Using Intelligent Agents to Manage Business Processes

N.R. Jenningsl, P. Faratinl, M. J. Johnsonl, P. O’Brienz, M. E. Wiegand2

! Dept. Electronic Engineering, Queen Mary & Westfield College,
Mile End Road, London E1 4NS, UK.

{N.R.Jennings, P.Faratin, M.Johnson}@gmw.ac.uk

2 BT Research Labs, Martlesham Heath, Ipswich, Suffolk IP5 7RE, UK.
{paul, mewl}@info.bt.co.uk

Abstract

This paper describes work undertaken in the ADEPT (Advanced Decision Environment
for Process Tasks) project towards developing an agent-based infrastructure for managing
business processes. We describe how the key technology of negotiating, service providing,
autonomous agents was realised and demonstrate how this was applied to the BT business
process of providing a customer quote for network services.

1. INTRODUCTION

Company managers make informed decisions based on a combination of judgement and informa-
tion from marketing, sales, research, development, manufacturing and finance departments. Ide-
ally, all relevant information should be brought together before judgement is exercised. However
obtaining pertinent, consistent and up-to-date information across a large company is a complex
and time consuming process. For this reason, organisations have sought to develop a number of IT
systems to assist with various aspects of the management of their business processes. Such sys-
tems aim to improve the way that information is gathered, managed, distributed, and presented to
people in key business functions and operations. In particular, the IT system should: (i) allow the
decision maker to access relevant information wherever it is situated in the organisation (this
should be possible despite the fact that information may be stored in many different types of sys-
tem and in many different information models); (ii) allow the decision maker to request and
obtain information management services from other departments within the organisation (and in
some cases even from outside the organisation); (iii) proactively identify and deliver timely, rele-
vant information which may not have been explicitly asked for (e.g. because the decision maker is
unaware of its existence); (iv) inform the decision maker of changes which have been made else-
where in the business process which impinge upon the current decision context; and (v) identify
the parties who may be interested in the outcome and results of the decision making activity.

Analysis of a number of business processes from various industrial and commercial domains
resulted in several common characteristics being identified: (i) Multiple organisations are often
involved in the business process. Each organisation attempts to maximise its own profit within the
overall activity. (ii) Organisations are physically distributed. This distribution may be across one
site, across a country, or even across continents. This situation is even more apparent for virtual
organisations [10] which form allegiances for short periods of time and then disband when it is no
longer profitable to stay together. (iii) Within organisations, there is a decentralised ownership of
the tasks, information and resources involved in the business process. (iv) Different groups within
organisations are relatively autonomous—they control how their resources are consumed, by

whom, at what cost, and in what time frame. They also have their own information systems, with
their own idiosyncratic representations, for managing their resources. (v) There is a high degree
of natural concurrency—many interrelated tasks are running at any given point of the business
process. (vi) There is a requirement to monitor and manage the overall business process.
Although the control and resources of the constituent sub-parts are decentralised, there is often a
need to place constraints on the entire process (e.g. total time, total budget, etc.). (vii) Business
processes are highly dynamic and unpredictable—it is difficult to give a complete a priori specifi-
cation of all the activities that need to be performed and how they should be ordered. Any detailed
time plans which are produced are often disrupted by unavoidable delays or unanticipated events
(e.g. people are ill or tasks take longer than expected).

Given these characteristics, it was decided that the most natural way to view the business process
is as a collection of autonomous, problem solving agents which interact when they have interde-
pendencies. In this context, an agent can be viewed as an encapsulated problem solving entity
which exhibits the following properties [18]:

* Autonomy: agents perform the majority of their problem solving tasks without the direct
intervention of humans or other agents, and they have control over their own actions and their
own internal state.

* Social ability: agents interact, when they deem appropriate, with other artificial agents and
humans in order to complete their problem solving and to help others with their activities. This
requires that agents have, as a minimum, a means by which they can communicate their
requirements to others and an internal mechanism for deciding what and when social interac-
tions are appropriate (both in terms of generating requests and judging incoming requests).

* Responsiveness: agents perceive their environment and respond in a timely fashion to
changes which occur in it.

* Proactiveness: agents do not simply act in response to their environment, they exhibit oppor-
tunistic, goal-directed behaviour and take the initiative where appropriate.

The choice of agents as a solution technology was motivated by the following observations: (i) the
domain involves an inherent distribution of data, problem solving capabilities, and responsibilities
(conforms to the basic model of distributed, encapsulated, problem solving components); (ii) the
integrity of the existing organisational structure and the autonomy of its sub-parts needs to be
maintained (appeals to the autonomous nature of the agents); (iii) interactions are fairly sophisti-
cated, including negotiation, information sharing, and coordination (requires the complex social
skills with which agents are endowed); and (iv) the problem solution cannot be entirely prescribed
from start to finish (the problem solvers need to be responsive to changes in the environment and
to unpredictability in the business process and proactively take opportunities when they arise).
When taken together, this set of requirements leaves agents as the strongest solution candidate—
(distributed) object systems have the encapsulation but not the sophisticated reasoning required
for social interaction or proactiveness, and distributed processing systems deal with the distrib-
uted aspect of the domain but not with the autonomous nature of the components.

