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Abstract

In this article we describe the mathematics curriculum and teaching practices in a

purposive sample of high-poverty elementary schools working with 3 of the most

widely disseminated comprehensive school reform programs in the United States.

Data from 19,999 instructional logs completed by 509 first-, third-, and fourth-

grade teachers in 53 schools showed that the mathematics taught in these schools

was conventional despite a focus on instructional improvement.  The typical les-

son focused on number concepts and operations, had students working mostly

with whole numbers (rather than other rational numbers), and involved direct

teaching or review and practice of routine skills.  However, there was wide varia-

tion in content coverage and teaching practice within and among schools, with

variability among teachers in the same school being far greater than variability

among teachers across schools.  The results provide an initial view of the state of

mathematics education in a sample of schools engaged in comprehensive school

reform and suggest some future lines for research.
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Much of what is known about mathematics education in United States elementary

schools comes from large-scale survey data collected over the past decade, espe-

cially the National Assessment of Educational Progress (NAEP), the Schools and

Staffing Survey (SASS), and the Third International Mathematics and Science

Study (TIMSS) (For a list of publications see: http://nces.ed.gov/timss/;

http://nces.ed.gov/nationsreportcard/; http://nces.ed.gov/surveys/sass/).  Overall,

these surveys paint a less than flattering picture.  They suggest that the elementary

school mathematics curriculum is both slow-paced and repetitive, emphasizing

instruction on whole-number concepts and basic arithmetic operations more than

any other topics.  Moreover, the data show that teachers rely heavily on lecture,

recitation, and seatwork, teaching students mostly how to use standard procedures

or algorithms to do basic arithmetic operations and solve simple word problems.

In the same data, students are found to have few opportunities to engage in ex-

tended discourse about mathematics or to reason about or evaluate complex

mathematical ideas (Flanders, 1987; Fuson, Stigler, & Bartsch, 1988; Henke,

Chen, & Goldman, 1999; Kilpatrick, Swafford, & Findell, 2001; Schmidt,

McKnight, & Raizen, 1997; Schmidt, McKnight, Cogan, Jakwerth, & Houang,

1999; Stigler & Heibert, 1999).

Critics of U.S. education see these patterns of classroom instruction as one

explanation for the performance of elementary school students on standardized

tests of mathematics achievement, especially the National Assessment of Educa-



5

tional Progress.  On NAEP assessments, fourth graders typically perform well on

tasks involving basic addition and subtraction of whole numbers—the major focus

of the early-grades mathematics curriculum.  But student performance drops off

sharply on tasks that assess understanding of number concepts, require the use of

rational numbers other than whole numbers, or ask students to develop or justify

solutions to complex (multistep) word problems (Kilpatrick, Swafford, & Findell

(Eds.), 2001, pp. 136-138).   In fact, on the most recent NAEP mathematics as-

sessment, 31% of fourth graders did not attain the “basic” level of performance,

and only 26% achieved the NAEP’s “proficiency” standard

(http://nces.ed.gov/nationsreportcard).

The Problem

The description of mathematics education just presented is both sensible and in-

ternally consistent, but gaps remain in knowledge about mathematics education in

U.S. elementary schools.  For one, large-scale surveys have typically relied on

brief annual surveys of teachers to generate data about mathematics instruction

(an exception was the TIMSS video study).  But the problems of accuracy in an-

nual surveys of teaching are well known, and there is widespread agreement that

alternative data-collection approaches are needed to improve survey data on in-

struction (Brewer & Stasz, 1996;  Burstein et al., 1995; Mayer, 1999; Mullens &

Kasprzyk, 1996, 1999; Rowan, Camburn, & Correnti, 2002; Rowan, Correnti, &

Miller, 2002; Shavelson, Webb, & Burstein, 1986).
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Moreover, with a few notable exceptions, reports of survey data have fo-

cused on central tendencies in mathematics curriculum and instruction, with less

attention paid to how curriculum and instruction vary across classrooms within

the same school, across schools serving different student populations, or across

schools in different policy environments.  There is an assumption that mathemat-

ics instruction is different in high- and low-poverty schools (see, e.g., the collec-

tion of papers in Knapp and Shields, 1990); a sense that teachers have tremendous

autonomy and therefore vary greatly in their mathematics teaching, even at the

same grade level and within the same school (Meyer & Rowan, 1978; Porter,

1989; Stevenson & Baker, 1991); and a growing optimism that recent reform ini-

tiatives can alter mathematics education (Cohen & Hill, 2000).  However, these

assumptions have not been examined in detail across a range of elementary

grades, and so arguments about mathematics education in American elementary

schools remain largely built around analyses of central tendencies.

Research Questions

We designed this article to address the shortcomings in previous survey research

on instruction by presenting new survey data on mathematics education in 53

elementary schools participating in the first wave of A Study of Instructional Im-

provement (SII).   The schools in this study, although not representative of U.S.

elementary schools, were nevertheless important objects of research, largely be-

cause of their participation in one of three, large, comprehensive school reform
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programs now operating in the United States—the Accelerated Schools Program,

America’s Choice, and Success for All.  In this article we argue that this unique

sample provides the education community with an important opportunity to ex-

amine mathematics education in a diverse sample of schools engaged in a major

reform initiative aimed at changing instruction.

To study how this approach to school reform is related to instruction, re-

searchers conducting A Study of Instructional Improvement designed a method of

collecting data on instruction intended to go beyond the view from annual surveys

of teachers.  In the study reported here, for example, data were taken from logs

teachers completed frequently throughout the academic year.  As discussed be-

low, logs can provide more accurate and reliable data about instruction than an-

nual surveys.  As a result, a major purpose for writing this article was to demon-

strate how teacher logs can be used to study mathematics education.

The log data also were used to address two sets of research questions.

One set asked about central tendencies in mathematics instruction in the 53

schools under study.  In particular, we were interested in knowing if the picture of

curriculum and teaching that emerged from log data would be similar to the one

found in previous large-scale survey research.  We wanted to chart the mathe-

matics topics taught at different grades in the schools under study, the pace at

which curriculum coverage unfolded across grades, and the teaching practices at

varying grades.  Our primary question was whether schools using one of three
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school reform models would be characterized by instruction that previous, large-

scale surveys have suggested is typical or whether these schools had succeeded in

“breaking the mold” of conventional practice (Berends, Bodily, & Kirby, 2002).

A second set of questions asked about variation in mathematics instruction

across schools and classrooms.  Some survey research has suggested that teachers

and schools vary widely in mathematics curriculum and teaching—especially in

the U.S. (e.g., Porter, 1989; Stevenson & Baker, 1991).   However, researchers

have not documented the extent of such variation precisely.  As a result, an addi-

tional goal of this article was to present a new strategy for estimating the magni-

tude of variation in curriculum and teaching across teachers and schools, and then

to use this strategy to test hypotheses about why such variation exists.  All of this

was related to an additional research question—whether schools’ participation in

comprehensive reform affected mathematics content coverage and teaching.  In

the data analyzed here, for example, would we find widespread variation across

schools pursuing different reform models?  Further, would these reform models

reduce differences in instruction among teachers within the same school (e.g.,

Porter, 1989)?

