to those obtained with the use of the proposed AHP method.
The R values for the neural network models compared to the AHP models were lower by 0.111 for the task
covered by research question 1, by 0.184 for research question 2, and by 0.223 for research question 3.

The considerably weaker performance of the neural network model on the accuracy measure and Pearson’s
correlation coefficient observed in this study compared to the neural model used by Kardan et al. (2013) is like-
ly to be due to the type of datasets adopted in the different studies. As shown in Section 4.2, the results of the
present study were derived from an undergraduate program offering over 900 courses and requiring comple-
tion of a minimum of 120 credits (typically equivalent to 40 courses). In comparison, the neural network model
of the Kardan et al. (2013) study was based on two online master’s programs, each of which requested stu-
dents to take four out of six core (i.e., mandatory) courses and four out of nine elective courses (i.e., students
were requested to take eight courses to get their master’s degrees). This is a clear indication that the context
and setting in the present study was of a far greater level of complexity. This complexity was a result of the
larger flexibility of course selection options and the greater number of course offerings available to students
considered in the present study. For example, the dataset of the present study included information from some
50,000 course selections. In comparison, the Kardan et al. study contained only 5,937 course selections. Fur-
thermore, the Kardan et al. study derived data from repeated enrolments across the same 17 courses over a
period of eight years (i.e., more than one cohort of students who completed their degrees). The present study
analysed data from only a single cohort of students with a degree completion within a five year period.

The results of the comparisons between the AHP-based approach and the neural network models on their
RSME scores were mixed. While the AHP-based model outperformed the neural network models (0.06 vs.
0.072) in the prediction of the overall number of course registrations (RQ1), the neural network model outper-
formed the AHP-based approach (0.076 vs 0.068) for the predictions of course selection for each individual
student per semester/term (RQ2). The models were almost tied in their RMSE performance (0.63 vs 0.62) in
the predictions of course selection for each individual student per academic year (RQ3). In our research ques-
tions, we were interested in the prediction tasks for which the accuracy measure is most commonly used in ex-
isting research. However, these mixed results of RMSE with both accuracy measure and Pearson’s correlation
coefficient warrant future research.

Intrinsic curricular differences — namely, the number of course options offered to students to take — could be
an important reason for better performance of one approach over another one in the prediction task studied in
this paper. As already mentioned, the dataset used in the study was based on an academic program offered a
wide rage of courses to students to take. This probably resulted in the insufficient dataset for neural networks
to train a highly accurate model. This reason is traditionally associated with neural networks (Kramer &
Leonard, 1990). On the other hand, the AHP-based approach is not so much dependent on the size of the train-
ing set, and thus, produced higher accuracy with the dataset used in this study. Neural networks are more likely
to perform well on the training datasets generated in academic curricula with much lower variability, as it was
the case of the datasets used in the Karman et al (2013) study. Future research needs to validate these discus-
sion points and conditions under which different modelling approaches are more suitable to be used.

® Kardan et al. (2013) provide only the R and MSE values in the results of their paper.



The accuracy of the AHP-based predictions of course selection for each individual student per semester/term
(RQ2) and academic year (RQ3) were clearly lower than the accuracy of the predictions of the overall number
of course registrations (RQ1). Given the obvious importance for establishing high accuracy in predictive model-
ing, the output from the AHP-based model are only moderately associated with the actual course selections of
each student per semester/term (RQ2) or academic year (RQ3). Clearly, the prediction tasks for RQ2 and RQ3
were more difficult. This is in part due to the additional temporal dimension associated with the course selec-
tion of each individual student for RQ2 and RQ3. For example, a possible interpretation of this finding is that
the overall interest of all students in a particular course (RQ1) is easier to predict than a set of individual stu-
dents who will finally register for a course in a particular semester/term or an academic year (RQ2 and RQ3).
Unfortunately, a comparison of the results of the AHP-based prediction was not possible due to the lack of
available studies that address the course selection tasks as defined in research questions RQ2 and RQ3. It is en-
visaged that the findings presented here will serve as a benchmark for future comparative studies.

A common trend observed for all prediction tasks in the research questions was that the concerns used for
modeling students’ preferences had a different importance for the overall accuracy. These varied importance
values offer some evidence that students’ have different preferences and priorities in their decision making
process for selecting their future courses. These preferences differ according to the particular prediction tasks
(see Table 6). For example, when attempting to predict the number of students that will register for a course,
the course characteristics and the GPA value for a course were observed to be the most important. When pre-
dicting the course selections of each student per semester/term then the concerns relating to student de-
mands were the most important. In predicting the course selections of each student per academic year, the
concern relating to course scheduling time was considered the most important. While the changed importance
of individual concerns had a medium effect size for the accuracy of prediction tasks studied in RQ1 and RQ3
(draz = 0.56 and dgqs = 0.55), the effect size for the accuracy of the prediction task studied in RQ2 was small
(drg2 = 0.34) (Cohen, 1992). The effect size differences were expected, given the complexity of the prediction
task for RQ2 (the course selection for each student per semester/term). Additional types of information would
be required related to student interests and preferences in order to enhance the accuracy of the model.