The remainder of this paper describes the work undertaken to conceptualise business process
management as a collection of intelligent agents. Section two describes the key concepts of agents
which offer services to one another. Section three details the application of ADEPT agents in
BT’s customer quote business process. Finally, section four describes the ongoing work and the
open issues which still need to be addressed.

2. THE BUSINESS PROCESS AS NEGOTIATING AGENTS

Each agent is able to perform one or more services (figure 1). A service corresponds to some unit
of problem solving activity (section 2.2). The simplest service (called a task) represents an atomic
unit of problem solving endeavour in the ADEPT system. These atomic units can be combined to
form complex services by adding ordering constraints (e.g. two tasks can run in parallel, must run
in parallel, or must run in sequence) and conditional control. The nesting of services can be arbi-
trarily complex and at the topmost level the entire business process can be viewed as a service.

Intelligent
Agent

) =t 44 N
Serv1ce\—‘——E
Level —

Agreements

Legal
Depa%tment Team

FIGURE 1. An ADEPT Environment

Services are associated with one or more agents which are responsible for managing and execut-
ing them. Each service is managed by one agent, although it may involve execution of sub-serv-
ices by a number of other agents. Since agents are autonomous there are no control dependencies
between them; therefore, if an agent requires a service which is managed by another agent it can-
not simply instruct it to start the service!. Rather, the agents must come to a mutually acceptable
agreement about the terms and conditions under which the desired service will be performed
(such contracts are called service level agreements (SLAs)—see section 2.3). The mechanism for
making SLAs is negotiation—a joint decision making process in which the parties verbalise their
(possibly contradictory) demands and then move towards agreement by a process of concession or
search for new alternatives [11].

To negotiate with one another, agents need a protocol which specifies the role of the current mes-
sage interchange—e.g. whether the agent is making a proposal or responding with a counterpro-
posal, or whether it is accepting or rejecting a proposal. Additionally, agents need a means of
describing and referring to the domain terms involved in the negotiation—for example, both
agents need to be sure they are describing the same service even though they may both have a dif-
ferent (local) name for it and represent it in a different manner. This heterogeneity is inherent in

L This is one of the major features which distinguishes multi-agent systems from more traditional forms of distrib-
uted processing [16].

most organisations because each department typically models its own information and resources
in its own way. Thus when agents interact, a number of semantic mappings and transformations
may need to be performed to create a mutually comprehensible information sharing language
(see section 2.4).

2.1 The ADEPT Agent Architecture

All ADEPT agents have the same basic architecture (figure 2). This involves an agent head which
is responsible for managing the agent’s activities and interacting with peers and an agency which
represents the agent’s domain problem solving resources. The head has a number of functional
components responsible for each of it’s main activities—communication, service execution, situa-
tion assessment, and interaction management (see description below for more details). This inter-
nal architecture is broadly based on the GRATE [6, 8] and ARCHON [7] agent models. The
domain resources can either be atomic tasks or other agents. The latter case allows a nested (hier-
archical) agent system to be constructed in which higher-level agents realise their functionality
through lower level agents (the lower level agents have the same structure as the higher level ones
and can, therefore, have sub-agents as well as tasks in their agency). For example, the higher level
agent may represent a legal department whose work is carried out by a number of lawyers (the
lower level agents!). This structure enables flat, hierarchical, and hybrid organisations to be mod-
elled in a single framework?. The differences between an agent in an agency and a peer agent
relate to the levels of autonomy and helpfulness. In both cases the agents negotiate to reach agree-
ments—however in the former case: (i) the agent cannot reject the proposal outright (although it
can counter propose until an acceptable agreement is reached); and (ii) the agent must negotiate in
a cooperative (rather than a competitive) manner (since there is some degree of commonality of
purpose). In summary, there is a tight coupling between an agent and it’s agency and a loose cou-
pling between an agent and it’s peers [17].

Communication Module: Routes messages: (1) between an agent and its agency (i.e. between the
SEM and the tasks within the agency, between the SEM and agents within the agency during serv-
ice execution, and between the IMM and the agents within the agency during negotiation); and (ii)
between peer agents (i.e. between the SEM and peer agents during service execution and between
the IMM and peer agents during negotiation). Communication between the SEM and tasks within
the agency relates to task management activities (e.g. activate, suspend, or resume a task),
whereas communication between either agents within that agency or peer agents relates to service
execution management (e.g. start service, service finished, service results). The IMM’s communi-
cation both with agency agents and peer agents relates to service negotiation.

Interaction Management Module: Provisions services through negotiation. The SAM invokes the
IMM to begin negotiation for services the agent needs. The IMM’s decision making capabilities
are supported by three types of information: scheduler constraints emanating from the SAM;
knowledge an agent has about itself and it’s own domain (represented in the SM); and knowledge
the agent holds about peer agents (represented in the AM). Based on these sources of knowledge
and the negotiation model (section 2.3), the IMM generates initial proposals, evaluates incoming
proposals, produces counterproposals, and, finally, accepts or rejects proposals. If a proposal is
accepted then the IMM creates a new SLA to represent the agreement.

