
Using Interactive GA for Requirements Prioritization

Paolo Tonella, Angelo Susi

Fondazione Bruno Kessler
Software Engineering Research Unit

Trento, Italy
tonella, susi@fbk.eu

Francis Palma

University of Trento
Department of Inf. Eng. and Computer Science

Trento, Italy
francis.palma@studenti.unitn.it

Abstract—The order in which requirements are implemented
in a system affects the value delivered to the final users in the
successive releases of the system. Requirements prioritization
aims at ranking the requirements so as to trade off user
priorities and implementation constraints, such as technical
dependencies among requirements and necessarily limited re-
sources allocated to the project.

Requirement analysts possess relevant knowledge about the
relative importance of requirements. We use an Interactive
Genetic Algorithm to produce a requirement ordering which
complies with the existing priorities, satisfies the technical
constraints and takes into account the relative preferences
elicited from the user. On a real case study, we show that
this approach improves non interactive optimization, ignoring
the elicited preferences, and that it can handle a number of
requirements which is otherwise problematic for state of the
art techniques.

Keywords-requirements prioritization; interactive genetic al-
gorithms; search based software engineering.

I. INTRODUCTION

The role of requirements prioritization is of extreme

importance during the software development lifecycle, when

planning for the set of requirements to implement in the suc-

cessive system releases, according to information concerning

the available budget, time constraints as well as stakeholder

expectations and technical constraints.

The process of requirements prioritization can be viewed

as the process of finding an order relation on the set of

requirements under analysis. This process can be designed

as an a priori or as an a posteriori process. In the former

case, the preferences are formulated before the specification

of the set of requirements via predefined models, for exam-

ple, based on ranking criteria induced by the requirements

attributes and their values, independently of the current set

of requirements that are to be evaluated. In the a posteriori
approaches, the ranking is formulated on the basis of the

characteristics of the set of requirements under analysis,

e.g., via a process of pairwise comparison allowing to define

at the same time which requirement and why it has to be

preferred between two alternatives.

In our work, we focus on an a posteriori approach, based

on the Interactive Genetic Algorithm (IGA) search-based

technique and on pairwise preference elicitation, with the

objective of extracting relevant knowledge from the user and

of composing it with the relevant ordering criteria induced

by the attributes describing the requirements. The final

objective is that of minimizing the user decision-making

effort, increasing as much as possible the accuracy of the

final requirements ranking.

Several approaches to requirements prioritization have

been proposed in the last years [1], [2], [3], [4], [5].

Among the prioritization techniques used in these methods,

Analytical Hierarchy Process (AHP) [6] exploits a pairwise

comparison technique to extract the user knowledge with

respect to the ranking of the requirements. AHP defines

the prioritization criteria through a priority assessment of

all the possible pairs of requirements. In general, available

a posteriori prioritization methods (including AHP) suffer

scalability problems.

Our solution belongs to the class of pairwise comparison

methods and exploits an IGA approach to minimize the

number of pairs to be elicited from the user. Elicited pairs

and initial constraints on the relative ordering of require-

ments define the fitness function, which consists of the

disagreement between the requirements ordering encoded

in an individual and the initial and elicited constraints.

Since elicitation and optimization are conducted at the same

time and they influence each other, a peculiar trait of

our algorithm is that the input to the fitness function is

constructed incrementally, being only partially known at the

beginning. This makes convergence a non trivial issue. We

assessed the effectiveness of our IGA algorithm on a real

case study, including a number of requirements which makes

state of the art techniques based on exhaustive pairwise

comparison impractical. Results indicate that IGA converges

and improves the performance of GA (without interaction)

in a substantial way, while keeping the user effort (number

of elicited pairs) acceptable.

In this paper, we first describe some relevant related works

(Section II), then we give an intuitive description of the IGA

approach (Section III), followed by a formal presentation of

the algorithm (Section IV). Then, we describe a set of ex-

perimental evaluations about convergence, effectiveness and

robustness of IGA (Section V). The empirical assessment

was conducted on a real set of requirements. Conclusions

2nd International Symposium on Search Based Software Engineering

978-0-7695-4195-2/10 $26.00 © 2010 IEEE

DOI 10.1109/SSBSE.2010.17

57

and future work are presented in Section VI.

II. RELATED WORK

Several techniques used in the current prioritization ap-

proaches consist of assigning a rank to each requirement

in a candidate set according to a specific criterion, such as

value of the requirement for the customer or requirement de-

velopment cost. The rank of a requirement can be expressed

as its relative position with respect to the other requirements

in the set, as in Bubble sort or Binary search procedures,

or as an absolute measure of the evaluation criterion for the

requirement, as in Cumulative voting [7]. Other, alternative

techniques consist of assigning each requirement to one

specific class among a set of predefined priority classes, as

for instance in Numerical Assignment [7], [8] and in Top-ten
requirements [9].

Among the pairwise techniques, CBRank [10] adopts a

preference elicitation process that combines sets of pref-

erences elicited from human decision makers with sets

of constraints which are automatically computed through

machine learning techniques; it also exploits knowledge

about (partial) rankings of the requirements that may be

encoded in the description of the requirements themselves

as requirement attributes (e.g., priorities or preferences).

The Analytical Hierarchy Process (AHP) [6] can be con-

sidered one of the reference methods which adopt a pairwise

comparison strategy, allowing to define the prioritization

criteria through a priority assessment of all the possible

pairs of requirements. This method becomes impractical as

soon as the number of requirements increases, thus inducing

scalability problems in using this technique, only partially

addressed by the introduction of heuristic stopping rules.