Method

Sample of Schools

To address these questions, we used data on 53 schools collected during

the first and second years of A Study of Instructional Improvement, at a time
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when the sample for this study was not yet fully realized.  Fifteen of these schools

were participating in the Accelerated Schools Program, 15 were in the America’s

Choice program, 16 were in Success for All, and seven were chosen as compari-

son sites—schools that were not in any of these programs.  Schools in these four

groups were matched in terms of student composition and neighborhood charac-

teristics.

We chose this sample because of the emerging emphasis in U.S. education

on the adoption by elementary schools of externally developed, comprehensive

school reform (CSR) models (Berends et al., 2002).  At the time of this study, be-

lief in the promise of these models for improving instruction was so strong that

the federal government had created financial and other incentives for the adoption

of CSR models by schools as part of No Child Left Behind (PL 107-110, Part F,

Section 1606, 1, (a)). Thus, by 2003, about 15% of all public elementary schools

in the U.S. had adopted a CSR model, either in response to federal or state incen-

tives, or for some other reason (Datnow, 2000; Rowan, in press).

Researchers conducting A Study of Instructional Improvement made sev-

eral important sampling decisions in developing a study of schools implementing

CSR models.  First, we focused only on the three CSR programs described here,

and as result, the data presented in this article cannot be generalized beyond the

programs studied.  Second, we sampled mostly high poverty elementary schools.

Historically, these are the schools with the lowest achievement levels and those
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that have been targeted most frequently by accountability measures.  As a result

of this focus, however, our sample is not representative of all U.S. elementary

schools. Appendix A provides information on the means and standard deviations

of key demographic variables for the 53 schools in the sample.

A final feature of the sample was the schools’ level of engagement in in-

structional improvement activities.  At the time of data collection, the 53 schools

in our sample were more focused on improving reading/language arts instruction

than mathematics instruction. In part, however, this reflected the emphasis of the

CSR programs they were working with.  For example, schools working with Suc-

cess for All began participation in that program by adopting a highly specified

program of reading instruction in grades K-5.  After 3 years of implementation,

they then had the option of also adopting the Success for All mathematics compo-

nent, but this was not required.  In the sample studied here, only four Success for

All schools had adopted the mathematics program.

Similarly, the America’s Choice program typically began its efforts by

working to develop a school’s writing program, with less attention given to

mathematics improvement.  However, America’s Choice did recommend that

schools adopt an innovative textbook series (e.g. Math Investigations).  Moreover,

the program provided additional curricular guidelines to schools in the form of

mathematics standards and reference exams, as well as supplemental materials for
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use in teaching a limited number of mathematics topics.  Almost all of the Amer-

ica’s Choice schools in the sample followed these guidelines.

Only the Accelerated Schools Program gave equal priority to improving

mathematics and language arts instruction from the outset of a school’s adoption

of the model.  However, at the time of the study, this program offered little in-

structional guidance, emphasizing instead that schools develop a commitment to

providing “powerful learning” and use locally developed strategies rather than

adopt specific lesson scripts, curricular materials, or reference exams to improve

the instructional program.

Despite these programmatic emphases, school leaders reported being ac-

tively engaged in improving mathematics in their schools.  On a survey of leaders

conducted as part of this research, school administrators and program leaders in

90% of the schools reported that improvement of the mathematics program was a

top priority in their school improvement plans.  About a third of the schools under

study reported using one of the innovative mathematics texts developed with Na-

tional Science Foundation support (i.e., Math Investigations, Everyday Math, or

Math Trailblazers) and/or using program materials developed by Success for All

or America’s Choice.  Moreover, in all of the schools, leaders indicated that their

schools were either: (a) in the process of developing or in the early stages of im-

plementing a new mathematics curriculum; or (b) working on new mathematics

curricular standards; or (c) helping teachers learn about new curricular materials;
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or (d) aligning their textbooks and assignments with state or local mathematics

standards.  Thus, although improvement activities varied from school to school,

all schools in the sample reported being actively engaged (in one way or another)

with improving their mathematics programs.

Using Teacher Logs to Record Data on Instruction

The key task in the study was to describe the mathematics instruction oc-

curring in the schools under study.  To do this, researchers conducting A Study of

Instructional Improvement used teacher logs as the primary data collection in-

strument.  The field of survey research has shown that logs or time diaries can

overcome many of the problems of memory distortion and inaccuracy that arise

when respondents are asked to summarize, retrospectively, behaviors they en-

gaged in over an extended period (Hilton, 1989; Hoppe et al., 2000; Leigh, Gill-

more, & Morrison, 1998; Lemmens, Knibble, & Tan, 1988; Lemmens, Tan, &

Knibble, 1992; Sudman & Bradburn, 1982).  For a review of this research and its

application to survey research in the field of education, see Rowan, Camburn, &

Correnti (2004, in this issue).

The log instrument.  To better understand how frequently administered

teacher logs work, consider the instructional log used in the current study (shown

in Appendix B).  The log used here was a standardized questionnaire that asked

teachers to respond to simple checklists and other items as a means of reporting
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on their instruction.  The main difference between this log and an annually ad-

ministered questionnaire was mostly in frequency of administration.

An initial section of the log asked teachers to report the time spent on

mathematics instruction on a given day and the emphasis given to topics in the

mathematics curriculum during this time.  Then, if teachers checked one of the

“focal” topics of the study (topics expected to be the most frequently taught or

that currently are a focus of mathematics reform efforts), they were directed to

complete additional items asking for more detail about content taught and in-

struction.  The decision to limit additional data collection to these focal topics

(rather than asking teachers to report extensively on all curricular topics) was

dictated by efforts to limit respondent burden on the logs.

Teachers’ log reports referred to the instruction a single student in the

class received, and this instruction could have occurred in any setting (i.e. whole

class, small group, individual). To assure that such data provided an accurate rec-

ord of teachers’ overall patterns of teaching (across all students and over the

course of an entire academic year), a specific logging procedure was developed.

Each teacher rotated log reports across a representative sample of eight students in

his or her classroom during three extended logging periods spaced evenly over the

academic year.  In this design, teachers who participated in all of the logging ses-

sions were expected to fill out about 70 instructional logs, or about nine logs per

sampled student.
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The sample of logs.  For a variety of reasons having to do with the phasing

of data collection, only teachers in the first-, third- and fourth-grades were asked

to complete logs by the second year of the study.  In the data reported here, third

grade teachers completed logs during the first year of the study, and first and

fourth grade teachers completed logs during the second year.  Also, due to the

timing of schools’ entry into the study, some comparison schools participated in

only two logging periods during the first year of the study. Therefore, these teach-

ers provided fewer logs.

In addition, some of the log responses obtained from teachers were not

used in the analyses reported in this article.  We began the analyses with a sample

of just over 26,000 logs provided by 509 teachers from the 53 schools, for a re-

sponse rate of just over 90%.  But 1,765 of these logs had problematic responses

that rendered them useless for analytic purposes.  In another 4,619 cases, the

teacher or student who was the focus of the log report was absent or school was

out of session.  The logs obtained for these cases were submitted with absences

marked and were useful in obtaining estimates of teacher and student absentee

rates, but these logs were not included in the present analysis.  Thus, the final

sample of logs analyzed here included 19,999 logs (8269 logs for grade 1, 7690

for grade 3, and 8092 for grade 4) completed by 509 teachers (or roughly nine

teachers per school). In this sample, the median teacher provided usable data on

around 42 days of instruction during a school year.