2 This modelling ability is important because commercial environments are founded on organisational models where
an enterprise is logically divided into a collection of services. The agent-agency concept draws upon this principle to
group services and tasks where it makes pragmatic sense.

AGENT HEAD

Service | g
Execution

™ Module

(SEM) Peer Agent Peer Agent

Situation o o
Assessment Communication Communication
= Module Module and negotiation

(AM and SM)

(SAMD GV S AW
-

' i

Interaction Peer Agent | | Peer Agent

Management

% Module
(IMM) .

Self and acquaintance models

AGENCY

Agents |

FIGURE 2. The ADEPT Agent Architecture

Situation Assessment Module: Responsible for assessing and monitoring the agent’s ability to
meet the SLAs it has already agreed and the potential SLAs which it may agree in the future. This
involves two main roles: scheduling and exception handling. The former involves maintaining a
record of the availability of the agent’s resources which can then be used to determine whether
SLAs can be met or whether new SLAs can be accepted. The exception handler receives excep-
tion reports from the SEM during service execution (e.g. “service may fail”, “service has failed”,
or “no SLA in place”) and decides upon the appropriate response. For example, if a service is
delayed then the SAM may decide to locally reschedule it, to renegotiate it’s SLA, or to terminate
it altogether.

Service Execution Module: Responsible for managing services throughout their execution.
Involves three main roles: service execution management (start executing services as specified by
the agent’s SLAs), information management (routing information between tasks, services and
other agents during execution), and exception handling (monitor the execution of tasks and serv-
ices for unexpected events and then react appropriately).

Acquaintance Models: Maintain and provide access to: the SLAs agreed with other agents and a
list of peers which can provide services of interest.

Self Model: Primary storage site for: SLAs to which the agent is committed; descriptions of the
services the agent can provide; run time application/service specific information (e.g. the services
which are currently active and the current number of invocations of each active service), and
generic domain information (e.g. the upper limit the agent will pay for a service and the maxi-
mum permissible number of concurrent invocations of each service).

2.2 The Service Lifecycle

There are three distinct phases to the service lifecycle (figure 3). Firstly, the agent programmer
has to describe the service and how it is realised. This is carried out using ADEPT’s service
description language (SDL). As an illustration, figure 4 shows a service description from the cus-
tomer quote business process (section 3). A service is described by a name, its inputs, its outputs,
and its body. The name uniquely identifies the service within the particular agent in which it is sit-
uated. The input field specifies what information is needed by the service, who is to provide it,
and whether it is mandatory (must be provided before the service can start) or optional (if availa-
ble it will be used, but if it is unavailable the service can still proceed). In the example shown, the
service must have both of its inputs available: cr_profile of type Bt_CrProfile? from the
client agent and cust_details of type Bt_CustomerDetails from the server agent. The
output field specifies the information produced by the service (in this case it is
network_design which is of type Bt_NetworkDesign and detailed_regs which is
of type Bt_CustomerReqgs). The body specifies the way the service is realised (i.e. which
services and tasks need to be performed, their partial order, and the information shared between
them) and the conditions which prevail if it is successful (the construct specifying this is the com-
pletion expression)4. In the example shown, the mainblock of the service consists of three sub-
services (task_analyse_redgs, subblock and task_design_network) which need to
be executed in sequence. Associated with mainblock is a completion expression, (and
task_analyse_regs subblock task_design_network), which specifies that each of
the sub-services must successfully complete if the whole service is to succeed.

The first sub-service to be executed is task_analyse_regs which takes cr_profile asits
input and produces as its output detailed_regs and SurveyReqgd. When this sub-service
finishes, the completion expression within which it was invoked is evaluated. If
task_analyse_regs fails (i.e. the requirements cannot be analysed) then the whole network
design service is terminated since the completion expression (a conjunction) will necessarily fail.
In this case, the remaining sub-services are not executed. If task_analyse_reqgs succeeds,
then the overall completion expression is still evaluated. However, in this case it’s value is
unknown since although task_analyse_reqgs is true the values of the other two services in
the conjunction are unknown at this point (the conjunction of the truth values true and unknown is
unknown).

3 The various types of information are defined in the agent’s information model. Creating an agent involves deter-
mining the information model to be used as well as specifying the service details. However this aspect of agent crea-
tion is not elaborated upon here.

A procedural language is not used because such languages typically require a rigorously specified flow of control.
Since the body is executed by an autonomous agent in an unpredictable environment, it is felt that such control deci-
sions are best left to the agent to determine at run-time (rather than being dictated by the designer at compile time).
Thus, in the ADEPT SDL, the body specifies a partial flow of control with some restrictions on the order and the
degree of concurrency of the execution and the completion expression supplies the agent with the completion logic of
the block (in terms of success, fail, and unknown). It is then up to the agent to complete the service by the most
appropriate means given its current circumstances.

