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Abstract
A new method for enhancing peptide ion identification in proteomics analyses using ion mobility
data is presented. Ideally, direct comparisons of experimental drift times (tD) with a standard
mobility database could be used to rank candidate peptide sequence assignments. Such a database
would represent only a fraction of sequences in protein databases and significant difficulties
associated with the verification of data for constituent peptide ions would exist. A method that
employs intrinsic amino acid size parameters to obtain ion mobility predictions that can be used to
rank candidate peptide ion assignments is proposed. Intrinsic amino acid size parameters have
been determined for doubly-charged peptide ions from an annotated yeast proteome. Predictions
of ion mobilities using the intrinsic size parameters are more accurate than those obtained from a
polynomial fit to tD versus molecular weight data. More than a two-fold improvement in
prediction accuracy has been observed for a group of arginine-terminated peptide ions twelve
residues in length. The use of this predictive enhancement as a means to aid peptide ion
identification is discussed and a simple peptide ion scoring scheme is presented.

Introduction
Since the inception of methods to identify peptide ions by tandem mass spectrometry (MS/
MS) techniques,1–3 there has been a rapid advance in mass spectrometric instrumentation
development. These advances are in large part spurred by the need to increase the overall
numbers of identified peptides and proteins in proteomics experiments in order to provide
the necessary increased protein complement coverage for accurate and relevant comparative
analyses. Over the last 15 years, improvements in mass spectrometry (MS) instrumentation
have resulted in increased numbers of assigned peptide ions obtained from liquid
chromatography (LC)-MS/MS experiments for complex proteomics samples;4–6 in the
characterization of human plasma digests,7–12 numbers of assigned peptide ions in a given
experiment have increased by nearly 2 orders of magnitude over this time period.

Although improvements in instrumentation sensitivity and speed have enabled increased
numbers of peptides to be identified, a problem of false identification has persisted. The
problem is so pervasive in the field that there has been a push to standardize proteomics
reporting consisting of the establishment of guidelines for disclosure of statistical analyses
used to establish the accuracy of assignments.13 In part, instrumentation improvements lead
to the intransigence of the false identification problem as lower-signal species move into
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identification range with increased analytical performance capabilities. Typically such
species produce lower-quality spectra leading to suspect assignments. There is a constant
need to develop methods to improve the confidence of peptide ion assignments.

To dramatically improve the accuracy of assignments in proteomics studies, the
measurement of new characteristics attributable to dataset features is required. As an
example consider the enabling effect of MS/MS experiments. Whereas, the precursor ion
mass is insufficient to allow identification of peptide ions in complex proteomics samples,
the addition of MS/MS information allows accurate assignments in many cases. A question
that arises is how will the new distinguishing characteristics be produced? Some advocate
chemometric approaches to elucidate distinguishing characteristics buried in proteomics
datasets. For example, ongoing work consists of efforts to predict ion fragmentation
distributions (including ion intensities)14–25 as well as LC retention26–31 in order to provide
increased identification accuracy. Finally, improved separations of dataset components can
be used to enhance peptide ion assignments. Examples include the use of increased mass
accuracy permitting more stringent mass matching thresholds for protein database
searches32–34 as well as precursor and fragment ion intensity matching that includes the use
of LC retention time profiles35,36.

The work presented here describes the use of an additional precursor ion trait –ion mobility–
to evaluate peptide ion assignments. Specifically, the use of mobility data obtained from LC-
MS/MS analyses of the yeast proteome is evaluated as a means for improving peptide ion
identification. Briefly, similar to ion mobility spectrometry (IMS) experiments performed
previously,37–40 peptide ion composition is related to measured ion mobilities in order to
determine the general effect that the presence of specific amino acid residues have on the
overall mobilities of database ions. Upon establishing this relationship for groups of peptide
ions, the ability to match drift times (tD) with peptide ions based solely on amino acid
composition has been evaluated. A simple peptide ion identification scoring scheme for data
that can be produced on current commercial instrumentation (Synapt HDMS, Waters) is
discussed. Finally, it is noted that this work is related to that attempting to predict tDs of
peptide ions using artificial neural networks (ANNs).41

Experimental
General

Data from the analysis of a yeast proteome was provided by Waters Corporation. IMS
techniques,42–46 instrumentation,47–54 and theory,55–59 as well as the combination of LC
with IMS-MS instrumentation60–65 have been discussed elsewhere. Here only a brief
description of methods related to the collection of the tryptic digest data is presented.

