
ISSN 1392 – 124X INFORMACINĖS TECHNOLOGIJOS IR VALDYMAS, 2004, Nr.3(32)

USING ITERATED TABU SEARCH FOR THE TRAVELING
SALESMAN PROBLEM♣

Alfonsas Misevičius

Kaunas University of Technology, Department of Practical Informatics
Studentų St. 50−400a/416a, LT−51368 Kaunas, Lithuania

Abstract. In this paper, we propose an iterated tabu search (ITS) algorithm for the well-known combinatorial
optimization problem, the traveling salesman problem (TSP). ITS is based on so-called intensification (improvement)
and diversification (reconstruction) (I&D) paradigm. The goal of the intensification is the search for a locally optimal
solution in the neighbourhood of the current solution. The diversification is responsible for escaping from the current
local optimum and moving towards new regions in the solution space. Using the limited standard tabu search (TS) in
the role of an effective intensification (local improvement) procedure resulted in promising solutions obtained during
the experimentation with a number of the test data from the library of TSP instances TSPLIB. The results show that the
proposed variant of ITS outperforms both the straightforward TS algorithm and the other heuristic algorithms tested.

Keywords: combinatorial optimization, traveling salesman problem, heuristics, meta-heuristics, standard tabu
search, iterated tabu search.

Indroduction

The traveling salesman problem (TSP) can be for-
mulated as follows. Given matrix D = (dij)n×n and the
set Π of permutations of the integers from 1 to n, find
a permutation π = (π(1), π(2), ..., π(n))∈Π that
minimizes

)1(),(

1

1
)1(),()(πππππ n

n

i
ii ddz += ∑

−

=
+ . (1)

♣ This work is supported by Lithuanian State Science and Studies Foundation through grant number T-04078.

The interpretation of n, D and π is as follows: n
is the number of cities; D is the matrix of distances
between all pairs of these cities; j = π(i) denotes city j
to visit at step i. Usually, permutations are called
tours, and the pairs (π(1),π(2)), ..., (π(i),π(i+1)), ...,
(π(n),π(1)) are called edges. So, solving the TSP
means searching for the shortest closed tour in which
every city is visited exactly once.

The TSP is a typical problem of combinatorial op-
timization (CO). This means that theoretical and
practical insight achieved in the study of the TSP can
often be helpful in solving other problems in this area.
This problem is easy to state, but hard to solve. It has
been proved that the TSP is NP-hard [9], and cannot
be solved to optimality within polynomially bounded
computation time. Therefore, heuristic algorithms
have to be used in order to find near-optimal (locally
optimal) solutions. The heuristics [25, 28, 30] are not

able to guarantee that a problem will be solved in
terms of obtaining the exact solution (it may not even
be possible to state how close to optimality a
particular solution is); however, heuristics seek good,
high quality solutions at a reasonable computational
cost (time).

Many heuristics have been "tailored" especially
for the TSP, among them, tour construction heuristics
[3, 5, 33], descent local search (2-opt [6], 3-opt [20],
k-opt (Lin-Kernighan like heuristics) [21, 23], etc.).
TSP has also been widely used as a problem for
testing various meta-heuristics, like simulated
annealing [17, 29], tabu search [7, 18], genetic algo-
rithms [8]. (For a more exhaustive list of the heuristics
for the TSP, the reader is addressed to [16, 19 ,27,
32].)

We are also using this problem as a "platform" for
investigation of the performance of optimization tech-
nique we call the iterated tabu search (ITS). The paper
is organized as follows. In Section 1, the paradigm of
iterated tabu search is outlined. A variant of ITS for
the traveling salesman problem is discussed in Sec-
tions 2. In Section 3, we present some experimental
results. Section 4 completes the paper with concluding
remarks.

29

A. Misevičius

1. The paradigm

Since the TSP is a representative example (ins-
tance) of combinatorial optimization problems, we
will briefly introduce the basic definitions related to
these problems. CO studies hard problems in which
the task is to find "the best element" in a finite con-
figuration (solution) space, with respect to some (real-
valued) function. More formally, an instance of a CO
problem can be described as a pair (S, f), where S is
the set of feasible solutions (also called solution
space), and f: S → ℜ is the objective (cost) function
which assigns a (real) value to each solution. (Without
loss of generality, we assume that f seeks a global
minimum.) The goal is to find a solution sopt ∈ S such
that

 ==∈

∈

∇∇)(minarg|optopt sfssSs
Ss

. (2)

The solution sopt is called a globally optimal solu-
tion (global optimum) of the problem (S, f). Sopt ⊆ S
denotes the set of optimal solutions, and fopt = f(sopt)
denotes the optimal value of the objective function
(optimal cost).