ADEPT - Manual ADEPT - Automatic

- | > — | |
negotiate “deliver”

CREATION PROVISIONING MANAGEMENT

Service Definition Service Instance Ensure constituent SLAs in place

I I
I I . .
SLA Template | SLA Instance | Check inputs available
Services scheduled
I | Services executed
| | Services monitored
|
| < ‘Renegotiate
I I
FIGURE 3. The Service Lifecycle
(service
name Bt_DesignNetwork
inputs (Bt_CrProfile cr_profile client mandatory

Bt_CustomerDetails cust_details server mandatory)
outputs (Bt_NetworkDesign network_ design
Bt_CustomerReqgs detailed_regs)
body (
sequence: mainblock {
task_analyse_reqgs (cr_profile ?detailed_regs ?SurveyReqgd),
sequence: subblock { cond:condl (SurveyRegd = True),
task_survey CPE (cr_profile cust_details ?cpe_spec)
} -> (or (not condl) (and condl task_survey_ CPE)),
task_design_network (cr_profile cust_details detailed_regs !cpe_spec ?network_design)

} -> (and task_analyse_regs subblock task_design_network)))

FIGURE 4. Sample SDL Description

Assuming the requirements are successfully analysed, the next sub-service is executed. Sub-
block is a composite construct involving two sequential actions. The first component is a condi-
tional statement which must evaluate to true before the second component (task_survey_CPE)
is performed. The conditional tests whether a survey is required. If a survey is not needed (i.e. the
conditional is false) then the completion expression in the subblock is satisfied since (not
condl) 1is true (the completion expression is a disjunction). Control then switches to
task_design_network. Alternatively, if a survey is needed then condl is true and hence
the completion expression’s first disjunct is false. Since the second disjunct remains unknown,
subblock does not fail at this point. Subblock’s second sub-service, task_survey_CPE,
is then executed. This service takes two inputs—cr_profile and cust_details—and pro-
duces cpe_spec. If task_survey_CPE is successful, the second disjunct in subblock’s
completion expression is satisfied which means that subblock succeeds.

If subblock succeeds, task_design_network is executed. This takes as its input
cr_profile, cust_details, detailed_regs and cpe_spec (optional input) and pro-
duces as it’s output network_design. If this sub-service completes then mainblock com-
pletes since the conjunction of the three sub-services is now true.

Once a service has been created and placed within an agent it becomes accessible to the other
agents in the system. To activate a service, the client and the server agents negotiate until they
come to a mutually acceptable SLA—no service can be executed without a concomitant SLA
being in place. An important facet of this negotiation is the manner in which the service is provi-
sioned. ADEPT supports three different provisioning modes depending on the client agent’s
intended pattern of usage and the server agent’s scheduling capabilities: (i) One-Off: the service is
provisioned each and every time it is needed and the agreement covers precisely one invocation;
(i1) Regular: the service is required a number of times, but it is known in advance when it is
needed; and (iii) On-Demand: the service can be invoked by the client on an as needed basis
within a given time frame (subject to some maximum volume measurement specified in the SLA).

If the provisioning phase is successful, a specific instance of the service is created for execution
within the context of an associated SLA instance. At some point the agent needs to execute the
service, this requires it to ensure: that appropriate SLAs are in place for constituent sub-services,
that the required input information is available, that the service is scheduled so that any con-
straints specified in the SLA are met, and, ultimately, that the appropriate services and tasks are
executed (either within the local agency or by the chosen peer agent). Since the agent is situated
in a dynamic and unpredictable environment, it must keep track of it’s context—thus new services
may be agreed which require the agent to reschedule its resources or currently scheduled services
may fail and require the agent to replan its execution strategy. In the extreme case, the agent may
even need to return to the provisioning phase to renegotiate a SLA which cannot be satisfied in the
current situation.

2.3 The Negotiation Model

There are three components of the ADEPT negotiation model—the protocol, the service level
agreements, and the reasoning model. The protocol itself is relatively standard and is based on
speech-act performatives [2, 15]. It covers the process of finding out the services an agent can per-
form (agent sends out a CAN-DO primitive and respondents return a T-CAN primitive), the provi-
sioning phase of coming to an agreement (PROPOSE, COUNTER-PROPOSE, ACCEPT, and
REJECT), and the management phase of actually invoking the agreement (ACTIVATE-SERV-
ICE, SUSPEND-SERVICE, RESUME-SERVICE, SERVICE-FATILED, SERVICE-COM-
PLETED)—see [1] for more details of this work. The novel aspects of negotiation in the ADEPT
system relate to the types of agreements which agents can make and the models they use to guide
their negotiation behaviour. The requirements of the business process domain mean that agree-
ments need to be more encompassing and the reasoning more elaborate than those found in most
extant multi-agent systems.

The nature and scope of the SLAs are derived almost exactly from the types of legal contract
which are often used to regulate current business transactions (figure 5). Service_name is the
service to which the agreement refers and sla_id is the SLA’s unique identifier (covering the
case where there are multiple agreements for the same service). Server_agent and
client_agent represent the agents who are party to the agreement. Del ivery_type identi-
fies the way in which the service is to be provisioned (section 2.2). The SLA’s scheduling infor-
mation is used by the SAM and the SEM for service execution and management—duration
represents the maximum time the server can take to finish the service, and start_time and
end_time represent the time during which the agreement is valid. In this case, the agreement
specifies that agent CSD can invoke agent DD to cost and design a customer network whenever it
is required between 09:00 and 18:00 and each service execution should take no more than 320

minutes. The agreement also contains meta-service information such as the volume of invocations
permissible between the start and end times, the price paid per invocation, and the penalty the
server incurs for every violation. Client_info specifies the information the client must pro-
vide to the server at service invocation (in this case CSD must provide the customer profile) and
reporting_policy specifies the information the server returns upon completion.