800 ng of a tryptic digest of S. cerevisae was injected onto a Trapping and Nanoscale
column configuration using a nanoACQUITY (Waters) UPLC system. Peptides were
separated on the UPLC prior to being electrosprayed into the entrance orifice of the Synapt
HDMS (Waters) instrument. Peptide ions were stored in the Trap Travelling Wave (T-
Wave) located at the front of the IMS (Ion Mobility Separation) T-Wave device.
Periodically, ion packets from the Trap T-Wave were pulsed into the IMS T-Wave cell
where ions were separated due to their mobilities through a buffer gas (N2 for these
experiments) under the influence of a drift voltage that is rapidly transmitted along adjacent
electrostatic lenses in the IMS T-Wave cell. The repetition of this voltage transmission
(wave) provides periodic separation of ions according to their mobilities. Most ions have
mobilities that are lower than the transmission rate of the T-Wave voltage causing them to
“roll” back and be separated in subsequent waves. The residence times in the T-Wave cell
can be calibrated to ion mobilities and thus to collision cross sections. After exiting the IMS
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T-Wave cell, ions are transmitted through a Transfer T-Wave collision cell into a time-of-
flight (TOF) MS device for mass analysis. The collision energy of the Transfer T-Wave is
increased on an alternate scan basis producing approximately 10 low energy and 10 high
energy spectra across each chromatographic peak.

Yeast Digest Samples
Yeast strain W303 (MATa ura3-52 leu2-3 leu2-112 trp1-1 ade2-1 his3-11 can1-100) was
grown at 30 °C to exponential phase (A600 = 0.8) in rich YEPD medium (2% w/v glucose,
2% w/v bactopeptone, 1% w/v yeast extract). Cells were harvested by centrifugation and
washed with water to remove any traces of growth medium. Cells were resuspended in ice-
cold water and broken with glass beads using a Minibead beater (Biospec Products,
Bartlesville, OK) for 40 s at 4 °C. Cell debris was pelleted in a microcentrifuge for 15 min
(13,000 rpm; 4 °C) and supernatants collected for further analysis.

400 μg of protein was suspended in 44 μL of 50 mM ammonium bicarbonate solution
containing 0.1% Rapigest (Waters Corporation) and heated at 80 °C for 15 minutes.
Dissulfide bonds were reduced by addition of DTT (5 mM) and incubation at 60 °C for ½ an
hour. Protein samples were then alkylated with addition of iodoacetamide (10 mM) and
incubation at 23 °C for 1 hour in the dark. Trypsin (1:50 trypsin:protein) was added to the
protein solution and the sample was incubated for 16 hours at 37 °C. Rapigest was then
removed by adding TFA to a final concentration of 0.5%, incubating at 37 °C for 45 minutes
and spinning down at 13000 rpm for 20 minutes.

UPLC settings
800ng of the tryptic sample was loaded onto a 180 μm × 20 mm Trapping column and
washed with 30 column volumes of solvent A (99.9% H2O, 0.1% Formic acid). Peptides are
separated on this column and a 75 μm × 200 mm using 1.3, 0.7 and 0.44% per minute
gradient increases in solvent B (99.9% ACN, 0.1% formic acid) starting from an initial
mixture of 99:1 solvent A:solvent B. A total separation time of 60, 90 and 120 minutes was
used for the LC separation resulting in a total experimental time of 180, 270 and 360
minutes for the replicate runs. A flow rate of 300 nL·min−1 is used to perform the LC
separation and the eluent is directed into a capillary ESI tip for direct electrospray into the
mass spectrometer.

Mass Spectrometer Settings
To perform the mobility separation, the IMS T-Wave height is set to 40 V during
transmission. The wave velocity was set at 600 m/s. These settings resulted in a total
separation time of 13.7 ms. Nitrogen gas pressure in the IMS T-Wave was maintained at
3.27 mBar. The TOF mass spectrometer was operated in “V” mode with a resolving power
of >2×104 FWHM and a mass accuracy of 3 ppm RMS. MS/MS experiments were
performed using the IdentityE mode.66 Here conditions in the Transfer T-Wave located
behind the IMS T-Wave cell are alternated between those that favor transmission of
precursor ions (Collision Energy 0 V) and those that induce precursor ion dissociation
(Collision Energy ramped from 19 to 45 V). Product ions produced under these conditions
have the same chromatographic retention time and the same ion mobility as their precursor.
Precursor and product ion mass spectra were acquired over the mass range 50 to 2000 amu
with an acquisition rate of 0.9 s per spectrum. A total of 10,000 MS/MS spectra were
generated and subjected to protein database searches using the Waters ProteinLynx Global
Server (PLGS) and IdentityE software suite.
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Peptide Ion Identification
Ion mobility enhanced MSE spectra were submitted to the PLGS software suite for protein
database searches. Mass tolerances used for database searches were 5 ppm and 10 ppm for
precursor and product ions, respectively. At least two unique peptides of greater than a 95%
probability were required for a protein to be reported. A forward/reverse protein database
search strategy was implemented to limit the number of proteins reported. For these datasets
utilized in this study the protein false discovery rate was set to 1%.