15

Accuracy of log data.  A reasonable concern is whether these log data ac-

curately described teachers’ instructional activities.  To address this concern, care-

ful steps were taken during logging periods to assure the accuracy of teacher re-

sponses to items in the log questionnaire.  Prior to the beginning of each school

year, teachers participated in a training session in which they learned how to use

the logs.  Teachers were given definitions of the terms found on the logs and a

glossary that contained these definitions and rules for coding.  Finally, teachers

were given a toll-free telephone number to use to ask research staff questions

about coding.

In a pretest of these data collection procedures, we found that the logs

produced acceptable validity coefficients.  For example, Hill (2003) reported on

the pretest study of an earlier (but similar) version of the mathematics log used

here.  In that study, 29 teachers in eight elementary schools completed an average

of more than 50 logs during the spring of the 2000 school year.  As part of this

pretest, well-trained observers worked in pairs to observe one lesson for each of

the 29 teachers in the study.  After this lesson, the pairs of observers and the

teacher completed a log questionnaire.  A validity coefficient was then calculated

as the “match rates” among trained observers and teachers.  Across the items re-

corded during the lessons observed, Hill (2003) reported match rates ranging from

1.00 (observers and teachers always matched their responses to an item) to .40

(observers and teachers matched on only 40% of occasions an item was checked
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by either an observer or teacher).  In these data, about 50% of the items had match

rates above 80%, another 20% had match rates between .70 and .80, whereas only

30% of items had match rates below .70.  Items with low validity coefficients

were dropped from the final teacher log used in this study, thus improving the ac-

curacy of the current instrument.

Log-based measures.  In the current study, log data were used to construct

measures of content coverage and teaching practices for each day of mathematics

instruction in the data set.  Thus, the primary unit of measurement was a single

log report.   Central tendencies and variation in these log reports were then ana-

lyzed at three levels of analysis: days, nested within teachers, nested within

schools. Students were not an object of measurement in these analyses, because

preliminary analyses showed that we could not reliably discriminate across stu-

dents in the same classroom on measures of content coverage or instructional

practice.  This suggests that teachers (in this sample, at least) did not meaning-

fully vary their instruction across students within their classrooms.  For a similar

finding in the area of reading/language arts, see Rowan, Camburn, and Correnti

(2004, in this issue).

Content coverage:  One set of measures were meant to assess teachers’

patterns of content coverage.  These measures were taken from items in the

opening section of the log.  As Appendix B shows, the curriculum strands re-

ported on were: (1) number concepts; (2) operations; (3) patterns, functions, or
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algebra; (4) learning about money, telling time, or  reading a calendar; (5) repre-

senting or interpreting data; (6) geometry; (7) measurement; (8) probability; (9)

percent, ratio, or proportion; (10) negative numbers; and (11) other.  In the log,

teachers rated whether a given topic was a major focus of teaching that day, a mi-

nor focus, touched on briefly, or not taught.  However, in the analyses reported

below, we re-coded teachers’ responses so that lessons were assigned a score of 1

(topic was taught) when a teacher indicated that the topic was a major or minor

focus of the lesson, and a score of 0 (not taught) when the teacher indicated the

topic was touched on briefly or not taught.

Additional data on content coverage were collected if (and only if) teach-

ers reported that they taught one of the focal topics.  These were a subset of the

topics just listed: (a) number concepts, (b) operations, and (c) patterns, functions,

or algebra.  When a focal topic was taught as a major or minor focus, the log elic-

ited additional information from teachers about curriculum and teaching (in sec-

tions A, B, or C of the log).  Using these data, we focused analyses on the extent

to which teachers who covered number concepts or operations on a given day had

students working with whole numbers, fractions, decimals, or some combination

of these numbers.  In addition, we examined whether teachers covering operations

on a given day were teaching addition, subtraction, multiplication, and/or divi-

sion, and whether these operations were being performed with whole numbers,
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fractions, and/or decimals. We then used these data to study the unfolding of the

operations curriculum across grades.

Measures of teaching:  Log data were also used to develop measures of

teaching.  However, to minimize respondent burden, these measures were con-

structed only for occasions when a focal topic was taught.  In this sense, the

measures of teaching discussed here did not describe teaching across the full

range of topics in the math curriculum.  However, the focal topics under study

were by far the most frequently taught topics in the schools under study, so our

measures did describe teaching practices for the most frequently taught topics.

The items used to construct the teaching practice measures asked teachers

to record whether or not they performed a particular teaching activity on a given

day.  To create multi-item scales from these data, we grouped items into analytic

categories using logical statements.  Three dimensions of teaching were meas-

ured—whether or not a teacher engaged in direct teaching, the pacing of content

coverage, and the nature of students’ academic work.  These item groupings cor-

respond closely to an exploratory factor analysis conducted as part of the research

(and not reported here), and, more importantly, they reflect common concepts of

teaching practice in the mathematics education literature.

For purposes of measurement, a lesson was coded as including direct

teaching if a teacher reported: (a) students listened to me present the definition for

a term or the steps of a procedure; or (b) I made explicit links between two or
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more of these representations; or (c) students orally answered recall questions.

These items were seen as measuring the extent to which a teacher was delivering

curricular content to students.  The pacing of this instruction was coded according

to whether a teacher reported: (a) students performed tasks requiring ideas or

methods already introduced (known ideas); (b) students performed tasks requiring

ideas or methods not already introduced (unknown ideas); or (c) doing both.  We

classified the nature of students’ academic work into one of three types.  A lesson

was coded as involving routine practice if the teacher reported that students: (a)

performed tasks requiring known ideas or methods already introduced to the stu-

dent and either (b) using flashcards, games, or computers activities to improve

recall or (c) worked on textbooks, worksheets, or board work exercises for prac-

tice or review.  A lesson was coded as involving applications if a teacher reported

that students: (a) worked on real-life situations or word problems; and (b) as-

sessed a problem and chose a method to use from those already introduced to the

student; and either (c) were asked to explain their answers or (d) work on prob-

lems that have multiple answers or solutions, or involve multiple steps.  A lesson

was coded as involving analytic reasoning if the teacher reported that students

were asked to: (a) analyze similarities or differences among m representations,

solutions, or methods; and (b) prove that a solution is valid or that a method

works for all similar cases; and (c) write extended explanations of mathematical

ideas, solutions, or methods.
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We viewed these measures of student work as ascending in cognitive

complexity or demand and as being more or less reform oriented, with lessons

focused on practice being the least demanding and most conventional, and lessons

focused on analytic reasoning being the most demanding and most reform-

oriented.  In routine lessons, students worked on known ideas within restricted

formats—typically worksheets or textbook problems.  In applications lessons,

students were typically solving word problems, and they were doing so by

choosing solution strategies and/or justifying their answers. In lessons built

around analytic reasoning, students were trying to generate mathematical knowl-

edge through methods of proof or analysis.