Among the methods exploiting genetic algorithms for

requirements management, in [11] the EVOLVE method

supports continuous planning for incremental software de-

velopment. This approach is based on an iterative opti-

mization method supported by a genetic algorithm. In [12],

the authors focus on the specific Multi-Objective Next Re-

lease Problem (MONRP) in Requirements Engineering and

present the results of an empirical study on the suitability

of weighted and Pareto optimal genetic algorithms, together

with the non-dominated sorting genetic algorithm (NSGA-

II), presenting evidence to support the claim that NSGA-II is

well suited to the MONRP. These two works overcome the

problems of scalability of methods such as AHP, but they do

not produce a total ordering of requirements. Rather, they

group requirements for the planning of the next release.

Our approach exploits IGA to minimize the amount of

knowledge, in terms of pairwise evaluations, that has to be

elicited from the user. This makes the approach scalable to

requirements sets of realistic size. Similarly to CBRank, the

algorithm exploits the initial constraints specified in terms

of partial rankings (e.g., priorities) to reduce the number

of elicited pairwise comparisons. However, differently from

CBRank it takes advantage not only of rankings, but also of

precedence constraints specified as precedence graphs (e.g.,

dependencies). This allows further reduction of the elicited

pairs. Moreover, the proposed approach does not elicit

all pairwise comparisons having ambiguous or unreliable

relative ordering. It resorts to elicitation only for those pairs

which are expected to affect the final ordering to a major

extent.

III. APPROACH

The prioritization approach we propose aims at minimiz-

ing the disagreement between a total order of prioritized

requirements and the various constraints that are either en-

coded with the requirements or that are expressed iteratively

by the user during the prioritization process. We use an

interactive genetic algorithm to achieve such a minimization,

taking advantage of interactive input from the user whenever

the fitness function cannot be computed precisely based

on the information available. Specifically, each individual

in the population being evolved represents an alternative

prioritization of the requirements. When individuals having

a high fitness (i.e., a low disagreement with the constraints)

cannot be distinguished, since their fitness function evaluates

to a plateau, user input is requested interactively, so as to

make the fitness function landscape better suited for further

minimization. The prioritization process terminates when a

low disagreement is reached, the time out is reached or the

allocated elicitation budget is over.

Req Prio Deps

R1 High R2, R3
R2 Low R3
R3 Low
R4 Medium R2
R5 Medium

4 5

1

2 3

R

R R

R R

3 2

1 4

R R

R R

Prio Deps

Table I
REQUIREMENTS WITH PRIORITY AND DEPENDENCIES

Let us consider the five requirements listed in Table I.

For each requirement we consider the priority expressed

by the analyst who collected them and the dependencies

the requirement may have with other requirements. For

conciseness, in Table I we omit other important elements

of a requirement (e.g., the textual description). Constraints

and properties of requirements can be represented by means

of a precedence graph. In the following, we always make

the assumption that precedence graphs are actually DAGs

(directly acyclic graphs). In fact, cyclic (sub-)graphs provide

no useful information, since they represent precedences that

are compatible with any requirements ordering. In a prece-

dence graph, an edge between two requirements indicates

that, according to the related constraint or property, the

58

requirement associated with the source of the edge should

be implemented before the target requirement. Edges may

be weighted, to actually quantify the strength or importance

of such a precedence and an infinite weight may be used

for precedence relations that must necessarily hold in the

final ordering of the requirements. For simplicity, in this

section we assume that each edge has a weight equal to one,

but all the arguments, as well as the algorithm described

in the next section, can be applied almost unchanged to

weighted precedence graphs. Weights could be given to

individual edges or, alternatively, to the whole precedence

graph associated with a constraint or property.

At the right of Table I, we show the precedence graph

induced by the priority (Prio) property of the requirements

and the precedence graph induced by the dependencies
(Deps) between requirements. Requirements with High pri-

ority should precede those with Medium priority. Hence the

edges (R1, R4) and (R1, R5) in the graph Prio. Similarly, the

precedence between Medium and Low priority requirements

induces the four edges at the bottom of the precedence

graph Prio. Requirement R1 depends on R2, R3, hence the

implementation of R2, R3 should precede that of R1, which

gives raise to the edges (R2, R1) and (R3, R1) in Deps.

Id Reqs Disagree

Pr1 < R3, R2, R1, R4, R5 > 6
Pr2 < R3, R2, R1, R5, R4 > 6
Pr3 < R1, R3, R2, R4, R5 > 6
Pr4 < R2, R3, R1, R4, R5 > 7
Pr5 < R2, R3, R4, R5, R1 > 9
Pr6 < R2, R3, R5, R4, R1 > 9

Table II
PRIORITIZED REQUIREMENTS AND RELATED DISAGREEMENT

The interactive genetic algorithm we use for requirements

prioritization evolves a population of individuals, each rep-

resenting a candidate prioritization. Table II shows 6 individ-

uals (i.e., 6 prioritizations). An individual is a permutation

of the sequence of all requirements to be prioritized. In

order to evolve this population of individuals, their fitness

is first evaluated. We measure the fitness of an individual

as the disagreement between the total order encoded by the

individual and the partial orders encoded in the precedence

graphs constructed from the requirement documents. Further

precedence relationships are obtained from the user during

the prioritization process. Such relations are also considered

in the computation of the disagreement. They constitute the

elicited precedence graph, which is initially empty. In our

running example, it would be the third precedence graph, to

be added to Prio and Deps.

Initially no elicited precedence graph is available. Hence,

disagreement is computed only with respect to the prece-

dence graphs obtained directly from the requirements doc-

uments. The disagreement between a prioritized list of

requirements and a precedence graph is the set of pairs of

requirements that are ordered differently in the prioritized

list and in the precedence graph. With reference to individual

Pr1 in Table II, we can notice that R3 comes before

R1, R4, R5 in the prioritized list it encodes, while R3 is

a (transitive) successor of R1, R4, R5 in the precedence

graph Prio. This accounts for three pairs in the disagree-

ment (namely, (R3, R1), (R3, R4), (R3, R5)). Similarly, R2

comes before R1, R4, R5 in the prioritization, while it tran-

sitively follows them in Prio, hence three more disagreement

pairs can be determined. On the contrary, no disagreement

exists between the total order Pr1 and the partial order Deps.