In addition, a neighbourhood function Θ: S → 2S
is given: it attaches for each s ∈ S a set Θ(s) ⊆ S − a
set of neighbouring solutions of s. Each solution s′ ∈
Θ(s) can be reached from s by an operation called a
move, and s is said to move to s′ when such an
operation is performed.

TSP-heuristics operate rather upon pairs of
elements (j1 = π(i), j2 = π(i+1)) (i.e. edges) than single
elements (j = π(i)). Taking this fact into account, the
distance betwee two permutations (tours) is defined as
the number of pairs of elements (edges) that are
contained in the first permutation (tour) but not in the
second permutation (tour) [4]. Mathematically, the
distance between permutations π and π ′ may be de-
clared as ρ(π,π ′) = Ω

=
(
(

=
(
(

, where Ω is the set that
consists of all possible pairs (π(i), π((i mod n) + 1))
(i∈{1, 2, ..., n}) such that ∃ j:

or

.

=
+

j ,
,))1

−
 ,))

,))1
j

′′
<≤′′

nj
njjj

ii
))1(),(

1 (),(
))1mod ((),((

ππ
ππ

ππ

=′′
≤<′′

1(),(
1 (),(

))1mod ((),((
nj

njjj
ii

ππ
ππ

ππ

+n)

+) n

We can then easily define the neighbourhood
function Θλ of order λ (1 < λ ≤ n):

 , | {)(Π∈′′= πππλΘ }),(λππρ ≤′ , where π is from
Π. If λ=2, one obtains 2-exchange neighbourhood
function, which is often used in the TSP-heuristics. In
this case, a move from the current permutation π to the
neighbouring one)(2 ππ Θ∈′

Π→Ν×Ν×Π

 may be described by
using a perturbation operator (function) p(π,i,j):

, which gives for each permutation the
permutation that is obtained by removing the two

edges at the ith and jth position and inserting two
different edges. In the other words, the pairs
(π(i),π(i+1)) and (π(j), π((j mod n) + 1)) are deleted,
and the pairs (π(i), π(j)) and (π(i+1), π((j mod n) + 1))
are added (see Figure 1). More specifically, p(π,i,j)
gives π ′ such that π′(i) = π(i), π′(i+1) = π(j), π′(j) =
π(i+1), π′((j mod n) + 1) = π((j mod n) + 1), where 1 ≤
i, j ≤ n ∧ 1 < j − i < n − 1; in addition, if j − i − 2 ≥ 1,
then π′(i + k + 1) = π(j − k) for every k ∈ {1, ..., j − i −
2}, in order to guarantee ρ(π, π ′) = 2. (For a move
from certain permutation to p(⋅, i, j), we will also use a
compact notation mij. An expression ijm⊕=′ ππ
would mean that π ′ is obtained from π by applying
p(π, i, j).) Note that the formula for calculation the
objective function (tour length) difference ∆z = z(p(π,
i, j)) − z(π) is very simple (i.e. z(p(π,i,j)) − z(π) =
dπ(i),π(j) + dπ(i+1),π((j mod n)+1) − dπ(i),π(i+1) − dπ(j),π((j mod n)+1))
and takes O(1) time.

π(j) π(j+1)

π(i+1)
π(i)

edge to be
added

edge to be
deleted

existing edge

Figure 1. Deleting and adding edges
 in a tour

1.1. Standard tabu search

Before describing the tabu search (TS) method,
let us recall for a moment the well-known descent
local search (LS) heuristic (also known as hill clim-
bing). The descent LS algorithm starts from an initial
(maybe, randomly generated) solution s°. Further, the
search process is continued by performing some
sequential transformations of solutions, i.e. making
moves from solutions to solutions. A move is applied
to the current solution s in order to get a new solution
s′ from the neighbourhood of the current solution
Θ(s). The moves are controlled, i.e. decisions about to
move to the neighbouring solutions, or not, are taken
depending on the qualities of solutions (the objective
function values f). So, if the decision is "positive",
then the current solution is replaced by the
neighbouring one, which will be used as a "starting
point" for the subsequent trials; otherwise, the search
is continued with the current solution. In classical
descent LS algorithms, the decision is "positive" if
only the new solution is definitely better than the
current one (i.e. the difference in the objective func-

30

Using Iterated Tabu Search for the Traveling Salesman Problem

31

tion values is negative (∆f = f(s′) − f(s) < 0, where s′
∈ Θ(s))). The whole process is continued until the
current solution s becomes to be locally optimal, that
is, no better solution exists in the neighbourhood of
the current solution (∀s′ ∈ Θ(s): f(s′) ≥ f(s)). (Given a
neighbourhood Θk, the solution obtained by descent
LS may be regarded to as an optimal solution with
respect to this neighbourhood, i.e. k-opt(imal) solu-
tion. Hence, the names of corresponding procedures:
2-opt, 3-opt, and so on.)