Analytic Procedures

Central tendencies. The measures just discussed were analyzed in two

steps.  In the first stage, we examined central tendencies in the measures using

instructional days (i.e., single log reports) as the primary unit of analysis.  At this

stage, our goal was to estimate the percentage of instructional days during which

lessons: (a) focused on particular curriculum strands or (b) engaged students in

more or less innovative and cognitively demanding work.  In all of these analyses,

data were broken down by the grade levels under study.

Variation in curriculum and teaching.  In the next step, a series of three-

level, hierarchical, logistic regression models were estimated to see how content

coverage and teaching varied at three nested levels of analysis: instructional days,
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nested within teachers, nested within schools (for a discussion of these models,

see Raudenbush & Bryk, 2002, Chapt. 10).  These analyses examined variation in

content coverage and teaching among teachers in the same schools and across

schools.  In addition, we were interested in explaining variation in these outcomes

by incorporating a set of independent variables into the analyses.  For example,

when examining variation in curriculum and instruction across days, we coded

each log according to the day of the week on which the teaching occurred

(1=Friday, 0 = else), whether or not that day was near a holiday (1=a day before,

of, or after a holiday; 0 = else), and the number of minutes of math instruction oc-

curring that day. Including these independent variables in our statistical models

enabled us to obtain teacher-level estimates of curriculum and teaching that were

adjusted for differences among teachers in days when logs were completed.  At

the teacher level of analysis, we decided to examine how grade level and the

number of logs that teachers completed might affect variation among teachers.

To explain variation across schools, we looked at three sets of school variables:

(a) a set of dummy variables indexing a school’s participation in one of the three

school reform programs under study; (b) multi-item scales built from the teacher

survey designed to measure the extent to which a school had a strong academic

press, operated under clear standards for curriculum, and experienced strong pres-

sures for accountability; and (c) demographic variables, including average student
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SES and mathematics achievement at a school.  Appendix C presents descriptive

statistics for all of these variables.

Formal statistical models.  The formal statistical model we used was a

three-level hierarchical logistic regression model (Raudenbush & Bryk, 2002,

Chapt. 10).  Level 1 units in this model were the binary measures of curriculum

coverage or teaching practices on a given day taken from daily logs; level 2 units

of analysis were teachers; and level 3 units were schools.  Readers interested in a

formal presentation of this model can consult a more technical version of this pa-

per located at www.sii.soe.umich.edu/links.  The model is similar in form and

purpose to the three-level, hierarchical, logistic regression model used by Rowan,

Camburn, & Correnti (2004, in this issue) to study variation in the enacted cur-

riculum, except that the model used in the present article nests lessons within

teachers, and teachers within schools.

Describing variation in outcomes across teachers and schools.  The key

point of these analyses was to provide information about the magnitude of varia-

tion in curriculum coverage and teaching practice within and across schools in the

sample. The usual approach to analyzing this issue involves examining the per-

centages of variance in curriculum coverage and teaching practices lying within

and between schools, but these statistics in fact do not tell us how large such

variation is across teachers and schools.  To get a sense of the probability that

particular outcomes would occur in different schools, and for different teachers
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within the same school, we needed to look at some additional statistics.  In par-

ticular, using formulas shown in the technical version of this paper

(www.sii.soe.umich.edu/links), we put a one standard deviation confidence inter-

val around the estimated grand means for any given instructional outcome, al-

lowing us to quantify the spread of outcomes around the estimated average for

teachers and for schools.  In essence, this analysis focused on the probability that

instructional outcome would occur for teachers who were one standard deviation

above or below their respective school mean in the probability of teaching a topic

or using an instructional approach, and it focused on the probability that an in-

structional outcome would occur in schools that were one standard deviation

above or below the grand mean in the probability that a curricular topic was

taught or an instructional approach used.  The logic of the analysis is illustrated

further in the results section of this article.

Results

Central Tendencies in Content Coverage

Table 1 shows the percentage of days that each main strand of the mathe-

matics curriculum was taught for the samples of days at each grade level.  Please

note that the total percentage of time devoted to coverage across all content areas

can sum to more than 100% at any grade level in this table because teachers often

taught more than one curriculum strand per day.
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-----------------------------

Table 1 about here

-----------------------------

The data show that the mathematics curriculum in the schools under study

focused on number concepts and operations.  At all grade levels, operations were

taught on about 40% of days, and number concepts were taught from 24% to 32%

of days, depending on the grade level.  In an analysis not shown here, we found

that when one of these topics was taught, the other was taught on about 36.5% of

occasions.  Overall, this same analysis showed that 51% of all instructional days

in the sample included instruction on number concepts, operations, or both topics.

Not surprisingly, Table 1 also shows that other topics were taught much

less frequently.  In first grade, students were taught about money, time, and the

calendar on about 30% of all school days.  But attention to this topic fell off

sharply in the third and fourth grades, as expected.  Otherwise, attention to all

other topics was spread thinly across a large number of topics at all grade levels.

Thus, at third and fourth grades, no topic other than number concepts or opera-

tions was taught more than 10%-15% of all days.

Table 2 presents additional data on the mathematics curriculum.

In line with previous research, it suggests a strong emphasis on whole numbers.

In first grade, 91.8% of lessons on number concepts and/or operations focused on

whole numbers; at third grade that figure declined to 82%, and in fourth grade the

figure was 76%.  This decline coincided with a gradual increase in the attention to



25

decimals and fractions across grade levels, with 27.5% of number concepts and/or

operations lessons in fourth grade covering fractions and 20.5% covering deci-

mals.  Thus, as expected, new number types were introduced at successive grades,

but even at fourth grade, Table 2 shows that the teaching of number concepts

and/or operations remained focused on whole numbers.

-----------------------------

Table 2 about here

-----------------------------

The continuing emphasis on whole numbers shown in Table 2 raises

questions about the potentially slow pace of instruction in the schools under study

and about a possible redundancy in content coverage.  But there might be sound

reasons for the continuing emphasis on whole numbers shown in the table, even at

the higher grades.  For example, while students are working with single-digit

whole numbers, they might also begin to work with multidigit whole numbers.

Building further, new operations (e.g., multiplication and division) are introduced

as students progress across grade levels, and the introduction of new operations

might necessitate a continuing emphasis on whole numbers.

The data on operation and number in Table 2 provide some evidence on

these speculations, showing how much emphasis was given at particular grades to

teaching operations involving a particular type of number, where the percentages

are based only on days when operations were taught.   The table shows that first-

grade operations lessons focused largely on addition and subtraction with whole
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numbers and rarely on other operations or numbers.  In third and fourth grade, by

contrast, students worked on multiplication and division with whole numbers,

even while teachers continued to emphasize addition and subtraction with whole

numbers.  Table 2 also shows that the percentage of lessons focused on fractions

and decimals increased in the later grades.