As a consequence, the total disagreement for individual Pr1

is 6. In a similar way, we can compute the disagreement

between the other five individuals in Table II and the

precedence graphs.

Tie Pairs

Pr1, Pr2, Pr3 (R1, R2), (R1, R3), (R4, R5)
Pr5, Pr6 (R4, R5)

Table III
PAIRWISE COMPARISONS TO RESOLVE TIES

The best individuals are then evolved into the new popu-

lation by applying some mutation and crossover operators to

them (these operators are described in detail in the next sec-

tion). In order to select the best individuals, we consider the

disagreement measure as an indicator of fitness. However, it

may happen that such an indicator does not allow a precise

discrimination of some individuals. In such a case we resort

to the user, who supplies additional information to produce a

precise fitness score. In other words, we resort to interactive

user input whenever the score for some individuals produces

a tie. In Table II, this happens for individuals Pr1, P r2, P r3

(having disagreement equal to 6) and for Pr5, P r6 (9). The

available fitness function cannot guide the search for an

optimal prioritization, since Pr1, P r2, P r3 (and Pr5, P r6)

cannot be ranked relative to each other. This indicates that

the currently available precedence relationships do not allow

choosing the best from these sets of individuals.
We ask the user for information that allows us to rank

the prioritizations in a tie. Specifically, we consider the

disagreement between each couple of prioritizations in a tie.

The pairs in the disagreement are those on which the equally

scored prioritizations differ. Hence, we can discriminate

them if we can decide on the precedence holding for such

pairs. As a consequence, the information elicited from the

user consists of a pairwise comparison between requirements

that are ordered differently in equally scored prioritizations.

If we consider the disagreement between Pr1 and Pr2, we

get the pair (R4, R5). When comparing Pr1 and Pr3 we

get (R1, R2) and (R1, R3). The disagreement between Pr2

and Pr3 consists of all of these three pairs, so in the end the

pairs in the disagreement for the tie Pr1, P r2, P r3 is the set

of three pairs shown in Table III. The other tie (Pr5, P r6)

59

has only one pair in the disagreement, (R4, R5).
The user is requested to express a precedence relation-

ship between each pair in the disagreement computed for

prioritizations in a tie. Given a pair of requirements (e.g.,

R1, R2), the elicited ranking may state that one require-

ment should have precedence over the other one (e.g.,

R1 → R2; or, R2 → R1) or the user may answer don’t
know. In the first case a precedence edge is introduced

in the elicited precedence graph. In the second case no

edge is introduced. In our running example, the user would

be requested to compare (R1, R2), (R1, R3) and (R4, R5).
Indeed, the first two cases represent a situation where the

available precedence information is contradictory. In fact, the

precedence graph Prio gives precedence to R1, while Deps

gives precedence to R2, R3. Hence, it is entirely justified to

request additional user input, in order to determine a relative

ordering of R1, R2, R3, which is not obvious from the

existing constraints. The third comparison requested to the

user, (R4, R5), is a case where no precedence information is

available in the requirement documents. As a consequence,

it is impossible for the genetic algorithm to distinguish

between Pr1 and Pr2, whose only difference consists of

the ordering of R4 w.r.t. R5. Again, asking for additional

user input makes perfect sense.

After collecting user input in terms of pairwise compar-

isons, the existing elicited precedence graph is augmented

with the new precedence edges. The appearance of cycles

in the elicited graph indicates the existence of contradictory

information, since a cycle is compatible with any ordering

of requirements. Hence, whenever a cycle is introduced in

the elicited graph, we ask the user to break it.

When the new elicited precedence graph is available, the

fitness function is recomputed for the individuals. Such a fit-

ness evaluation is expected to be much more discriminative

than the previous one, thanks to the additional information

gathered through interaction. This means that the input to

the fitness function used to score the individuals is partially

provided by the user in the form of pairwise comparisons.

Only pairs that actually make a difference in the fitness

evaluation are submitted to the user for assessment. The best

individuals, scored according to the new fitness function,

are selected and mutated, to constitute the next population.

After a number of generations, the algorithm is expected

to have successfully discriminated all best individuals in

the population thanks to the input elicited from the user,

leading to a final selection of the prioritization with lowest

disagreement w.r.t. all precedence graphs (including the

elicited one).

IV. ALGORITHM

In this section, we describe an interactive genetic algo-

rithm that implements the approach presented in the previous

section. Before introducing the algorithm, we provide a for-

mal definition of the intuitive notion of disagreement(taken

from [10]), which plays a fundamental role when evaluat-

ing the fitness of an individual and when deciding which

pairwise comparisons to elicit from the user. We give the

definition in the general case where two partial orders are

compared. A special case, quite relevant to the proposed

method, is when one or both orders are total ones.

dis(ord1, ord2) = {(p, q) ∈ ord∗1 | (q, p) ∈ ord∗2} (1)

The disagreement between two (partial or total) orders ord1,

ord2, defined upon the same set of elements R, is the set

of pairs in the transitive closure1 of the first order, ord∗1,

that appear reversed in the second order closure ord∗2. A

measure of disagreement is given by the size of the set

dis(ord1, ord2).