Slot Name

Instantiated Values

SERVICE_NAME:

cost_&_design_customer_network

SLA_TID: alool
SERVER_AGENT: DD
CLIENT_AGENT: CSD

SLA_DELIVERY_TYPE:

on-demand

DURATION: (minutes) 320
START_TIME: 9:00
END_TIME: 18:00
VOLUME : 35
PRICE: (per costing): 35
PENALTY : 30
CLIENT_INFO: cr_profile

REPORTING_POLICY:

customer_quote

FIGURE 5. Exemplar Service Level Agreement

The reasoning model also represents a novel contribution of this work. Existing work on negotia-
tion can be divided into two distinct camps. The theoretical work (e.g. [12, 13, 14]) provides
important insights into how agents should negotiate to produce optimal solutions. However, a
number of unrealistic assumptions are common in these negotiation models; typical assumptions
include the availability of complete action descriptions, a utility function that can order all alter-
natives in all contexts, and that agents exhibit perfect rationality when selecting actions. In con-
trast, the practical work typically adopts a very superficial approach to negotiation. In the much
vaunted contract net protocol [16], for instance, a manager sends out a request to a number of
potential contractors to provide a given service to a given degree of quality. The potential contrac-
tors return a bid if they are capable of fulfilling all the requirements. The manager then selects the
best bid. This model fails to capture many intuitive and important aspects of the negotiation proc-
ess. For example, bidders cannot counter-propose better options, they cannot modify any of the
service agreement parameters, and the emphasis in devising a complete specification is placed
solely with the task manager.

The approach within ADEPT is to develop a deep and explicit model of the process of negotiation
(this terminology is analogous to its use in the context of reasoning models for second generation
expert systems [3, 4, 9]). Such a model is needed to capture the richness of the interactions which
take place when setting up agreements in this domain. The model covers the whole process of
generating initial offers, evaluating offers, and counter proposing if offers are unacceptable.

The model has two component knowledge bases: a declarative one and a procedural one. The
former, represented as a causal network, explicitly models what is being negotiated for and why
the negotiation is taking place (i.e. it sets the negotiation context). For example, negotiation over
the price of a service is a meta-service conflict that can be caused by an agent believing it is being
over charged. Similarly, an agent may need to negotiate over a service’s start time if the client’s
proposal conflicts with it’s existing commitments. The procedural knowledge base, represented as
a set of strategies and mechanisms for selecting between them, specifies which actions should be
taken given the declarative knowledge. For example, given that the agent needs to negotiate over
price, the knowledge base may indicate that Boulware” is a good strategy to adopt if the agent has
a long time to reach an agreement or if there are many potential suppliers of the service. In such
cases, the agent generates a price offer and continues to counter-propose that initial offer through-
out the negotiation. Alternatively, if the agent wants to reach an agreement for a scarce service or
if it is negotiating with an agent in it’s agency, then it may adopt the more cooperative tit-for-tat
strategy—making concessions when the agent concedes and standing firm when the other agent is
uncompromising.

2.4 Information Sharing

Agent negotiation requires a reliable means of communication. Such communication can be
viewed on two levels: (i) actually transporting the messages; and (ii) conveying the desired mean-
ing of the message. The former is handled transparently by the agent’s underlying infrastructure.
The latter is more problematic and requires conceptual design. Because of the characteristics of
the business process domain (section 1), it is impractical to insist that all agents conform to a
common model of information. For example, a surveyor may find it necessary to represent loca-
tion information in terms of grid references on a particular map, but within the customer liaison
department a location may be described in terms of an address. If autonomous agents representing
these two departments are to communicate such information, they must be aware of the differ-
ences in their models of information.

The information contained within a message must be understood by both sender and recipient.
For this reason, agents within an ADEPT environment must transform information represented in
their local form into a common communication language. This language is still under develop-
ment, but will consist of a number of semantically grounded speech acts [2, 15] which will spec-
ify the intention of the message, and a KIF-like [5] syntax (i.e. an extended first-order predicate
calculus) which will express the content of the message. Furthermore, the recipient must be able
to understand the meaning of the symbols contained in the message. Suppose that the agent send-
ing the message uses model A and the recipient uses model B, then the information contained in
the message must be translated between these models for the agents to understand each other. For
example, an address must be translated into an appropriate grid reference for an agent represent-
ing the customer liaison department to communicate location information to an agent represent-
ing a surveyor.

3. BT’s CUSTOMER QUOTE BUSINESS PROCESS

This scenario is based on BT’s business process of providing a quotation for designing a network
to provide particular services to a customer (figure 6)°. The process receives a customer service

3 Boulwarism is the strategy in which the negotiator makes a reasonable initial offer and then sticks firm throughout
the negotiation [13].

request as its input and generates as its output a quote specifying how much it would cost to build
a network to realise that service. It involves up to six parties: the sales department, the customer
service division, the legal department, the design division, the surveyor department, and the pro-
vider of an out-sourced service for vetting customers.