Although Table 2 indicates how the operations curriculum advanced in the

elementary grades, it also provides some evidence of redundancy and “crowding”

in the operations curriculum – especially at the upper grades.  With respect to re-

dundancy, the table shows that students in third and fourth grades continued to

work on addition and subtraction, even as they moved to work on multiplication

and division.  Moreover, students continued to work on addition and subtraction

problems with whole numbers, even as they learned to work with fractions and

decimals.  When we probed the data further to see if the continuing emphasis on

addition and subtraction with whole numbers was due to an emphasis on multi-

digit computations, we found that third graders’ work on addition or subtraction

problems involved single-digit whole numbers about 65% of the time, and multi-

digit whole numbers about 35% of the time.  By fourth grade, the ratio of single-

digit to multidigit whole numbers was closer to 50/50.  But that still suggests a

continuing emphasis on fairly simple addition and subtraction problems in third

and fourth grades.
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Table 2 also shows an increase in the number of topics covered in the

higher grades.  For example, third and fourth graders were working not only on

addition and subtraction with single- and multidigit numbers but also on the addi-

tion and subtraction of fractions and decimals (albeit much less often than with

whole numbers).  This was true even as they began to multiply and divide both

single- and multidigit whole numbers, fractions, and decimals (again at lower fre-

quencies).  This progressive “crowding” in the operations curriculum was par-

ticularly noticeable in the transition from third to fourth grade, where the attention

to each operation/number combination increased.

Central Tendencies in Teaching Practice

The next step in the analysis was to examine central tendencies in teaching

practice.  These data are presented in Table 3.  This table shows the percentage of

days when number concepts and operations were taught with the lesson being

characterized as involving direct teaching. Also, for days that included direct

teaching, Table 3 shows the percentage of days when a teacher focused on mate-

rial already introduced to students, on new material, or one some combination of

these.  The main finding was that on roughly 73% of the days when number con-

cepts and operations were taught, direct teaching occurred, and of these days, al-

most 70% focused on material previously introduced to students.  Table 3 also

gives the percentage of days when number concepts and operations were taught
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that included student work at different levels of cognitive demand.  About 78% of

these days involved practice, almost 20% involved applications, and only about

3% involved analytic reasoning.  Thus, the cognitive demand of number concepts

and operations lessons was low on the vast majority of days.

---------------------------------

Table 3 about here

---------------------------------

To review, the data in Table 3 suggest that teacher-directed instruction,

practice, and the review of previously covered material dominated instructional

practice in the schools under study.  The reader is cautioned, however, that the

results in Table 3 might underestimate the real diversity of lessons.  To demon-

strate this, we developed an alternative way of looking at the teaching practice

data.  We created an empirically exhaustive cross-classification of lessons along

the three dimensions of teaching practice measured in this study—whether or not

a day of instruction included direct teaching; whether that day focused on previ-

ously introduced content, new content, or some combination; and whether a day

of instruction involved practice on routine tasks, applications, or analytical rea-

soning.  Table 4 shows the results of this analysis, which clustered days of in-

struction on number concepts and operations into the 31 distinct instructional con-

figurations in the data.
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---------------------------------

Table 4 about here

----------------------------------

Table 4 shows that the most frequently occurring instructional configura-

tion at each grade level included a combination of teacher-directed instruction, a

focus on material previously introduced, and students engaged in practice.  This is

the lesson configuration usually seen as dominant in U.S. mathematics education.

Overall, however, only about 36% of the days that focused on number concepts

and operations took on this configuration.  Strikingly, the next most common con-

figuration was one in which students were engaged in practice without any direct

teaching.  In fact, this configuration comprised nearly 17% of the days when

number concepts and operations were taught.  Otherwise, no other instructional

configuration was present on more than 10% of the remaining days of instruction.

In summary, this way of looking at the data suggests that just two forms of in-

struction were distributed across about 53% of all number concepts and opera-

tions days, and the other 29 configurations were distributed across the remaining

47% of days.

Variation in Content Coverage

To this point, we have focused on central tendencies in content and

teaching.  But analyses of central tendencies often underplay variation in educa-

tional practices across teachers and schools, and they give no information about
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how large this variation may be.  As a result, we turned to that problem in a sec-

ond stage of the analysis.

Tables 5 and 6 explore variation in curriculum coverage and teaching

practice across the schools and teachers in the study.  The tables are based on es-

timates from the three-level hierarchical logistic regression models discussed ear-

lier, where the dependent variables were dichotomous measures of content and

teaching.  All models were estimated using the computing package HLM/HGLM

5.0 authored by Raudenbush, Bryk, Cheong, and Congdon (2002).  The reader

will note that these analyses provided estimates of the log likelihood of an in-

structional outcome for the average first-grade teacher in the average school on a

typical day of instruction.

--------------------------

Table 5 and 6 about here

--------------------------

Table 5 reports on the variance decomposition and reliabilities for the in-

structional outcomes pertaining to patterns of curriculum coverage. Then, in Table

6, estimates of the coefficients reported by the HGLM computing package are

presented, having been translated from the log-odds metric reported by the com-

puting program into probabilities (original analyses on which these tables are

based are available from the authors by request).  The purpose of constructing Ta-

ble 6 was to provide a sense of the magnitude of differences in content coverage
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across schools, teachers, and grade levels.  Keeping the focus on the core of the

elementary school mathematics curriculum, Table 6 focuses only on the probabil-

ity that number concepts and operations were taught in the schools and that dif-

ferent operations with whole numbers were taught.  Readers interested in the re-

sults for all curricular topics in the log can request the data from the authors.

In general, Table 5 shows that there was far more variation in content cov-

erage within schools than across them, even after taking into account the grade

level teachers taught.  For example, the percentage of variance lying within

schools in the log-odds that number concepts were taught was 82.1%; that per-

centage of variance was 89.8% for operations, 92.3% for addition with whole

numbers, 90.6% for subtraction with whole numbers, 94% for multiplication with

whole numbers, and 87.5% for division with whole numbers.  Clearly, almost all

of the variation in content coverage was among teachers within schools (even af-

ter controlling for grade) rather than across schools.

Further, the reliabilities listed in Table 5 show that, for the most part, we

could discriminate reliably among first-grade teachers in patterns of content cov-

erage but less reliably among schools.  For example, teacher reliabilities for

teacher means were in the range of .77 to .87 for all but two curricular topics in

the table (namely, multiplication and division, which first-grade teachers rarely

taught), suggesting that our estimates of content coverage for a particular teacher

were reliable.  But the table also shows that we did not have the same level of dis-
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crimination among schools, for here, the reliabilities for school means were in the

range of .27 to .63.  Overall, these lower school reliabilities reflect the fact that it

was difficult to discriminate reliably across units of measurement (i.e., schools)

when variance in the outcomes being measured was so high within these units

(i.e., across teachers).

Table 6 also provides information on how large the differences in content

coverage were among teachers in the same school and across schools.    For ex-

ample, the table shows that the typical first grade teacher in the average school

had a 23.1% chance of teaching number concepts on a typical school day. If that

same teacher was working in a school a standard deviation below the mean in the

random distribution of school effects, she would have a 13.8% chance of teaching

number concepts, whereas if she was in a school a standard deviation above the

mean, she would have about a 36.0% chance of teaching number concepts.

Meanwhile, within the average school, a first-grade teacher at the mean of the

teacher distribution once again had a 23.1% chance of teaching number concepts.