Algorithm 1 Compute prioritized requirements

Input R: set of requirements
Input ord1, ..., ordk: partial orders defining priorities and con-

straints upon R (ordi ⊆ R × R defines a DAG)
Output < R1, ..., Rn >: ordered list of requirements

1: initialize Population with a set of ordered lists of requirements
{Pri, ...}

2: elicitedPairs := 0
3: maxElicitedPairs := MAX (default = 100)
4: thresholdDisagreement := TH (default = 5)
5: topPopulationPerc := PC (default 5%)
6: eliOrd := ∅
7: for each Pri in Population do
8: compute sum of disagreement for Pri w.r.t. ord1, ..., ordk

9: end for
10: while minDisagreement > thresholdDisagreement ∧ execTime

< timeOut do
11: sample Population with bias toward lower disagreement, e.g.

using tournament selection
12: sort Population by increasing disagreement
13: if minDisagreement did not decrease during last G genera-

tions ∧ there are ties in the topPopulationPerc of Population
∧ elicitedPairs < maxElicitedPairs then

14: eliOrd := eliOrd ∪ elicit pairwise comparisons from user
for ties

15: increment elicitedPairs by the number of elicited pairwise
comparisons

16: end if
17: mutate Population using the requirement-pair-swap mutation

operator
18: crossover Population using the cut-head(tail)/fill-in-

tail(head) operator
19: for each Pri in Population do
20: compute sum of disagreement for Pri w.r.t.

ord1, ..., ordk, eliOrd
21: update minDisagreement
22: end for
23: end while
24: return Prmin, the requirement list from Population with min-

imum disagreement

1The transitive closure is defined as follows: (p, q) ∈ ord∗ iff (p, q) ∈
ord or ∃r|(p, r) ∈ ord ∧ (r, q) ∈ ord∗.

60

Algorithm 1 contains the pseudocode of the interactive

genetic algorithm used to prioritize a set of requirements R.

The other input of the algorithm is a set of one or more

partial orders (ord1, ..., ordk), derived from the requirement

documents (e.g., priority, dependencies, etc.).

The algorithm initializes the population of individuals

with a set of totally ordered requirements (i.e., prioriti-

zations). The initial population can be either computed

randomly, or it can be produced by taking into account one

or more of the input partial orders, so as to have an already

good population to start with. Greedy heuristics may be used

in this step to produce better initializations.

Steps 3-5 set a few important parameters of the algorithm.

Namely, the maximum number of pairwise comparisons that

can be reasonably requested to the user, the target level

of disagreement we aim at, and the fraction of individuals

with highest fitness that are considered for possible ties,

to be resolved through user interaction. Another relevant

parameter of the algorithm is the maximum execution time

(timeOut), which constrains the total optimization time.

Moreover, the typical parameters of any genetic algorithm

(population size, proportion of mutation w.r.t. crossover)

apply here as well.

Initially, the fitness of the individuals is measured by their

disagreement computed with reference to the input partial

orders (steps 7-9). Then the main loop of the algorithm is

entered. New generations of individuals are produced as long

as the disagreement is above threshold. After the maximum

allowed execution time, the algorithm stops anyway and

reports the individual with minimum disagreement w.r.t. the

initial partial orders and the partial order elicited from the

user.

Inside the main evolutionary iteration (steps 11-22), the

first operation to be performed is selection (step 11). While

any selection mechanism could be used in principle with

this algorithm, we experimented the best performance when

using tournament selection. When evolutionary optimization

gets stuck for G generations (i.e., a locally minimum dis-

agreement with available constraints is reached), the result-

ing population is sorted by decreasing disagreement and ties

are determined for the best (top fraction) individuals in the

population. If there are ties, the user is resorted to in order

to resolve them. Specifically, the pairs in the disagreement

between equally scored individuals are submitted to the user

for pairwise comparison; in this work we take care that each

pair is not presented to the user multiple times during the

process. The result of the comparison is added to the elicited

precedence graph (eliOrd).

After the selection and the optional interactive step, the

population is evolved through mutation and crossover. For

mutation, we use the requirement-pair-swap operator, which

consists of selecting two requirements and swapping their

position in the mutated individual. Selection of the two

requirements to swap can be done randomly and may either

involve neighboring or non-neighboring requirements. For

example, if we mutate individual Pr1 in Table I and select

R1, R4 for swap, we get the new individual Pr′1 =<
R3, R2, R4, R1, R5 >. More sophisticated heuristics for the

selection of the two individuals to swap may be employed as

well (e.g., based on the disagreement of the individual with

the available precedence graphs). In this work we considered

only random selection.

For crossover we use the cut-head/fill-in-tail and the cut-
tail/fill-in-head operators, which select a cut point in the

chromosome of the first individual, keep either the head or

the tail, and fill-in the tail (head) with the missing require-

ments, ordered according to the order found in the second

individual to be crossed over. For example, if we cross over

Pr2 and Pr3 using cut-head/fill-in-tail and selecting the sep-

aration between positions 2-3 as cut point, we get Pr′2 =<
R3, R2, R1, R4, R5 > and Pr′3 =< R1, R3, R2, R5, R4 >,

i.e., we keep the head in both chromosomes (< R3, R2 >
and < R1, R3 >) and we fill-in the tail with the missing

requirements in the order in which they appear respectively

in Pr3 and Pr2. Selection of the cut point can be done

randomly, but again there is room for more sophisticated

heuristics, such as choosing a cut point associated with a

requirement pair on which the individual is in disagreement

with some precedence graph.

The mutation and crossover operators described above

may, from time to time, generate chromosomes that are

already part of the new population being formed. In general,

this is not a problem (best individuals are represented

multiple times), but it may become a problem in degenerate

cases where most of the population has of a single or a few

chromosomes. To overcome such a problem, it is possible

to introduce a measure of population diversity and use it

to limit the generation of chromosomes already present in

the population being generated. Mutation and crossover are

applied repeatedly, until the population diversity exceeds a

predefined threshold.

The last steps of the algorithm (19-22) determine the

fitness measure (disagreement) to be used during the next

selection of the best individuals. This computation of the

disagreement takes into account the initial partial orders as

well as the elicited precedences obtained through successive

user interactions.