The results of the study indicate that robust predictions concerning student course selections are achievable
despite access to limited and complex data. A relatively accurate predictive model can be developed even in in-
stances where student anonymity (from course evaluations) is required. Although the protection of student
anonymity is a necessary practice, it does in this context create a high level of complexity as the student’s indi-
vidual evaluative rankings of courses and instructors cannot be tied to other information sets such as grades or
course scheduling. However, as this study demonstrates, an accurate model capable of predicting student
course selections is a feasible goal while still supporting and adhering to, privacy and ethics legislation. The abil-
ity to develop such a predictive model including non-identifiable data would not be possible using more con-
ventional data mining techniques. Therefore, an outcome of this research is to stress the importance of draw-
ing on alternative predictive modeling techniques that are frequently encountered in disciplines such as deci-
sion science in lieu of the more traditional data-mining approaches.

Table 6. Comparative analysis of the importance observed for individual concerns in the empirical evaluation
for each of the three research questions, and the effect size of the changed importance on the prediction accu-

racy
Variable/

Effect size RQ1 RQ2 RQ3
C1 H L M
c2 L M M
Cc3 H M H
Cca L M L
C5 L H M
Cé6 L L M




Cohen’s d 0.56 0.34 0.55
Legend: C1 — the course characteristics concern; C2 —the instructor characteristics concern; C3 — the GPA value for course

concern; C4 —the course time scheduling concern; C5 — the student demands concern; and C6 — the demographic charac-
teristics concern

Overall, the established predictive model produced a high level of accuracy for course selections. However, this
accuracy further diminished when integrating more temporally based variables such as semester/ term or aca-
demic year. We see opportunities for improving this outcome through investigations into the following two ar-
eas. First, the approach proposed in this paper and other solutions studied in the literature do not consider the
impact of individual needs and preferences that could be characteristic of different student subpopulations.
Modern counselling psychology deems learners as active agents in their course selection process (Bandura,
2006; Haggard & Tsakiris, 2009). Therefore, to improve the accuracy of the predictive model further considera-
tion is required regarding the impact of individual differences (e.g., self-efficacy) in course selection. The results
for the research questions suggest that the GPA value for a course concern was consistently of a high im-
portance. There is a high association between an individual student’s academic performance (i.e., GPA) and the
distribution of grades in a particular course (Marsh & Roche, 2000; Svanum & Aigner, 2011). If the academic
performance of a student is lower than the average grade of a course, the student is less motivated to enrol in
that course. One interpretation for this finding is that there is a level of incongruence between the student’s
self-efficacy and efficacy expectation, and that of the course under consideration. Simply put, the perceived
capacity for a student to succeed in a course is evidenced through a social comparison of peer grades. A high
grade differential will result in the student selecting an alternate course. Self-efficacy and efficacy expectations
are well-established as strong predictors of academic achievement (Robbins, et al., 2004) and career planning
(Lent, Brown, Brenner, Lyons, & Treistman, 2003). Therefore, it seems a promising avenue for future research
to investigate different approaches to the identification of student sub-populations, who for example share
similar characteristics, make similar courses selections, have similar learning achievements and share similar
subject domain interests. As demonstrated in detecting learner profiles from data about interactions with
learning environments, the use of clustering techniques such as K-means or hierarchical clustering is a fruitful
research direction for identifying student subpopulations (Lust, Vandewaetere, Ceulemans, Elen, & Clarebout,
2011).

Consideration of the temporal dependencies in course selection is essential for improving the accuracy of the
predictive model for course selection. As shown in the results, the predictive accuracy of course selection for
each student per semester/term and academic year was relatively poor and too immature for any practical
adoption to support any institutional decision-making process. Building on these preliminary findings, we
would suggest that the treatment of students’ course selection throughout their academic programs should be
considered a process, rather than aggregate values of certain variables of interest. The algorithms and tools as-
sociated with process mining would appear to be a promising avenue to pursue in order to address this tem-
poral challenge (Pechenizkiy, Tréka, Vasilyeva, van der Aalst, & De Bra, 2009; van der Aalst, 2012). For instance,
process mining can be used for discovering “emergent curricula”, which are commonly followed by students
throughout their degree programs. If combined with clustering, such emergent curricula can be discovered
from different student subpopulations. Moreover, the predictions about student course selection sequences
can be considered a process configuration problem, which already has approaches based on the use of AHP
(Ognjanovi¢, Mohabbati, Gasevi¢, Bagheri, & Boskovi¢, 2012).