A teacher a standard deviation below the mean in this same school, however, had

just a 7.2% chance of teaching number concepts, and a teacher a standard devia-

tion above the mean had a 53.5% chance.  So, differences among teachers within

the same school were large, and, as Table 6 shows, substantially larger than dif-

ferences among average teachers working in different schools.  Incidentally, in

the example just cited, there were no differences among teachers due to grade.
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The remaining columns for content coverage in Table 6 tell much the

same story—modest differences among the average teachers in different schools

but substantial differences among teachers within the same school, even among

teachers at the same grade.  This was especially noticeable when we examined the

likelihood of teaching different operations with whole numbers, the main focus of

the elementary school math curriculum.  For example, Table 6 shows that the av-

erage first grade teacher working in a school one standard deviation above the

mean in the distribution of random school effects differed by about 12 percentage

points in the probability of teaching addition with whole numbers as compared to

the average teacher in a school a standard deviation below the mean of school ef-

fects.  But within the average school, first-grade teachers a standard deviation

above and below the mean of the distribution of random teacher effects differed

by about 42 percentage points in their probability of teaching addition with whole

numbers.  That translates into a difference of more than a day a week across

teachers at the same grade level in the same school—a striking number consider-

ing that this is the central topic of mathematics education in first grade.  As the

table shows, this difference declined among teachers within the same school at

higher grades, but that was largely because their likelihood of teaching addition

with whole numbers declined.

As another example, consider the likelihood that teachers taught multipli-

cation with whole numbers.  Here, there were huge differences among teachers
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within schools, especially at the upper grades (the estimate of between-school dif-

ferences for this topic is small in Table 6 because the mean on which it is based

describes differences among first-grade teachers, who do not teach much multi-

plication).  For example, two teachers at the upper grades, a standard deviation

above and a standard deviation below the mean within the same school, differed

by as much as 37% in their likelihood of teaching multiplication with whole num-

bers.  Again, this is a striking difference, translating into a difference of more than

a day per week in the teaching of a core mathematics topic for two teachers at the

same grade within the same school.

As a final step in this analysis, we ran an exploratory analysis in which we

correlated the school-level, Empirical Bayes (EB) residuals from each regression

model with the school-level independent variables discussed earlier.  None of

these variables had a statistically significant correlation with the EB residuals in

any model, suggesting that patterns of content coverage across schools were not

systematically related to school SES or minority composition, academic press,

standards or accountability pressures, or to participation in one of the comprehen-

sive school reform programs under study.

Variation in Teaching

 Tables 5 and 6 also show the results of an analysis of variation in teaching

practices.  Again, the statistical model from which the tables were constructed

was a three-level logistic regression model that included the same set of inde-
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pendent variables used in the model for content coverage.  However, in this

analysis, the sample consisted of the 10,257 days when 502 teachers in the sample

taught either number concepts or operations.  Once again, the computing package

estimated the log-odds that a first-grade teacher was engaged in particular kinds

of instruction on the typical day.  We then used this to estimate differences among

teachers across schools, and among teachers within and across grades in the same

school, using the grand means, which are for first-grade teachers in the average

school.  As mentioned earlier, Table 6 translated these estimated log-odds into

probabilities for reporting purposes.

The findings on teaching practices in Tables 5 and 6 were similar to those

reported for content coverage.  A greater percentage of variance in teaching prac-

tice occurred among teachers in the same school than across schools, even after

taking grade into account.  The percentage of variance in teaching lying among

teachers in the same school was 84.5% for direct teaching, 74.2% for student

work involving practice, 85.5% for student work on applications, and 77.1% for

analytical reasoning.  Given these variance components, reliabilities for teacher

means were generally larger than for school means, for the same reasons cited in

our discussion of reliabilities of measures of content coverage.

The next step in the analysis was to get a sense of the magnitude of varia-

tion in teaching practices within and across schools.  Table 6 shows that the like-

lihood that a teacher engaged in direct teaching did not vary across grades.  So,
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the average teacher in a school a standard deviation below the mean of schools

differed from an average teacher in a school a standard deviation above the mean

by about 17 percentage points, where the mean for direct teaching was 80.6%.

Meanwhile, within the average school, two teachers a standard deviation on either

side of the school mean differed by over 40 percentage points (or 2 days a week

of instruction) in their likelihood of engaging in direct teaching.  Findings for the

other teaching practice variables in Table 6 were similar to this, showing greater

differences within than across schools, and once again, showing that differences

among teachers within the same school were largest when a practice was frequent.

Recall that we ran an exploratory analysis correlating the school-level

Empirical Bayes (EB) residuals from each regression model with the school-level

independent variables considered in this article.  Once again, none of these vari-

ables had a statistically significant correlation with any of the EB residuals, sug-

gesting that patterns of teaching across schools were not systematically correlated

to school SES or minority composition, academic press, standards or accountabil-

ity pressures, or participation in one of the comprehensive school reform pro-

grams under study.

Discussion

Our findings both confirm and build on results from previous studies of mathe-

matics education in U.S. elementary schools.  The data presented here show that

in the average elementary school in this sample, mathematics instruction focused
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largely on whole-number concepts and operations.  Moreover, our data suggest a

measure of redundancy and crowding in the average school’s mathematics cur-

riculum—especially in the teaching of operations.  Students in first grade in such

a school worked mostly on the addition and subtraction of whole numbers, but

students in fourth grade also were adding and subtracting whole numbers, even as

they were learning to add and subtract fractions and decimals and to multiply and

divide whole numbers. However, we should be careful not to overemphasize these

central tendencies in curriculum coverage, for another important finding was that

a great deal of variation existed in content coverage among teachers within the

same school, even when these teachers worked at the same grade level.  Hence,

although schools (on average) did not differ much in terms of curriculum cover-

age, teachers within schools did vary greatly.

The data presented here also are consistent with previous assertions about

modal patterns of mathematics teaching practices in U.S. elementary schools.  As

in previous research, we found the modal pattern of mathematics teaching at all

grades to be characterized by teacher-directed lessons accompanied by seatwork

involving routine ideas.  But this modal teaching configuration occurred for only

36% of the operations and number concepts lessons observed.  Thus, although the

modal lesson was one that previous research on mathematics education has found

to be dominant, instruction was conducted in many other configurations as well.
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More importantly, there was a great deal of variation in the extent to which teach-

ers used teaching practices—especially among teachers in the same school.

These findings suggest that researchers should be more cautious when re-

porting central tendencies about mathematics teaching.  For one thing, our data

suggest that discussions about the typical content focus (on whole-number con-

cepts and operations) and the common lesson configuration (of teacher-directed

lessons accompanied by seatwork involving routine practice of known ideas) can

mask variation of these practices among teachers—even those who work at the

same grade level in the same school.   So, although we can easily report central

tendencies in the data, these central tendencies might not be the most striking fact

about mathematics instruction.  Instead, variation in teaching practices might be.