The most distinguishing property of this algorithm is that

it resorts to user input only when the available information

is insufficient and at the same time availability of more

information allows for a better fitness estimation. Hence, the

requests made to the user are limited and the information

provided by the user is expected to be most beneficial to

finding a good prioritization. Fitness function computation

is not entirely delegated to the user, which would be an

unacceptable burden. Rather, it is only when the fitness

landscape becomes flat and the search algorithm gets stuck

that user interaction becomes necessary.

61

V. CASE STUDY

We applied the IGA algorithm to prioritize the require-

ments for a real software system, as part of the project

ACube (Ambient Aware Assistance) [13]. ACube is a large

research project funded by the local government of the Au-

tonomous Province of Trento, in Italy, aiming at designing

a highly technological smart environment to be deployed

in nursing homes to support medical and assistance staff.

In such context, an activity of paramount importance has

been the analysis of the system requirements, to obtain

the best trade off between costs and quality improvement

of services in specialized centers for people with severe

motor or cognitive impairments. From the technical point

of view, the project envisages a network of sensors dis-

tributed in the environment or embedded in users’ clothes.

This technology should allow monitoring the nursing home

guests unobtrusively, that is, without influencing their usual

daily life activities. Through advanced automatic reasoning

algorithms, the data acquired through the sensor network

are going to be used to promptly recognize emergency

situations and to prevent possible dangers or threats for

the guests themselves. The ACube project consortium has

a multidisciplinary nature, involving software engineers, so-

ciologists and analysts, and is characterized by the presence

of professionals representing end users directly engaged in

design activities.

As a product of the user requirements analysis phase,

60 user requirements (49 technical requirements2) and three

macro-scenarios have been identified. Specifically, the three

macro scenarios are: (i) “localization and tracking to detect

falls of patients”, (ii) “localization and tracking to detect pa-

tients escaping from the nursing home”, (iii) “identification

of dangerous behaviors of patients”; plus (iv) a comprehen-

sive scenario that involves the simultaneous presence of the

previous three scenarios.

Out of these macro-scenarios, detailed scenarios have

been analyzed together with the 49 technical requirements.

Examples of such technical requirements are:

“TR16: The system identifies the distance between
the patient and the nearest healthcare operator”

or

“TR31: The system infers the kind of event based
on the available information”

Table IV summarizes the number of technical require-

ments for each macro-scenario. Together with the set of

technical requirements, two sets of technical constraints have

been collected during requirements elicitation: Priority and

Dependency, representing respectively the priorities among

requirements and their dependencies. In particular, the Pri-
ority constraint has been built on the basis of the users’

needs and it is defined as a function that associates each

2We consider only functional requirements.

Id Macro-scenario Number of requirements
FALL Monitoring falls 26
ESC Monitoring escapes 23
MON Monitoring dangerous behavior 21

ALL The three scenarios 49

Table IV
THE FOUR MACRO-SCENARIOS AND THE NUMBER OF TECHNICAL

REQUIREMENTS ASSOCIATED WITH THEM.

technical requirement to a number (in the range 1–500),

indicating the priority of the technical requirement with

respect to the priority of the user requirements it is intended

to address. The Dependency feature is defined on the basis

of the dependencies between requirements and is a function

that links a requirement to the set of other requirements it

depends on.

Finally, for each of the four macro-scenarios, we obtained

the Gold Standard (GS) prioritization from the software

architect of the ACube project. The GS prioritization is

the ordering given by the software architect to the re-

quirements when planning their implementation during the

ACube project. We take advantage of the availability of GS

in the experimental evaluation of the proposed algorithm, in

that we are able to compare the final ordering produced by

the algorithm with the one defined by the software architect.

A. Research questions

The experiments we conducted aim at answering the

following research questions:

RQ1 (Convergence) Can we observe convergence with
respect to the finally elicited fitness function?

Since the fitness function is constructed incrementally

during the interactive elicitation process, convergence is

not obvious. In fact, initially IGA optimizes the ordering

so as to minimize the disagreement with the available

precedence graphs (Priority and Dependency in our case

study). Then, constraints are added by the user and a

new precedence graph (eliOrd) appears. Hence, the target

of optimization is slightly and gradually changed. The

question is whether the overall optimization process

converges, once we consider (a-posteriori) all precedence

graphs, including the elicited one in its final form. We

answer this research question by measuring the final

fitness function (i.e., disagreement with all final precedence

graphs) over generations after the evolutionary process

is over (hence, eliOrd has been gathered completely). It

should be noticed that the final fitness function values are

not available during the evolutionary optimization process,

when they are approximated as the disagreement with

the initial precedence graphs and the partially constructed

eliOrd.

62

0 500 1000 1500 2000

0
10

0
20

0
30

0
40

0
50

0

Iterations

D
is

ag
re

em
en

t

0 500 1000 1500 2000

0
10

0
20

0
30

0
40

0
50

0

Iterations

D
is

ag
re

em
en

t

0 500 1000 1500 2000

0
10

0
20

0
30

0
40

0
50

0

Iterations

D
is

ag
re

em
en

t

0 500 1000 1500 2000

0
10

0
20

0
30

0
40

0
50

0

Iterations

D
is

ag
re

em
en

t

0 500 1000 1500 2000

0
10

0
20

0
30

0
40

0
50

0

Iterations

D
is

ag
re

em
en

t

0 500 1000 1500 2000

0
10

0
20

0
30

0
40

0
50

0

Iterations

D
is

ag
re

em
en

t

0 500 1000 1500 2000

0
10

0
20

0
30

0
40

0
50

0

Iterations

D
is

ag
re

em
en

t

0 500 1000 1500 2000

0
10

0
20

0
30

0
40

0
50

0

Iterations

D
is

ag
re

em
en

t

0 500 1000 1500 2000

0
10

0
20

0
30

0
40

0
50

0

Iterations

D
is

ag
re

em
en

t

0 500 1000 1500 2000

0
10

0
20

0
30

0
40

0
50

0

Iterations

D
is

ag
re

em
en

t

Minimum DisAgreement with Final Elicited Graph, 100 elicited pairs for 49 Req.(IGA)

Figure 1. Disagreement of the best individual in each population across generations in the ALL scenario (the timeOut is 1080 seconds)

RQ2 (Role of interaction) Does IGA produce improved
prioritizations compared to non-interactive requirement
ordering?