Customer

Capture T
v Customer | tdentily Yes (D Service
Capture Requirements ”| Service Reqt
Profile
Customer]
Details
Vet
¥ Customer
Provide
—»END
TERMINATE B Quote
PROCESS
Yeg | Survey
Analyse Design

Requirements| Network

Legal
Review|

equire more ingo Request

Further
Information

TERMINATE
PROCESS

FIGURE 6. The Provide Customer Quote Service

The process is initiated by a customer contacting the customer service division. The customer’s
details are captured and whilst the customer is being vetted (in terms of its credit worthiness, false
ID, etc.) their requirements are ellicted. If the customer fails the vetting procedure, then the quote
process terminates. Assuming the customer is satisfactory, it’s requirements are recorded and
mapped against the service portfolio. If the requirements can be met by a standard off-the-shelf
portfolio item then an immediate quote can be offered based on previous examples. In the case of
bespoke services, however, the process is more complex and involves a bid manager. The bid
manager further analyses the customer’s requirements and whilst this is occurring the legal
department checks the legality of the proposed service (e.g. it is illegal to send unauthorised
encrypted messages across France). If the desired service is illegal, then the entire quote process
terminates and the customer is informed. If there is any uncertainty about the service’s legality,

6 The scenario has been simplified for the purposes of explanation and demonstration. The real business process for
this service contains 38 tasks and 9 choice points. Despite this simplification, the key aspects of the process are still
present. Each activity requires resourcing and has a start/end point whereby progress can be measured. Choice points
indicate which sequences of activities require provisioning. There are a number of concurrent activities which require
coordination.

then the business process is suspended while further information is obtained from the customer. If
the requested service is definitely legal then the design phase can start. To prepare a network
design it is usually necessary to have a detailed plan of the existing equipment at the customer’s
premises (CPE)—the exception to this is when the desired service is sufficiently simple that a sur-
vey is not warranted. Sometimes such plans might not exist and sometimes they may be out of
date. In either case, the bid manager determines whether the customer site(s) should be surveyed.
On completion of the network design and costing, the customer is informed of the service quote
and the business process terminates.

From the business process description, the following agent system was designed (figure 7). The
agents (denoted by the circles) were chosen to represent distinct departments or enterprises
involved in the customer quote business process. The VC agents represent the concerns of exter-
nal enterprises as this activity is outsourced. Agent SD is within DD’s agency because the design
division has overall management responsibility for the surveyor department (i.e. all requests for
site surveys must be channelled through the design department).

Design ‘ - survey_customer_site

provide_quote
. analyse_reqs
Division .

s

Surveyor Department

7
Survey”Customer_Site
7
design_network -

Legal_Advice _ . @

provide_legal_advice

Vet customer
organisations

®

vet_customer | \, Provide_Customer_Quote
I — Vet_Custome Sales

Cost_&_Design | Customer_Network

Legal Department

O Agent
Customer capture_customer_req <> id_service_req_profile O Task
—» On-Demand Service
1 identify_service - - # Regular Service
S.CI"VI'CC <> O - - One-Off Service
1vision capture_customer_details provide_quote [Agency

FIGURE 7. Agent System for the Provide Customer Quote Business Process

The process is triggered when the sales agent sends a request to the CSD agent to provide a cus-
tomer quote7. The CSD agent identifies the SLA associated with the request—in this case it
relates to the Provide_Customer_Quote service. The SDL body of
Provide_Customer_Quote is parsed to create a tree of possible routes that the SEM can
take. A depth first path is selected and the tasks and services in that path are scheduled and

7- The scenario assumes an SLA between the CSD and the sales department has already been negotiated.

resourced (by the SAM). The SEM begins executing the constituent sub-services and tasks. One
of the first sub-services it encounters is to vet the customer (this occurs in parallel with the
capture_customer_req task and after capture_customer_details). When the
SEM comes to execute this service it realises (by checking it’s SM) there is no associated SLA
and so it reports an exception to the SAMS®. The SAM determines that the service cannot be real-
ised locally (by referring to its SM) and so it must be bought in from an external agent. It also
decides that the service should be provisioned in an on-demand manner because it is an activity
which is needed on each invocation of the business process. As such, it is preferable to negotiate
for a longer term SLA covering multiple invocations rather than negotiating for one each time the
business process is invoked. In addition to identifying the service name and the desired provision-
ing mode, the SAM indicates any scheduler information which influences the service’s provision-
ing (e.g. the service’s earliest start and latest end times).