Data Analysis
To provide the best estimation of intrinsic amino acid size parameters it was necessary to
filter the datasets to group ions into those that may contain structural similarities. For the
work performed here, the first filter requirement was that peptide ions be doubly charged.
The second filter criterion removes all peptides with missed cleavages to allow use only of
peptide ions where the location of the protons is known. Next peptide ions were divided into
those containing a c-terminal arginine or lysine residue. Finally, within these two subgroups,
the peptides were further divided by length (number of amino acids). Size paramterization
was performed as described below for each of these groups of peptide ions. Matrix
manipulation was achieved using the MATLAB software suite.67

Results and Discussion
Derivation of Size Parameters

To determine the contribution of each amino acid residue to the overall size of the peptide
ions, those sequences estimated to exhibit similar gas-phase structures are selected (see
selection criteria above and discussion below). As described previously, from ion mobility
measurements for the peptide ions within a parameterization set,37–40 it is possible to
establish a system of equations relating size (ion mobility) to the amino acid composition
using equation 1,

(1)

In equation 1, i and j represent a given peptide ion in the parameterization set (i = 1 to m,
where m is the total number of peptides in the set) and the given amino acid residue (j = 1 to
n where n is the number of separate amino acids), respectively. X represents the frequency of
occurrence of the jth amino acid in the ith peptide of the parameterization set. The variable y
is related to the ion mobility (represented here by a calibrated tD) of the ith peptide ion. For
these experiments y is calibrated to obtain a reduced tD. Because peptide ion size is
correlated to mass, it is necessary to calibrate the system such that differences in y within a
subset of peptide ions are associated with peptide composition and sequence rather than
differences in mass alone. That is, dividing the tD of a peptide ion by that of a “model”
peptide ion of the same mass (obtained from a second-order polynomial fit to the tD versus
molecular weight data) captures the variability in y at given masses. This variability is
presumably determined largely by differences in peptide amino acid composition and
sequence. Finally, because the ratio of tD values is the same as the ratio that would be
obtained for collision cross sections, values of p are referred to as intrinsic “size”
parameters. In equation 1, p represents the intrinsic size parameter of the jth amino acid.

Because equation 1 represents a linear system of m equations with n coefficients, it can be
written in matrix form as40,68,69
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(2)

where X is a m×n matrix, p is a vector of n components, and y is a vector of m components.
It is straightforward to solve for individual intrinsic size parameters using,68,69

(3)

The m/n = 1 diagonal of the variance-covariance matrix of the size parameters (Mp) provides
the variance for the size parameter pn where69

(4)

and69

(5)

In equation 5, ȓ corresponds to the residuals (ȓ = y − Xp) of the individual equations.70

Errors representing one standard deviation can be obtained as the square root of the variance
for each intrinsic size parameter. For the study presented here, the size parameters have been
determined for groups of peptide ions having the same length within the lysine- and
arginine-terminated subgroups (see above). The size parameters for the c-terminal residues
have been maintained at the previously reported values of 1.230 and 1.150 for lysine and
arginine, respectively.37 This has been performed in order to remove any effect that might
treat these parameters as “compensating” residues due to their single occurrence in every
peptide ion sequence.