Our research hypothesis is that user knowledge plays an

important role in requirement prioritization. RQ2 is designed

to test such hypothesis. To assess the importance of the

information elicited from the user, we compare the output

of IGA with the output of algorithms which do not take into

account any user provided knowledge. As a sanity check, we

consider random requirement orderings (RAN). Moreover,

in addition to IGA we apply GA, i.e., a local minimum is

searched which minimizes the disagreement with the initially

available precedence graphs, without eliciting any pair from

the user (this is trivially achieved by setting maxElicitedPairs
to 0 in Algorithm 1).

To assess the performance of our algorithm we use

two main metrics: disagreement with GS and average

distance from the position of each requirement in the

GS. The latter metrics is highly correlated with the

former, but it has the advantage of being more easily

interpretable than disagreement. In fact, disagreement

involves a quadratic number of comparisons (each pair of

requirements w.r.t. GS order), hence its absolute value is not

straightforward to understand and compare. On the contrary,

the distance between the position of each requirement in the

prioritization produced by our algorithm and the position

of the same requirement in the GS gives a direct clue on

the number of requirements that are incorrectly positioned

before or after the requirement being considered.

RQ3 (Role of initial precedence constraints) How does

initial availability of precedence constraints affect the
performance of IGA?

IGA is expected to be particularly effective when little

information is available upfront, in terms of precedence

constraints produced during the requirements elicitation

phase (e.g., priorities and dependencies). This means that

IGA would be particularly recommended in contexts in

which requirement documents do not provide complete

information about stakeholders’ priorities and mutual

dependencies. In order to test whether this is true in

our case study, we conducted experiments in which only

a subset of the available information was used as the

initial precedence graphs. Specifically, we prioritized the

requirements by means of IGA using only Prio or only

Dep as the initial precedence graph, and we compared the

improvement margin in these two situations with respect

to the improvement achieved when both precedence graphs

are available.

RQ4 (Robustness) Is IGA robust with respect to errors
committed by the user during the elicitation of pairwise
comparisons?

In order to test the robustness of the proposed algorithm

at increasing user error rates, we simulate such errors by

means of a simple stochastic model. We fix a probability

of committing an elicitation error, say pe. Then, during

the execution of the IGA algorithm, whenever a pairwise

comparison is elicited from the user, we generate a response

in agreement with the GS with probability 1 − pe and we

generate an error (i.e., a response in disagreement with the

63

GS) with probability pe. We varied the probability of user

error pe from 5% to 20%.

B. Results

Since the IGA algorithm involves non deterministic steps

(e.g., when applying mutation or crossover), we replicated

each experiment, typically 30 times, with a timeOut of 1080

seconds, and computed average and box plots over such

runs. When the algorithm involves the user interactively,

we simulate the user response by means of an artificial

user which replies automatically. In the default setting, the

artificial user makes no elicitation error, i.e., it always replies

to a pairwise comparison with a relative ordering of the

two requirements being compared which is consistent with

the GS. When pe, the probability of user error, is set to a

value greater than zero, the artificial user occasionally makes

errors: with error probability pe, it replies to a pairwise

comparison with a relative ordering of the two requirements

which is the opposite of that found in the GS. We used

mutation rate = 10%. Population size was 50 for ALL (22,

27 and 24 for MON, FALL and ESC respectively).

Figure 1 shows how the best individual in each pop-

ulation converges toward a low value of the final fitness

function (i.e., disagreement with the final precedence graphs,

including all elicited constraints). 30 executions of the IGA

algorithm are considered, on all the 49 requirements of the

case study. While different runs exhibit slightly different

behaviors and the final value obtained for the minimum

disagreement differs from run to run, we can observe that

the trend is always a steep decrease, which indicates the

algorithm is indeed optimizing (minimizing) the final fitness

function value, even though this is only partially known

during the optimization iterations. Similar plots have been

obtained for the 3 separate scenarios, FALL, ESC, MON.

Figure 2 shows the performance of IGA, compared to

GA and RAN, by considering the difference between the

prioritization produced by the algorithm and the GS. Such

difference is measured both by disagreement with GS (top

of Figure 2) and average distance from the requirements

position in the GS (bottom of Figure 2). Figure 2 shows

the results obtained for a particular scenario (MON) after

eliciting 25, 50 and 100 pairwise comparisons. Similar plots

have been obtained for the other two scenarios (FALL and

ESC), as well as for ALL. The average distance from

the requirements position in GS for ALL (after eliciting

25/50/100 pairs) is shown in Figure 3.

We can observe that the sanity check is passed (i.e., both

GA and IGA outperform RAN by a large degree). We can

also see how interaction improves the performance of non-

interactive GA. While the improvement is minor with 25

elicited pairs, it gets quite substantial with 50 and it is

definitely a major one with 100 elicited pairs. It should

be noticed that state of the art algorithms for requirement

prioritization, such as AHP, require exhaustive pairwise

IGA_25Eli IGA_50Eli IGA_100Eli GA RAND

20
40

60
80

10
0

12
0

20
40

60
80

10
0

12
0

D
is

ag
re

em
en

t

Box−Plot of Disagreement w.r.t. GS for 25/50/100 Elicited Pairs & 21 Reqs.