Vet customer service provisioning begins with the CSD’s IMM sending CAN-DOs to all the
agents it can identify (using its AM) as being potentially able to provide this service (in this sce-
nario there are three such agents—VC;, VC, and VCj3). Negotiation proper begins when the CSD
agent concurrently sends out initial proposals (in the form of instantiated SLAs) to all the vet cus-
tomer agents which responded with T-CAN. This initial proposal may be acceptable to one of the
VC agents in which case an agreement is made and the negotiation is terminated. However, in
most cases the VC agents find some part of the proposal unsatisfactory and so return a revised
counterproposal to CSD. The CSD and VC agents then engage in several concurrent rounds of
exchanging SLA messages until either the CSD comes to an agreement with one of the VC agents
or all the VC agents reject all the offers and break off negotiation. If the CSD agent receives more
than one acceptable offer, it selects the one closest to it’s specified optimumg. The chosen agent is
informed of it’s success and an SLA for the Vet _Customer service comes into force. The
CSD’s IMM then informs its SAM which, in turn, reinvokes the SEM’s execution of
Provide_Customer_Quote with the freshly agreed Vet _Customer SLA stored in its SM.
Since the agreement is for on-demand provisioning—the CSD can ask the chosen VC to vet cus-
tomers as and when new customers are presented to it from the sales department. The CSD’s SEM
sends a SERVICE-ACTIVATE request to the SEM of the selected VC within the time frame
specified in the SLA. When the customer has been vetted, the client VC agent informs the CSD’s
SEM of the result (as specified by the SLA’s reporting policy). If the customer fails the vetting
procedure then Provide_Customer_Quote fails and the sales department is informed. If the
customer is successfully vetted, the CSD’s SEM starts executing the next sub-service.

The next sub-service checks whether the customer’s request is for a portfolio item—achieved by
executing the 1d_service_req profile task. If it is a portfolio item then the service is
identified (identify_service) and a quote is looked up (provide_guote) and returned
to the sales department (as specified in the SLA between the CSD and the sales department). Exe-
cution of Provide_ Customer_ Quote then terminates.

8 In future versions of the system, agents will pre-parse the SDL body to see which SLAs need to be set up before it
comes to their actual execution. This will allow the agents to proactively negotiate SLAs. In this case, agents need to
strike a balance between expending resources provisioning services which may not be used and only provisioning
services when they are actually needed (which may delay their execution).

% If the negotiation fails to find any agents willing to vet customers, the CSD’s SAM is informed and that particular
invocation of Provide_Customer_Quote fails. In this case, service failure is reported back to the sales depart-
ment. For the future, we are investigating techniques for dynamically revising the business process in such situations.

If the desired service is bespoke—id_service_req profile fails—then the next sub-serv-
ice to be executed is Cost_&_Design_Customer_Network. Again the SEM informs the
SAM that there is no associated SLA in place. The SAM decides the service must be bought in
(after examining its SM) and that it should be provisioned in an on-demand manner (because it is
required every time a customer requests a bespoke service. A one-off SLA would be justified if a
significant proportion of the customer service requests were for portfolio items). It then asks the
IMM to obtain an appropriate agreement. The IMM notes from its AM that the only agent offer-
ing this service is DD and so it starts negotiating with it. Assuming the two agents reach an agree-
ment, the CSD’s IMM informs it’s SAM which informs it’s SEM that an appropriate SLA is now
in place (see figure 5). When the CSD’s SEM indicates that the
Cost_&_Design_Customer_Network service should be invoked, the DD agent starts exe-
cuting it wunder the newly agreed SLA. This service involves executing the
Bt_DesignNetwork sub-service (figure 4) to produce the network design, ensuring the neces-
sary legal checks are performed, and executing the provide_quote task to cost the design.
When the customer’s requirements have been analysed in more detail (i.e. detailed_redqgs are
available from Bt_DesignNetwork), the legality of the customer’s request is checked!®. The
DD agent realises (by checking its AM) this service can only be provided by the LD agent and so
it starts to negotiate with it. The service is provisioned in a one-off manner because it too expen-
sive to have waiting idle when there are no designs to check. When the agreed legal service is
invoked, the requirements are checked and the appropriate course of action is taken depending on
the outcome of this review.

As part of Bt _DesignNetwork, a survey of the customer’s premises may be needed. If this is
the case, the DD’s SEM informs it’s SAM that no SLA is in place for task_survey_CPE. The
SAM notes (by examining its AM) that an agent (SD) within it’s agency can provide the service.
It decides the service should be provisioned in a one-off manner (because the service is only occa-
sionally required) and so the DD’s IMM negotiates with SD. Assuming they reach an agreement,
the DD agent invokes the agreement and requests SD to obtain a survey for the customer’s
premises. When the survey is complete or after the service is declared legal if no survey is
required, the network design is carried out and then costed. The service’s cost is returned to the
CSD agent as specified in the Cost_&_Design_Customer_Network SLA (figure 5). The
Provide_Customer_Quote service then completes and the quote is returned to the sales
department as specified in the SLA with the sales department.

For subsequent service quote requests, several of the basic agreements for managing the business
process are already in situ. The CSD agent has an on-demand SLA for vetting customers and it
may also have an agreement for costing and designing the customer’s network. This means there
is less of a negotiation overhead on subsequent process invocations. The services which may gen-
erate further negotiations in subsequent quote processes are those which are only occasionally
invoked—Ilegal services and survey customer site.