Figure 1A shows the values of the intrinsic amino acid size parameters obtained for doubly-
charged, arginine-terminated peptide ions containing 12 amino acid residues. Several trends
are worth noting. First, nonpolar aliphatic residues generally have larger intrinsic size
parameters (i.e., they have a greater contribution to peptide ion size) than polar aliphatic
residues. This is very similar to the trend observed for singly-charged, lysine-terminated
peptides and it has been suggested that stronger interactions between the charge site and
polar residues may account for the difference in size.37 Another similarity is that the size
parameters for the aromatic residues are intermediate in value to those of the nonpolar
aliphatic and the polar aliphatic residues. Additionally, the size parameters for proline and
glycine are relatively small. When compared to the previous work,37 the size parameter for
valine obtained from this peptide ion group is relatively large. The intrinsic size parameters
for histidine and cysteine are the smallest determined for this parameterization set. Finally, it
should be noted that the size parameter errors for cysteine, histidine, methionine, and
tryptophan are relatively larger than those of other residues. This can be attributed to the
relatively low level of occurrence of these amino acids in the peptide ion group used to
obtain parameters. For example, the numbers of occurrence of these respective peptides in
the 102 peptides in this group are 7, 3, 12, and 14, respectively. In comparison, alanine
occurs 118 times within the same parameterization set.
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Previously it has been demonstrated that intrinsic size parameters can be used to predict
peptide ion collision cross sections.37–40 The study showed that predictions improved upon
restricting the sizes and types of peptide ions used to obtain the parameters. The reasoning
for the improvement is that ions exhibiting similarities in length, composition (i.e., no
missed cleavages), charge, and C-terminal residue (R or K) are more likely to adopt related
gas-phase conformations; these similarities would be reflected in the intrinsic amino acid
size parameters and thus lead to greater prediction accuracy for peptides within a subset.
Indeed, in a previous study collision cross section prediction accuracy decreased by as much
as a factor of two when size parameters from one parameterization set were used in cross
section calculations for another set.39 For the present study, seventeen peptide subgroups
have been extracted from the annotated proteome dataset. Figure 1B shows the average size
parameters obtained from each of the parameterization sets (peptides of different length) for
arginine- and lysine-terminated peptides. For the former, average values were obtained from
intrinsic size parameters determined for peptides having residue lengths of 7, 8, 9, 10, 11,
12, 13, and 14 to 15. The last grouping is required because of an insufficient number of
peptide ions containing either 14 or 15 amino acid residues. For lysine-terminated peptides,
size parameters from peptide groups with lengths of 7, 8, 9, 10, 11, 12, 13, 14, and 15
residues were obtained. Figure 1B shows that similar trends in size parameters are obtained
for the different peptide ion subgroups.

Predicting Peptide Ion Drift Times
Size parameters can be used with amino acid composition to predict reduced tDs using
equation 1. Because peptide ion tD values are calculated for the ions used to obtain
parameters, the calculations can be termed retrodictions. Previously we have shown that
retrodictions are very similar in accuracy to bona fide predictions and therefore we shall use
the term predictions throughout this work.39 The predicted tDs can be compared with
experimental values to assess the quality of the intrinsic size parameter determination for
each dataset. As an example consider the peptide ion [NTTIPTK+2H]2+ from the heat shock
protein SSC1. This seven-residue peptide ion has a tD peak centered at 36.31 bins. From a
polynomial fit to the tD versus molecular weight data, it is observed that a “model” peptide
of the same m/z (774.4 Da) would have a peak centered at a tD of 36.65 bins. Thus the
reduced tD for [NTTIPTK+2H]2+ would be 0.991 (36.31/36.65). The predicted reduced tD
would be calculated according to equation 1 as XNpN + XTpT + XIpI + XPpP + XKpK (0.143 ×
0.883 + 0.429 × 0.967 + 0.143 × 1.003 + 0.143 × 0.936 + 0.143 × 1.23). The calculated
reduced tD for this peptide is 0.993 corresponding to a drift bin value of 36.40. This is within
0.25% of the 36.31 value associated with the peak. This is significantly more accurate than
the 36.65 value (0.94%) obtained from the polynomial fit to the tD versus molecular weight
data. Supplementary Table 1 shows a comparison of experimental and theoretical tD values
for all peptides used in this study. On average, experimental and theoretical tDs agree to
within ±1.8%.

To better understand the efficacy of a size parameter prediction of the data, it is instructive
to make comparisons to the polynomial fit for a group of peptide ions. Figure 2 shows the
ratios of predicted and experimental tDs obtained for both the size parameter fit and the
polynomial fit. These have been performed for arginine-terminated peptide ions of 12 amino
acid residues in length using the size parameter values depicted in Figure 1A. In
comparison, all predicted tD values are within 8% of experimental values using the
polynomial fit. All predicted tDs are within 5% of experimental values using the size
parameters. Additionally, the data for the size parameter fit is more compressed around the
unity line indicating a higher level of accuracy. This increased density of data points in this
region is an indication of the tD prediction improvement obtained when using size
parameters. Another way to visualize this improvement is to compare the number of ions in
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the parameterization group that are accurately predicted to within ±1%. The 1% accuracy
threshold has been selected as being representative of the typical experimental accuracy of
ion mobility measurements.43 Use of size parameters results in ~40% of all predictions
meeting this accuracy threshold; the use of a polynomial fit to tD versus molecular weight
data results in ~18% of all predictions reaching this same level of accuracy. Thus there is
more than a 2-fold improvement in predictive capabilities using the size parameters
compared to the polynomial fit. This advantage exists for higher accuracy thresholds as well.
For example, an improvement of a factor of ~1.7 is observed for predictions that are within
2% of experimental values. Here we note that size parameters obtained from peptide ions of
this size provide the most accurate predictions. That said, the average improvement for
arginine-terminated peptides of all sizes using the 1% accuracy threshold is ~50%. For all
comparisons reported here, a second-order polynomial fit has been used because it has been
shown to provide the greater prediction accuracy compared to higher-order polynomials and
a linear least squares fit.