●

●

IGA_25Eli IGA_50Eli IGA_100Eli GA RAND
2

4
6

8
10

2
4

6
8

10

Av
er

ag
e

D
is

ta
nc

e

Box−Plot of Average Distance w.r.t. GS for 25/50/100 Elicited Pairs & 21 Reqs.

Figure 2. Disagreement with (top) and distance from (bottom) GS after
eliciting 25/50/100 pairs from the user in the MON scenario

●

IGA_25Eli IGA_50Eli IGA_100Eli GA

3.
5

4.
0

4.
5

5.
0

IGA_25Eli IGA_50Eli IGA_100Eli GA

3.
5

4.
0

4.
5

5.
0

Av
er

ag
e

D
is

ta
nc

e

Box−Plot of Average Distance w.r.t. GS for 25/50/100 Elicited Pairs & 49 Reqs.

Figure 3. Average distance of each requirement position from the
respective GS position after eliciting 25/50/100 pairs in the ALL scenario

comparisons, which in the ALL scenario means 49 * 48 / 2

= 1176 comparisons (210 in MON). Hence, even as many as

100 elicited pairs represent a small fraction (around 50% for

MON; 10% for ALL) of the comparisons elicited by AHP.

In the MON scenario, the average distance of each re-

quirement from the GS position is around 2 after eliciting 25

pairs, between 1 and 2 after 50 and around 1 after 100 pairs.

For comparison, GA has an average distance between 2 and

3, while RAN is between 5 and 6 (see Figure 2, bottom).

In the ALL scenario we get similar improvements (see

64

Disagreement p-value Distance p-value

(IGA25, GA, RAN) < 2.2e-16 (IGA25, GA, RAN) < 2.2e-16
(IGA50, GA, RAN) < 2.2e-16 (IGA50, GA, RAN) < 2.2e-16
(IGA100, GA, RAN) < 2.2e-16 (IGA100, GA, RAN) < 2.2e-16

Table V
ANALYSIS OF VARIANCE (ANOVA) COMPARING IGA, GA AND RAN

●

●

●

●

IGA_Prio_Dep IGA_Prio IGA_Dep GA_Prio_Dep GA_Prio GA_Dep

20
40

60
80

10
0

12
0

IGA_Prio_Dep IGA_Prio IGA_Dep GA_Prio_Dep GA_Prio GA_Dep

20
40

60
80

10
0

12
0

D
is

ag
re

em
en

t

Box−Plot of Disagreement w.r.t. GS for 100 Elicited Pairs & 21 Reqs. for 0% Error with diff Cons.

Figure 4. Performance of IGA and GA under different availability of
precedence constraints (either Prio, Dep or both) in the MON scenario

Figure 3). IGA reduces the distance from the GS position,

going from around 4.5 (GA) to 3.5–4 (IGA/100). RAN is

definitely worse (14–17) in the ALL scenario. The final

distance that we get after applying IGA indicates that the

prioritization produced by our algorithm is quite close to

the GS. Moreover, it consistently improves GA by a sensible

degree and it outperforms RAN by a large degree. Statistical

significance of the observed differences was tested using

ANOVA (see Table V for the ALL scenario).

Figure 4 shows the final disagreement with the GS ob-

tained respectively when (1) both Prio and Dep are available;

(2) only Prio is available; and, (3) only Dep is available.

We report the results for MON after eliciting 100 pairs, but

similar plots have been obtained in all the other scenarios,

including ALL. When Dep is dropped (compare IGA Prio

vs. GA Prio), the improvement obtained by acquiring user

knowledge through pairwise comparison is higher than the

improvement obtained when both precedence graphs are

available (compare IGA Prio Dep vs. GA Prio Dep). The

effect of pair elicitation becomes particularly evident when

only Dep is available (compare IGA Dep vs. GA Dep). In

this case, the disagreement drops down from around 85 to

15, thanks to the information elicited from the user by means

of the IGA algorithm. Overall, results indicate that IGA is

particularly suitable and appropriate when scarce ranking

attributes are associated with the requirements collected by

the analysts. Applying IGA instead of GA in such cases

improves the final results by a huge degree.

Figure 5 shows how the performance of the IGA algorithm

degrade at increasing user error rates. We show the results

obtained for ALL, but similar plots are available for the

●

IGA0% IGA5% IGA10% IGA20% GA

11
0

12
0

13
0

14
0

15
0

16
0

IGA0% IGA5% IGA10% IGA20% GA

11
0

12
0

13
0

14
0

15
0

16
0

D
is

ag
re

em
en

t

Box−Plot of Disagreement w.r.t. GS for 50 Elicited Pairs & 49 Reqs.

Figure 5. Performance of IGA at increasing user error rates in the ALL
scenario

smaller, separate scenarios. As expected, the disagreement

tends to increase as long as the user makes errors at

increasing rate. However, such increase is not steep, in-

dicating that the algorithm is quite robust with respect to

the errors possibly affecting the user responses to pairwise

comparisons. Even at a user error probability pe as high as

20%, IGA keeps some margin of improvement over GA.

C. Discussion

Based on the data collected from our experiments (due

to space limitations, we showed only a portion of them in

this paper), we can answer positively to all our research

questions. IGA converges even though the fitness function

is known in its complete form only at the end of the

elicitation process (RQ1). When comparing the prioritiza-

tions produced by the considered algorithms with GS, both

in terms of disagreement and of position distance, IGA

outperforms substantially GA (and RAN), especially when

a higher number of pairwise comparisons can be carried

out (RQ2). The improvement of IGA over GA is even

higher when limited ranking information is available a-priori

(RQ3). Moreover, the behavior of the algorithm is robust

with respect to the presence of elicitation errors committed

by the user (RQ4).