To examine this problem, we developed a strategy to quantify the magni-

tude of variation in curriculum coverage and instructional practice among teachers

and across schools.  In doing so, we found that curriculum varied less across

schools than among teachers within the same school, and that teachers working at

the same grade varied widely in patterns of content and teaching—upwards of a

day a week in their coverage of the main topics taught in elementary schools, and

more than a day a week in their use of the most common teaching practice.  Care

should be taken in generalizing these findings to teacher-to-teacher variation

across all subjects or teaching practices, however, for variation among teachers

appears to be largest when a topic is taught frequently or an instructional practice
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is widely used and to decline for topics that are taught infrequently or for prac-

tices that are used infrequently.  This point is obvious, but it is relevant to future

discussions of mathematics education in elementary schools, for the practices that

previous research has shown are typical in American elementary schools are also

the practices that show the most variation across schools and teachers.

For this reason, we set out in this article to look carefully at patterns of

variation in curriculum coverage and teaching practice, both within and across

schools.  Overall, our findings left us puzzled.  Our data suggest considerable

variation in mathematics instruction, but they do little to explain why instruction

varies so little across schools and so much within schools.  Such findings have

characterized large- and small-scale research for over a decade, but we and others

have no ready explanation for these findings.  Perhaps an implicit and not well-

defined national curriculum exists in elementary school mathematics, one that is

organized by deeply held beliefs about appropriate instruction at various grade

levels, but beliefs that are fuzzy and are enacted differently by the loosely super-

vised teachers in U.S. schools.

That is the common argument in educational research, but we had hoped

to find alternative explanations for variation in teaching and coverage.  We espe-

cially thought two classes of variables would help explain variation in the data.

First, we thought we would see large grade-level effects on teaching and curricu-

lum.  In fact, we did find grade-level effects on coverage and (to a lesser extent)
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teaching, as shown in Tables 5 and 6, but in variance-components analyses not

shown here, we found that even grade level effects did not account for more than

a small percentage of variance in outcomes. Therefore, other explanations for dif-

ferences among teachers within schools will have to be sought in future research.

Second, we thought that features of local schools might account for varia-

tion in coverage and teaching, including the academic norms of faculty, account-

ability pressures, and student composition.  But none of the school-level variables

bore any significant relation to the outcomes of interest.  So, here too, better mod-

els of school-to-school differences in instructional practice seem needed to ex-

plain the small differences among elementary schools in mathematics education

practices.

In this regard, we were struck by the lack of effects that the whole-school

reform programs under study had on patterns of curriculum coverage and teach-

ing, especially given school leader’s assertions about the centrality of mathemat-

ics education in their school improvement plans. To be sure, none of the three

school reform models we studied emphasized the improvement of mathematics in

the schools studied here as much as they did improving reading and language arts

instruction.  But each reform program did have strategies in place to effect

changes in mathematics instruction.  Further, leaders within all schools reported

attempting to improve of mathematics instruction or curriculum.  In this sense, the

contrast between the results presented in this article and those obtained for pat-
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terns of reading and writing instruction in the same schools is interesting (Cor-

renti, Rowan, & Camburn, 2003; Rowan, Camburn, & Correnti, 2004, in this is-

sue).  In our sample, large differences existed among schools participating in the

different reform models in both the amount and nature of literacy instruction.

Perhaps the attention to improving literacy instruction worked against the im-

provement of mathematics instruction; or perhaps the school improvement models

were not specific or intensive enough to create important differences among

schools in their mathematics programs.

Whatever the explanation, our results seem to point to something impor-

tant about trends in comprehensive school reform, at least as it proceeds with

schools working with the three programs under study.  Schools that were working

with a CSR program in this study did not appear to be breaking away from the

conventional patterns of mathematics education that researchers have remarked

upon for decades, and, although this might change as the schools become more

experienced with these programs, it seems safe to conclude that, in the early

stages of program implementation, the CSR models we studied did not appear to

be breaking the mold of conventional mathematics education in elementary

schools.  The typical central tendencies were still visible, and the same wide

variation in practices from teacher to teacher in the same school still existed.

In closing, we think it is important to consider the consequences of our

findings for students.  The usual discussion of mathematics education focuses on
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central tendencies—in both instruction and student achievement.  What we have

been arguing, however, is that there is considerable variation in content coverage

and teaching practice among teachers within the same school, even when these

teachers work at the same grade level.  This suggests that students in the same

school experience widely differing mathematics instruction, not only at any given

grade level but also as they proceed across the grades.  Thus, students do not sim-

ply experience mathematics instruction that is slowly paced and redundant.  They

also experience widely varying instructional programs.  What we do not know

from the analyses presented here are the consequences for students’ learning of

these varying curricular and instructional trajectories.  Research on this important

issue is the next step in our research agenda involving the use of instructional logs

to investigate patterns of mathematics education in elementary schools.
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Appendix A

Table 1A. Descriptive Statistics for School Demographic Variables (n=53)

Variable Mean SD

Total enrollment:

    Districts 54,755 76,749

    Schools 457 164

Community disadvantage index 0.659 1.076

Students eligible for free/reduced-priced

  lunch in schools (%)
72.6 22.3

Ethnicity of students (%);

    White 23.0 28.4

    African-American 52.6 39.7

    Hispanic 14.4 26.3

    Asian 9.0 23.2

    American Indian 0.75 2.9

Average math scale score (TerraNova) 531.9 20.2
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Appendix B

Study of Instructional Improvement Math Log – Page 1

See mathematics log at the end of this paper.



45

Appendix B (Continued)

Study of Instructional Improvement Math Log – Page 2

See mathematics log at the end of this paper.
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Appendix B (Continued)

Study of Instructional Improvement Math Log – Page 3

See mathematics log at the end of this paper.
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Appendix B (Continued)

Study of Instructional Improvement Math Log – Page 4

See mathematics log at the end of this paper.
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Appendix C

Table 1C. Descriptive Statistics for Independent Variables

Independent Variables N Mean SD

Lesson: 19,999

    Proportion of days:

        Holidays 0.05 -

        Friday 0.19 -

   Time of lesson (min.) 49.29 29.61

Teacher: 509

    Proportion of teachers:

        Grade 1 0.32 -

        Grade 3 0.39 -

        Grade 4 0.29 -

    Average number of logs completed by teachers 39 19.9

School: 53

    Students eligible for free/reduced-

    price lunch (%)
72.6 22.3

    Minority students (African-American & Hispanic) 66.9 32.8

    Academic press -0.0009 0.294

    Accountability pressure 0.069 0.838
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Table 1C (Continued)

    Extent of performance standards -0.186 1.064

    Proportion of schools participating in a WSR model 0.87 -
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Table 1

Percentage of Days when Mathematics Curriculum Strands were Taught by Grade

Grade

Content Strand:

First

(n=6827)

Third

(n=6317)

Fourth

(n=6855)

Number concepts 30.5 24.9 32.7

Operations 39.5 40.0 41.9

Patterns, functions, algebra 14.3 7.4 10.9

Money, time, calendar 29.3 9.3 8.6

Represent/interpret data 15.4 12.5 14.0

Geometry 10.9 10.8 10.9

Measurement 10.6 10.8 11.1

Probability 2.4 3.9 5.9

Percent, ratio, or proportion 0.6 1.4 3.2

Negative numbers 0.3 0.5 1.0

Other content 2.3 2.6 4.7
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Table 2

Percentage of Days when Number Types or Operations with Number Type were Taught

by Grade

Grade

First Third Fourth

Number type: (n=3555) (n=3143) (n=3559)