Although the discussion has focused on the superiority of the size parameters in predicting
tDs to within 1% and 2% of experimental values, it is worthwhile considering the range of
accuracy over which this advantage holds. Consider Figure 3 which shows the average
fraction of the peptides correctly predicted as a function of accuracy threshold. Again a
comparison is drawn between the prediction capabilities of the size parameter fit and those
of the polynomial fit to tD versus molecular weight data. The data shown in Figure 3
suggests that a significant advantage in predictive capabilities is attainable using intrinsic
size parameters over an accuracy threshold range of ±0.5% to ±6%. At higher accuracy
threshold values, both models do nearly as well in predicting tD values.

Peptide Ion Assignments
To determine how intrinsic size parameters would aid peptide identification efforts, it is
useful to consider two factors influencing the quality of the fit. This is accomplished by
comparing the predictions obtained for specific peptide ions with those that would be
obtained for nearly all peptide ion sequences at the same m/z values. Consider the peptide
ion [QAYAVSEK+2H]2+ from the 60S ribosomal protein L4 A. Using the polynomial fit to
the tD versus molecular weight data for the eight-residue peptides, a reduced tD for the
peptide ion [QAYAVSEK+2H]2+ is determined to be 1.037. The predicted reduced tD
obtained using the appropriate intrinsic size parameters is 0.995. Thus, the prediction
accuracy is ~0.041 or ~4.1%. A sampling of the complete list of lysine-terminated peptide
ions ranging in length from 7 to 10 amino acids and within 0.01 Da of the precursor ion
mass (894.45 Da) yields ~7.13×105 separate sequences. Predicted drift tDs for all possible
peptide sequences have been computed using the intrinsic size parameters obtained from the
7-, 8-, 9-, and 10-residue, lysine-terminated peptide ion groups. It is observed that ~4% of all
isobaric sequences have predicted tDs that are within the prediction accuracy (±4.1%) of the
experimental sequence. In a sense, this prediction accuracy for incorrect peptide ion
assignments can be considered a false discovery rate and will be useful in formulating a
peptide ion identification scoring scheme outlined below. Thus, for this peptide ion, the
predicted reduced tD outperforms those obtained for ~96.0% of nearly all possible sequences
at the same m/z.

From such an analysis of interfering sequences, one can determine the degree of overlap at
different prediction accuracy thresholds. This is shown in Figure 4A. Here consider only the
trace with the solid square symbols as this represents data for peptide sequences matching
the mass (894.45 Da) of the peptide ion [QAYAVSEK+2H]2+. As the prediction accuracy
threshold increases from 0.005 to 0.030 the fraction of total peptide ion sequences within the
required threshold value for a match with the experimental value increases slowly from
~0.00 to ~0.02. Going from a prediction accuracy threshold of 0.030 to 0.040, the fraction of

Valentine et al. Page 7

J Proteome Res. Author manuscript; available in PMC 2012 May 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



total sequences predicted accurately doubles to ~0.04. Above this value, the fraction of
predicted sequences increases dramatically to 0.21, 0.63, and 0.88 at accuracy thresholds of
0.050, 0.060, and 0.070, respectively. Above an accuracy threshold of 0.070, the fraction of
predicted sequences begins to level off approaching a value of 1 resembling a sigmoidal
dependence. The data can be fitted with an expression for the sigmoidal curve intensity (I)
according to,71

6)

where the variables A and B represent the minimum and maximum values of the sigmoidal
curve (0 and 1 in this case), respectively. The variables x0 and w represent the prediction
accuracy threshold value associated with the inflection point of and a width factor of the
sigmoidal curve, respectively. Using a prediction accuracy threshold value of ~0.060 to
represent x0 and a value of ~0.006 for w, the data for competitive assignments to the peptide
ion [QAYAVSEK+2H]2+ can be fit as shown in Figure 4A.