AHP, which represents the state of the art for requirement

prioritization, requires exhaustive pairwise comparison. This

is often impractical. It is definitely so in our case study,

where it would be impossible to elicit 1176 comparisons

from the user for the ALL scenario (in the subscenarios

exhaustive elicitation is also impractical, requiring between

210 and 338 pairwise comparisons). In the ALL scenario,

with an artificial user which makes no error, AHP would

produce a final ordering which has zero disagreement with

GS. By eliciting only a small fraction (at most 10%) of

the pairs required by AHP, we cannot expect to be equally

good in terms of disagreement. In fact, the final disagreement

produced by IGA is not zero. However, if we look at the

average distance of each requirement from the position it

65

has in the GS, we can see that such a distance is quite low

(3.5–4). Hence, we think the cost/benefit trade off offered by

IGA as compared to AHP is extremely interesting. With an

elicitation effort reduced to 10% of the one required by AHP,

IGA produces an approximate ordering which has a quite

low average distance from the requirement positions in the

GS. Of course, more empirical investigation is necessary to

assess the actual, practical viability and acceptability of the

trade off offered by IGA, as compared to AHP. We plan to

conduct such empirical studies, involving real (vs. artificial)

users, as part of our future work.

D. Threats to validity

The main threat to the validity of our case study concerns

the external validity, i.e., the possibility to generalize our

findings to requirements collected for other systems and

having different features. Since we conducted one case study,

the natural way to corroborate our findings and make them

applicable to other systems is by replicating this study on

other, different cases. Although considering just one case, we

did our best to exploit it as much as possible. Specifically, we

considered four macro scenarios in addition to the complete

one, and we considered the same set of requirements,

but with different precedence constraints associated. This

enlarges a bit the scope of generalizability of the results.

Other threats to validity regard the construct validity, i.e.,

the observations we made to test our research hypotheses.

Specifically, we used disagreement and requirement position

distance as the metrics that determine the algorithm’s per-

formance. Other metrics may be more meaningful or more

appropriate. On the other hand, disagreement is widely used

in the related literature and position distance looked like

an interpretable alternative. Another construct validity threat

might be related with to simple user error model we used

to simulate a user who occasionally makes errors. We will

experiment with more sophisticated models in the future.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed an interactive genetic algorithm to

collect pairwise information useful to prioritize the re-

quirements for a software system. We have applied our

algorithm to a real case study, consisting of a non trivial

number of requirements, which makes AHP (the state of the

art prioritization method) hardly applicable. Our approach

scaled to the size of the considered case study and produced

a result that outperforms GA (i.e., a genetic algorithm which

optimizes satisfaction of the initial constraints, without gath-

ering further constraints from the user). Specifically, by

eliciting between 50 and 100 pairwise comparisons from the

user it was possible to obtain a substantially better ordering

of the prioritized requirements. Such gain gets amplified if

initially poor or scarce ranking information is associated

with the requirements. In fact, in such cases it is fundamental

to ask the user for further ranking information, without

overwhelming her/him. We achieved a good compromise

between elicitation effort and performance of the algorithm.

We verified also the robustness of the algorithm in the pres-

ence of user errors, which makes the algorithm applicable

in contexts where the input from the user is only partially

reliable.

In our future work we will conduct more experiments in

alternative settings and on other case studies to corroborate

our findings. We plan also to design and conduct an empir-

ical study with human subjects in the role of requirement

analysts, to test the approach in the field.

REFERENCES

[1] J. Karlsson and K. Ryan, “A cost-value approach for prioritiz-
ing requirements,” Software IEEE, vol. 14, no. 5, pp. 67–74,
1997.

[2] J. Karlsson, “Software Requirements Prioritizing,” in Pro-
ceedings of 2nd International Conference on Requirements
Engineering (ICRE ’96) , April 1996, pp. 110–116.

[3] S. Sivzittian and B. Nuseibeh, “Linking the Selection of Re-
quirements to Market Value: A Portfolio - Based Approach,”
in REFSQ 2001, 2001.

[4] H. P. In, D. Olson, and T. Rodgers, “Multi-criteria preference
analysis for systematic requirements negotiation,” in COMP-
SAC 2002, 2002, pp. 887–892.

[5] F. Moisiadis, “Prioritising software requirements,” in SERP
2002, June 2002.

[6] T. L. Saaty and L. G. Vargas, Models, Methods, Concepts
& Applications of the Analytic Hierarchy Process. Kluwer
Academic, 2000.

[7] D. Leffingwell and D. Widrig, Managing Software Require-
ments: A Unified Approach. Addison-Wesley Longman Inc.,
2000.

[8] K. E. Wiegers, Software Requirements. Best Practices. Mi-
crosoft Press, 1999.

[9] S. Lauesen, Software requirements: styles and techniques.
Addison Wesley, 2002.

[10] P. Avesani, C. Bazzanella, A. Perini, and A. Susi, “Facing
scalability issues in requirements prioritization with machine
learning techniques,” in RE 2005, 2005, pp. 297–306.

[11] D. Greer and G. Ruhe, “Software release planning: an evo-
lutionary and iterative approach,” Information and Software
Technology, vol. 46, no. 4, pp. 243–253, 2004.

[12] Y. Zhang, M. Harman, and S. A. Mansouri, “The multi-
objective next release problem,” in GECCO ’07. ACM, 2007,
pp. 1129–1137.

[13] R. Andrich, F. Botto, V. Gower, C. Leonardi, O. Mayora,
L. Pigini, V. Revolti, L. Sabatucci, A. Susi, and M. Zanca-
naro, “ACube: User-Centred and Goal-Oriented techniques,”
Fondazione Bruno Kessler - IRST, Tech. Rep., 2010.

66