4. CONCLUSIONS & FUTURE WORK

This paper has described the key components of the ADEPT system and how they were applied to
BT’s business process of providing a customer quote for network services. This work can be

10. Checking is managed in Cost_&_Design_Customer Network by having a completion expression which
either stops or suspends the design activity if the customer’s request is not legal or allows it to continue if the request
is legal.

viewed on three different levels, each of which represents increasing support for the realisation of
business process management software systems:

* ADEPT as a design technology. ADEPT proposes a method of approach for structuring
the design and development of business process management systems. It identifies the key
concepts in this view as autonomous agents, negotiation, service provision, service level
agreements, resource management, and information sharing. This view can be readily
applied to other business process applications without being tied to the details of how they
were realised in ADEPT.

* ADEPT as an implementation technology. As well as identifying a methodology, the
ADEPT system provides algorithms, interfaces, language definitions, and structures for real-
ising the key concepts. These definitions can be re-implemented in other programming envi-
ronments to develop ADEPT-like agent systems for business process management.

* ADEPT as a solution technology. The ADEPT programming environment can be re-used
in other business management applications. In this case, the ADEPT design methodology is
used to structure the application and the ADEPT software is used to implement it.

Implementing the scenario has also identified a number of system and agent issues which require
further investigation—these include: the need for richer and more flexible negotiation models,
more scalable techniques for sharing information between heterogeneous agents, more elaborate
resource management within agents, and more flexible service scheduling algorithms.

ACKNOWLEDGEMENTS

ADEPT is a collaborative project under the DTI/EPSRC Intelligent Systems Integration Pro-
gramme (ISIP). The project partners are BT Laboratories, ICI Engineering, Loughborough Uni-
versity of Technology, and Queen Mary and Westfield College. The work described in this paper
represents a partial view of the activities of the whole project to which all consortium members
have contributed. The authors would like to thank Tim Norman for his comments on earlier drafts
of this paper and for providing the material on information sharing.

REFERENCES

[1] J. L. Alty, D. Griffiths, N. R. Jennings, E. H. Mamdani, A. Struthers, and M. E. Wiegand
(1994) “ADEPT - Advanced Decision Environment for Process Tasks: Overview & Architecture”
Proc. BCS Expert Systems 94 Conference (Applications Track), Cambridge, UK, 359-371.

[2] J. L. Austin (1962) “How to do Things with Words” Harvard University Press.

[3] B. Chandrasekaran (1983) “Generic Tasks in Knowledge Based Reasoning: High Level Build-
ing Blocks for Expert System Design” IEEE Expert 1 (3) 23-30.

[4] W. J. Clancy (1985) “Heuristic Classification” Artificial Intelligence 27 (3) 289-250.

[5] M. R. Genesereth and R. E. Fikes (eds.) (1992) “Knowledge interchange format, version 3 ref-
erence manual” Computer Science Department, Stanford University, Technical Report Logic-91-
1. (http://www-ksl.stanford.edu/knowledge-sharing/papers/index.html).

[6] N. R. Jennings (1995) “Controlling Cooperative Problem Solving in Industrial Multi-Agent
Systems using Joint Intentions” Artificial Intelligence 75 (2) 195-240.

[7] N. R. Jennings, J. Corera, I. Laresgoiti, E. H. Mamdani, F. Perriolat, P. Skarek and L. Z. Varga
(1996) “Using ARCHON to develop real-word DAI applications for electricity transportation
management and particle accelerator control” IEEE Expert.

[8] N. R. Jennings, E. H. Mamdani, I. Laresgoiti, J. Perez and J. Corera (1992) “GRATE: A Gen-
eral Framework for Cooperative Problem Solving” IEE-BCS Journal of Intelligent Systems Engi-
neering, 1 (2) 102-114.

[9] J. McDermott (1988) “A Taxonomy of Problem Solving Methods” in Automating Knowledge
Acquisition for Expert Systems (ed S. Marcus) Kluwer 225-256.

[10] A. Mowshowitz (1986) “Social Dimensions of Office Automation” Advances in Computers,
25, 335-404.

[11] H. J. Mueller, (1996) “Negotiation Principles” in Foundations of Distributed Artificial Intel-
ligence (eds. G. M. P. O’Hare and N. R. Jennings) Wiley Interscience.

[12] J. F. Nash, (1950) “The Bargaining Problem” Econometrica 28: 155-162.
[13] H. Raiffa (1982) “The Art and Science of Negotiation” Harvard University Press.

[14] J. S. Rosenschein and G. Zlotkin (1994) “Rules of Encounter - Designing Conventions for
Automated Negotiation Among Computers”, MIT Press.

[15] J. R. Searle (1969) “Speech Acts: An Essay in the Philosophy of Language” Cambridge Uni-
versity Press.

[16] R. G. Smith and R. Davis, (1981) “Frameworks for cooperation in distributed problem solv-
ing” IEEE Trans on Systems, Man and Cybernetics 11 (1) 61-70.

[17] N. S. Sridharan, (1987) “1986 Workshop on Distributed AI” Al Magazine, Fall, 75-85.

[18] M. J. Wooldridge and N. R. Jennings, (1995) “Intelligent Agents: Theory and Practice” The
Knowledge Engineering Review 10 (2) 115-152.