The comparison of overlapping competitive peptide ion assignments can be performed for
other assigned peptide ions from the proteome database. For example, Figure 4A also shows
data for accurately predicted interfering sequences having the same masses as the peptide
ions [EAYVPATK+2H]2+ and [LNLFLSTK+2H]2+ from the proteins suppressor protein
STM1 and isocitrate dehydrogenase, respectively. The data for competitive assignments of
the former peptide ion also reveals a sigmoidal dependence albeit x0 and w values are shifted
to higher values (~0.120 and ~0.009, respectively). The curve obtained for the latter peptide
ion reveals a pseudo-sigmoidal dependence where the x0 and w values are shifted to lower
values (~0.007 and ~0.003, respectively). The reduced tDs for the peptide ions
[EAYVPATK+2H]2+ and [LNLFLSTK+2H]2+ are 1.104 and 1.023. Thus it is observed that
as the reduced tD increases, values for x0 and w providing the best fit to the data increase as
well. This observation is somewhat intuitive as a histogram of reduced tDs at a given m/z
value reveals a Gaussian distribution centered about 1.000. That is, the majority of the
reduced tDs are close to unity. Therefore, higher prediction accuracy thresholds would be
required to obtain matches between competitive ion assignments and experimental features
exhibiting reduced tDs that are significantly removed from 1.000.

To obtain a mathematical expression for a simple scoring scheme it is possible to use the
data presented in Figure 4A. Examination of this data shows the dependence of a false
discovery rate on two factors. The first factor is the overall prediction accuracy and the
second factor is the magnitude of the reduced tD of the experimental peak. As described
above and demonstrated in Figure 4A, these two factors are correlated. One way to estimate
potential false discovery rates for dataset features is to reconstruct sigmoidal curves (Figure
4A) for given reduced tD values. As a first approximation this can be accomplished by
examining the dependence of w and x0 on reduced tD. In Figure 4B and 4C this dependence
is depicted for w and x0, respectively. Here the dependence is derived as a function of the
deviation of the reduced tD from unity (d). The deviation is the fraction difference of the
reduced tD from the “model” peptide ion obtained from the polynomial fit to tD versus
molecular weight data. For the peptide ions [QAYAVSEK+2H]2+, [EAYVPATK+2H]2+,
and [LNLFLSTK+2H]2+ having reduced tDs of 1.037, 1.104, and 1.023 the deviation values
are 0.037, 0.104, and 0.023, respectively. A linear least squares fit of the data in Figures 4B
and 4C provides the dependence of the sigmoidal curve variables on d. For the w and x0
variables this dependence is 0.0803×d+0.0013 and 1.1489×d-0.0022, respectively.
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With the prediction accuracy dependencies on reduced tD deviation established, it is possible
to construct estimated false discovery rate curves that are specific for dataset features of
given reduced tDs. This is accomplished by substituting the w and x0 dependencies as well as
values for A and B into equation 6 yielding,

7)

It is instructive to consider the false discovery rate at the limits of high- and low-confidence
matches to experimental reduced tDs. A low-confidence assignment would consist of a small
reduced tD deviation and a large prediction accuracy threshold. Using values of d = 0 and x
= 0.15 (a worst case scenario based on examination of database values), the exponential
expression in equation 7 would approach zero and the fraction of competitive peptides
predicted accurately becomes 1. A high-confidence assignment where d = 0.15 and x = 0,
would result in prediction accuracy values approaching 0 as the exponential expression
approaches 3.44×105.

A simple scoring scheme for aiding peptide ion identification can be devised based on
equation 7. Because the power in the exponential expression in equation 7 essentially
determines the false discovery rate, this expression can be used to provide a score for
potential sequence matches. For example, the power expression ranges from −117.07 to
12.74 for low- and high-confidence matches, respectively. A scoring scheme can be set up
of the form

8)

Here, k is an arbitrary variable used to shift the scoring range onto a positive scale. L is an
arbitrary variable used to scale the output score. Values of 117.08 and 0.7703 for k and L,
respectively, provide output scores that range from 0 to 100 for nearly all peptide sequences.

To evaluate the new scoring approach, consider the peptide ion [VSGVSLLALWK+2H]2+

from the 40S ribosomal protein S23 which has a reduced tD of 1.047. The predicted reduced
tD for this peptide ion is 1.036. Using x = 0.011 and d = 0.047, S is determined to be 96.38.
In the yeast proteome database used to derive the intrinsic size parameters (both arginine-
and lysine-terminated peptide ions), there are 7 different peptide ions that are within ~1 Da
of the molecular weight (1171.702 Da) of the peptide ion [VSGVSLLALWK+2H]2+. None
have higher scores than the correct peptide; scores for these sequences range from 90.15 to
95.80. Here we note that caution should be used with such a scoring scheme especially when
comparing values for species for which reduced tD deviations are significantly different.
That said, the results shown above for a peptide ion exhibiting moderate prediction accuracy
and reduced tD deviation are encouraging and suggest that in the future, a similar approach
may be useful in helping to weed out false positive identifications by indicating more
probable matches to experimental data.