The modelling of qualifier tags used in the AHP-approach was based on discretization decisions made in the
scope of the study. For example, sections 2.2.3 and 2.2.4 explain the rationale why four qualifier tags were cre-
ated for course characteristics and instructor characteristics. Section 2.2.5 likewise explains the rational for the
four qualifier tags for grade average point. We acknowledge that some other methods could be used for their
grouping and possible influence some of the results reported in the paper. Our choices are transparently ex-
plained with the goal to enable other researchers replicate our study. Future research should investigate the



effectiveness of these decisions and examine some alternative ways for the creation of qualifier tags and their
influence on the results.

The further consideration of alternate and additional variables that can aid in the prediction of course selection
is essential next step. Well-established theories of student retention posit that academic and social integration
of students is critical for their success in higher education (Tinto, 2006). For this reason and many other estab-
lished educational benefits, many institutions are attempting to implement strategies and practices aimed to-
wards fostering learning communities to build a network of support for their students (Dawson, 2006; Smith,
MacGregor, Matthews, & Gabelnick, 2004). A student’s decisions are often influenced by different contextu-
al/environmental factors (Babad & Tayeb, 2003). For example, enrolling with a group of friends is a common in-
fluencing factor for course selection. Therefore, consideration of the social structures and position of students
in social networks is an important source to consider in order to enhance the prediction accuracy of course se-
lections (Dawson, Macfadyen, Lockyer, & Mazzochi-Jones, 2011; Gasevi¢, Zouaq, & Jenzen, 2013).

The higher education landscape is increasingly complex requiring students to identify future career plans and
pathways early in their academic candidature. Understandably, not all students are job-focused with the neces-
sary insight and motivation to make productive career decisions. This is well recognised across the higher edu-
cation sector with the vast majority of universities now offering career counselling and support services. While
this approach offers much personal value there is limited scalability in practice. Not all students would or could
avail themselves of these services. There simply are insufficient resources to cope with a large increase in de-
mand. However, as the education sector increases its application of data and analytics to the decision making
process (strategic and personalised) (Siemens, Dawson, & Lynch, 2014), there is an opportunity to better align
support resources to assist students in their career plans. As this study well illustrates the application of stu-
dent data derived from information sources can provide valuable predictive insights into student course selec-
tions, demands and drivers in order to better align the university support resources to achieve a greater return
on investment.
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Appendix A

Table Al. The AHP ranks for the interval grades

1-2 2-3 3-4 4-5 Ranks | Normalization
1-2 1.00 0.33 0.20 0.14 0.23 0.06
2-3 3.00 1.00 0.33 0.20 0.49 0.12
3-4 5.00 3.00 1.00 0.33 1.05 0.26
4-5 7.00 5.00 3.00 1.00 2.23 0.56
16.00 9.33 4.53 1.68 4.00

Table A2. AHP ranks for the ‘unknown’ preferences over the interval grades

1-2 2-3 3-4 4-5 Ranks Normalization
1-2 1.00 1.00 1.00 1.00 1.00 0.25
2-3 1.00 1.00 1.00 1.00 1.00 0.25
34 1.00 1.00 1.00 1.00 1.00 0.25
4-5 1.00 1.00 1.00 1.00 1.00 0.25
4.00 4.00 4.00 4.00 4.00

Table A3. Evaluation questions

University Questions

U1l: The instructor made it clear what students were expected to learn.

U2: The instructor communicated the subject matter effectively.

U3: The instructor helped inspire interest in learning the subject matter.

U4: Overall, evaluation of student learning (through exams, essays, presentations, etc.) was fair.
U5: The instructor showed concern for student learning.

U6: Overall, the instructor was an effective teacher.




Faculty Specific Questions’

F1: In classes where the size of the class and content of the course were appropriate, student participa-
tion in class was encouraged by the instructor.

F2: High standards of achievement were set.

F3: The instructor was generally well prepared for class.

F4: The instructor was readily available to students outside of class (e.g., through email, office hours, or by
appointment).

F5: The instructor treated students with respect.

F6: Considering everything how would you rate this course?

Asked in all course evaluations of the university
’Asked in all course evaluations of the faculty the degree program, used in the study, was offered by