    Whole Numbers 91.8 82.4 76.2

    Decimals 0.7 8.5 20.5

    Fractions 8.8 18.7 27.5

Operation and Number: (n=2699) (n=2527) (n=2872)

Addition:

    Whole numbers 75.7 25.7 32.8

    Decimals 0.4 4.3 13.3

    Fractions 2.9 5.0 13.0

Subtraction:

    Whole numbers 58.8 26.6 29.8

    Decimals 0.3 3.8 12.8

    Fractions 2.3 3.1 10.6

Multiplication:

    Whole numbers 1.0 55.6 56.7
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Table 2 (Continued)

    Decimals 0.0 2.2 12.2

    Fractions 0.0 3.8 10.1

Division

    Whole numbers 0.3 32.9 38.3

    Decimals 0.0 1.6 10.4

    Fractions 0.2 3.5 9.5
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Table 3

Percentage of Days When Number Concepts and Operations were Taught That Included

Particular Teaching Practices and Types of Student Work (n=10,257 days)

Number Concepts

and Operation

Direct Teaching

Teaching practices:

Direct teaching: 73.2

    With known ideas only 69.8

    With new ideas only 6.0

    With both known ideas and new ideas 14.1

    Ideas covered during lesson not identified 10.1

Student work:

    Practice 78.1

    Applications 19.9

    Analytic reasoning 3.3
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Table 4

Classification of Number Concept and Operation Lessons Along the Three Dimensions

of Teaching Practice (n=10,257 days)

Cluster Description Percentage of

Lessons

Direct teaching with known ideas and practice 36.38

No direct teaching and practice 16.67

Direct teaching with known idea and practice and applications 9.19

Lessons not categorized by teacher Engagement, pacing of content,

    or nature of students’ academic work

6.81

Direct teaching with known ideas/introduce new idea and practice 5.42

Direct teaching with ideas unknown 4.93

Direct teaching with known idea 3.08

Direct teaching with known ideas/introduce new idea and

    practice and applications

2.96

Direct teaching with introduce new idea 2.82

No teacher and practice and applications 2.13

Direct teaching with ideas unknown and practice 1.55

No direct teaching and applications 1.09
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Table 4 (Continued)

Direct teaching with known ideas/introduce new idea and practice

    and analytic reasoning and applications

1.03

Direct teaching with introduce new ideas and practice 0.97

Direct teaching with known idea and practice and applications and

    analytic reasoning

0.91

Direct teaching with known idea and applications 0.86

Direct teaching with ideas unknown and applications 0.70

Direct teaching with known ideas/introduce new idea 0.51

Direct teaching with known idea and practice and analytic reasoning 0.41

Direct teaching with introduce new idea and applications 0.21

Direct teaching with known idea and applications and analytic reasoning 0.20

Direct teaching with introduce new idea and analytic reasoning 0.17

Direct teaching with known ideas/introduce new idea and applications 0.16

Direct teaching with ideas unknown and practice and applications 0.14

Direct teaching with introduce new idea and practice and applications 0.11

Direct teaching with known idea/introduce new ideas and

    applications and analytic reasoning

0.11

Direct teaching with known idea and analytic reasoning 0.08

Direct teaching with known idea and analytic reasoning 0.06
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Table 4 (Continued)

Direct teaching with known idea/introduce new ideas and practice

    and analytic reasoning

0.06

Direct teaching with known ideas/introduce new idea and

    analytic reasoning

0.05

Direct teaching with introduce new ideas and applications

    and analytic reasoning

0.05

Direct teaching with introduce new idea and practice and

    analytic reasoning

0.04

No direct teaching and analytic reasoning 0.04

No direct teaching and practice and applications and

    analytic reasoning

0.03

No direct teaching and practice and analytic reasoning 0.03

Direct teaching with known idea and practice and applications

    and analytic reasoning

0.03

Direct teaching with introduce new ideas and practice and

    applications and analytic reasoning

0.02

No direct teaching and applications and analytic reasoning 0.02

Total percent of number concept and operation lessons 100.00
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Table 5

Variance Decomposition of Content Coverage and Teaching Practices

Among Classrooms

within Schools, τ00

Among Schools, ω00

Percent

Variance

Reliability Percent

Variance

Reliability

Content (n=19,999 days):

    Number concepts 82.1 .871 17.9 .628

    Operations 89.8 .827 10.2 .461

    Whole numbers:

        Addition 92.3 .782 7.7 .373

        Subtraction 90.6 .776 9.4 .425

        Multiplication 94.0 .645 6.0 .278

        Division 87.5 .584 12.5 .429

Teaching Practices (n=10,257 days):

    Direct teaching 84.5 .761 15.5 .552

    Practice 74.2 .700 25.8 .678

    Applications 85.5 .735 14.5 .525

    Analytic reasoning 77.1 .424 22.9 .504
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Table 6

Probabilities of Coverage of Mathematics Content and Teaching Practices

Between School Model Within School Model

School One SD

Below Grand

Mean

γ000 - √ω00

Average

Teacher in

Average School

γ000

School One SD

Above Grand

Mean

γ000 + √ω00

Teacher One SD

Below Mean in

Average School

γ000 - √τ00

Average

Teacher in

Average School

γ000

Teacher One SD

Above Mean in

Average School

γ000 + √τ00

Content (n=19,999 days):

    Number conceptsa 0.138 0.231 0.360 0.072 0.231 0.535

    Operationsb 0.267 0.348 0.438 0.147 0.348 0.623

        Fourth grade - - - 0.196 0.430 0.700

Operations with whole numbers:

    Addition: 0.189 0.246 0.314 - - -

        First grade - - - 0.092 0.246 0.513
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Table 6 (Continued)

        Third grade - - - 0.020 0.063 0.179

        Fourth grade - - - 0.029 0.089 0.239

    Subtraction 0.126 0.173 0.233 - - -

        First grade - - - 0.062 0.173 0.400

        Third grade - - - 0.019 0.068 0.188

        Fourth grade - - - 0.021 0.077 0.211

    Multiplication 0.001 0.001 0.002 - - -

        First grade - - - 0.000 0.001 0.004

        Third grade - - - 0.050 0.155 0.389

        Fourth grade - - - 0.061 0.184 0.438

    Division 0.000 0.000 0.000 - - -

        First grade - - - 0.000 0.000 0.001

        Third grade - - - 0.015 0.059 0.201
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Table 6 (Continued)

        Fourth grade - - - 0.024 0.090 0.285

Practice (n=10,257 days):

    Direct teachingc 0.706 0.806 0.878 0.536 0.806 0.937

    Practicec 0.729 0.836 0.906 0.632 0.836 0.938

    Applications 0.047 0.084 0.145 - - -

        First grade - - - 0.020 0.084 0.288

        Third grade - - - 0.032 0.126 0.389

        Fourth grade - - - 0.043 0.164 0.465

 Analytic reasoningd 0.000 0.001 0.004 0.000 0.001 0.011

        Fourth grade - - - 0.000 0.005 0.049

a No grade difference in probability that topic is taught.
b No difference between first and third grade in probability of operations occurring.
c No grade difference in probability of teaching practice occurring.
d No difference between first and third grade in probability of teaching practice occurring.