Additional comparisons of peptide ion scores are presented in Table 1. Here, the scores for
10 peptide sequences (selected at random) are listed. For half of the comparisons, the
assigned peptide sequence yields the highest score when compared to other database peptide
sequences within ~1 Da in mass. In two other instances the assigned peptide sequence yields
the second highest score. In the remaining three instances, the assigned peptide score is the
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median score or higher. It is instructive to consider the cases where the assigned peptide ion
didn’t score as highly as other sequences. For example, the peptide ion [IGTDIQDNK
+2H]2+ yields the relatively high score of 96.31. However, it is the fourth highest score
within a group containing nine total peptide sequences. Scores of the three other peptide
sequences range from 96.51 to 97.07. These values are very similar to that obtained for the
assigned peptide ion. In this situation, several peptides that are within ~1 Da of the assigned
peptide ion in mass have predicted tDs that are similar to the experimental tD. As such, the
clustering of such high scores does not warrant discarding the assigned peptide ion
sequence. Rather, additional evidence would be required to confirm the peptide ion
assignment.

It is instructive to consider the peptide ion sequences that have a higher score rank than the
sequence associated with the correct identification (Table 1). Three of the assigned peptide
ions have scores yielding a rank of 3 (or lower). Two of these peptide ions have the highest
mass fraction of polar residues compared with all other sequences in Table 1. The third
peptide ion is one of the top five ions with respect to mass fraction of polar residues. Overall
these three peptide ions have a higher average mass fraction of polar residues (52.5±15.2%)
compared to the other sequences (30.9±12.7%) in Table 1. Currently, no sequence
correlation can be drawn between incorrect peptide ion assignments and the identified ions
presumably because of the limited number of comparisons available. Additionally no
correlation can be made to exact peptide composition. However, it is noted that the incorrect
sequences of higher rank for all three peptides also contain a higher mass fraction of polar
residues than those sequences of lower rank. Consider the peptide ion [IIENAEGSR+2H]2+

having a mass fraction of polar residues of 46.4%. The two database peptides ions with
scores of higher rank are [AQELAEATR+2H]2+ and [VLQDSGLEK+2H]2+. These peptide
ions have mass fractions of polar residues of 49.3% and 59.4%, respectively. The average
mass fraction of polar residues for the other scored peptide ions is 34.4±14.8%. This weak
correlation suggests that the fraction of polar residues in peptide ion sequences can influence
the scoring capability of the approach. That said, because of the limited amount of data, only
a note of caution can be suggested in the scoring of such peptides. A greater elucidation of
the effect of peptide ion sequence and composition on overall ion scores (and size
parameters) requires the development of much larger proteome databases.

Improving Peptide Identification Capabilities Using Ion Mobilities
Several factors need to be addressed in order to improve the ability to aid peptide ion
identification with ion mobility data. These include improvements in ion mobility
instrumentation as well as to the method employed to determine instrinsic size parameters
for different amino acids. As mentioned above, the development of instrumentation of
higher resolving power would provide greater accuracy in the determination of ion
mobilities and by association increased accuracy of intrinsic size parameters for different
amino acids. In a related manner, higher resolving power may also allow the removal of
interfering species affecting the mobility determination of peaks in proteomics mixtures. It is
noted that a newer version of the Synapt HDMS system has recently been commercialized
affording ~3 times greater resolving power. Additionally, careful studies of T-Wave
separation parameters should be explored. It may be possible that many high-mobility
species are travelling at the velocity of the voltage wave and are thus not separated as
efficiently as other species.

Improvements in the determination of intrinsic size parameters may be enhanced by
instrumentation developments in a different manner. For example, higher resolving power
may allow the resolution of peptide ion conformer types (e.g., helices, partial helices,
globules, and elongated structures). The resolution of structural types should allow increased
parameterization of peptide ion subgroups. This would require the determination of
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correlations between peptide ion composition and (or) sequence to conformer types. It may
also be necessary to employ other methods such as molecular dynamics simulations to
assign structural types. Another factor that should aid the determination of conformer types
is the construction of much larger databases. Many more sequence measurements would be
required. As a note of caution, with larger databases comes the problem of increasing
numbers of false positives. This is particularly problematic for data to be used in the
determination of intrinsic size parameters. It is noted that a weighting factor can be
incorporated into equation 3.69 Such a weighting factor may include the probability score
obtained from protein database searches.

It is instructive to consider the relevance of using intrinsic amino acid size parameters to
validate peptide ion assignments. In a recent publication, Zubarev and Gorshkov and their
coworkers described how they addressed a basic tenet of both analytical and engineering
sciences, the tenet being a requirement for “…the use of a technique for a model validation
materially different (complementary) from the one employed in the model creation”.72 For
peptide ion identification in proteomics analyses, a verification model that is not based on a
fragment ion interpretation is required. Employing retention-time modeling algorithms, the
authors found many peptide sequences, even those with high scores, illustrating significant
deviations from the theoretical retention times. The observation was largely attributed to the
effects of chimeric spectra as opposed to bias in the independent retention-time models.
Similarly the present work illustrates how predicting the mobility and the use of a statistical
strategy can provide increased specificity of database search results. Therefore, the use of
accurate mass, retention-time, and ion mobility all as independent metrics of peptide
validation should significantly reduce the false positives in complex mixture analysis.

Conclusions
Intrinsic size parameters for amino acid residues have been determined for a variety of
peptide groups obtained from a yeast proteome database. In general the size parameters are
very similar to those obtained from singly-charged, lysine-terminated peptide ions indicating
a degree of similarity between the types of structures (or elements of structure) formed by
singly- and doubly-charged peptide ions. Additionally, the size parameters are very similar
for peptides of very different lengths (from 7 to 15 residues). These size parameters have
been used to predict ion mobilities (tDs). Predictions of tDs using intrinsic size parameters
are more accurate than predictions obtained from polynomial fits to tD versus molecular
weight data. This ability is proposed as a means to aid peptide ion identification and a
simple scoring scheme has been introduced.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Plot A shows the intrinsic amino acid size parameters derived from a group of doubly-
charged peptide ions that are 12 residues in length and each contain a single, c-terminal
arginine residue. Intrinsic size parameters have been grouped by types of amino acids. Size
parameters for proline and glycine are presented separately in light of their propensity to
disrupt α-helical structure in solution. Histidine and Cysteine size parameters are also shown
separately because of their relative infrequent occurrence in the proteome database. Error
bars represent one standard deviation about the mean. Plot B shows the average size
parameters obtained from doubly-charged peptide ions of different residue lengths. Solid
and open diamonds represent average values for lysine- and arginine-terminated peptide
ions, respectively. Error bars represent one standard deviation about the mean.
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Figure 2.
Dot plots showing prediction accuracies of tDs for individual peptide ions as a function of
molecular weight. Prediction accuracy is depicted as the ratio of the predicted tD to the
experimental tD. The top plot shows the prediction accuracy obtained by employing a
polynomial fit to tD versus molecular weight data. The bottom plot shows the prediction
accuracy obtained by using intrinsic size parameters. Data in these plots are obtained from
peptide sequences containing 12 residues and a single c-terminal arginine residue.
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Figure 3.
Plots showing the fraction of database peptides predicted accurately for given prediction
threshold values. Open- and solid-circles represent data obtained from predictions with
intrinsic size parameters and predictions obtained from a polynomial fit to tD versus
molecular weight data, respectively. Data points represent average values obtained from
peptide sequences of ranging in length from 7 to 15 amino acid residues. Error bars
represent one standard deviation about the mean. Prediction accuracy threshold (x-axis)
represents the deviation from the experimental values expressed as a fraction; a prediction
accuracy threshold of x=0.03 would provide the fraction of all database peptides predicted to
within ±3% of the experimental values.

Valentine et al. Page 18

J Proteome Res. Author manuscript; available in PMC 2012 May 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Plot A shows the percentage of all possible 7-,8-,9-, and 10-residue sequences meeting or
exceeding the prediction thresholds for tDs of the select peptide ions [EAYVPATK
+2H]2+(solid circles), [QAYAVSEK+2H]2+(solid squares), [LNLFLSTK+2H]2+(solid
triangles). Because these values show the overlap between all possible sequences of the
same m/z and the correct prediction, the value can be thought of as a false discovery rate
(see text for details). Unique peptide ions from the complete list of all possible peptide ions
that are within 0.01 Da of the select peptides are used in this analysis. The three different
datasets have been fitted with sigmoidal curves (solid traces) using equation 6. Plot B shows
the w values (equation 6) for the three different curves as a function of reduced tD deviation,
d (see text for details) as well as a zero value. Also shown is a linear least-squares fit of the
data (solid line). Plot C shows the x0 values (equation 6) for the three different curves as a
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function of d (see text for details) as well as a zero value. Also shown is a linear least-
squares fit of the data (solid line).
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