In some sense, tabu search [11,12] originates
from the policy described above. However, the TS
goes beyond this paradigm. In contrast to classical LS
(which is limited to finding one locally optimal
solution only), TS-based algorithms continue the
search even if a locally optimal solution is found.
Briefly speaking, TS is a process of subsequent moves
from one local optimum to another. The best local
optimum found during this process is the resulting
solution of TS. Thus, TS is an extended descent local
search. TS enables to escape local optima. Con-
sequently, it explores much more larger part of the
solution space when comparing with LS. Hence, TS
offers more opportunities for discovering high quality
solutions than traditional LS.

The central idea of the TS method is allowing
climbing moves when no improving neighbouring
solution exists, i.e. a move is allowed even if a new
solution s′ from the neighbourhood of the current
solution s is worse than the current one. Naturally, the
return to the locally optimal solutions previously
visited is to be forbidden in order to avoid cycling of
the search. TS is based on a methodology of prohi-
bitions: some moves are "frozen" (become "tabu")
from time to time.

More formally, TS starts from an initial solution
s° in S. The process is then continued in an iterative
way − moving from a solution s to a neighbouring one
s′. At each step of the procedure, a certain subset Θ′(s)
of the neighbouring solutions of the current solution is
considered, and the move (to the solution s′∈ Θ′(s) ⊆
Θ(s)) that improves most the objective function value f
is chosen. Naturally, s′ must not necessary be better
than s: if there are no improving moves, the TS
algorithm chooses one that least degrades (increases)
the objective function, i.e. a move is performed to the
neighbour s′ (even if f(s′) > f(s)). In order to eliminate
an immediate returning to the solution just visited, the
reverse move must be forbidden. This is done by
storing the corresponding solution (move) (or its
"attribute") in a memory (called a tabu list (T)). The
tabu list keeps information on the last |T| moves which
have been done during the search process (thus, a
move from s to s′ is considered as tabu if s′, or its
"attribute", is contained in T). This way of proceeding
hinders the algorithm from going back to a solution
reached in the last |T| steps. However, the
straightforward prohibition may sometimes lessen the

efficiency of the search. Moreover, it might be worth
returning after a while to a solution visited previously
to search in another promising direction. Consequent-
ly, an aspiration criterion is introduced to permit the
tabu status to be dropped under certain favourable
circumstances. Usually, a move from s to s′ (no matter
its status) is permitted if f(s′) < f(s∗), where s∗ is the
best solution found so far. The resulting decision rule
can thus be described as follows: replace the current
solution s by the new solution s′ if

f(s′)<f(s∗) or ()(minarg
)(

sfs
sΘs

′′=′
∈′′

 and

 s′ (or "attribute" of s′) is not tabu). (3)

The search process is stopped as soon as a termi-
nation criterion is satisfied (for example, a fixed a
priori number of iterations (trials) has been per-
formed). The pseudo-code for the standard (pure) tabu
search paradigm is presented in Figure 2. More details
on fundamentals of TS, its modifications and
applications can be found in [13, 14].

1.2. Iterated tabu search

Although TS is a powerful optimization tool, it
typically face, in its canonical form, less or more dif-
ficulties. Some of them are: a huge number of local
optima over the solution space, cycles (i.e. repeating
sequences) of the search configurations (states), and
the phenomenon of so-called "deterministic chaos" (or
chaotic attractors) [1]. The last one can be charac-
terized by the situation in which "getting stuck" in
local optima and cycles are absent but the search
trajectory is still confined in a limited region of the
solution space. (The trajectories are random although
the system (the set of solutions) is deterministic (fi-
nite).) So, the search trajectory will visit only a limited
part of the solution space: if this portion does not
contain the global minimum (optimum), it will never
be found.

In order to try to overcome these difficulties, an
essential extension of the standard TS − iterated tabu
search can be proposed. (It should be noted that
several attempts to enhance the pure TS have been
already made. One of the most famous modifications
is the reactive tabu search [1]. Nevertheless, we think
of ITS as a, probably, more aggressive attempt. First
of all, this is due to the new important features we will
discuss in this section.)

The standard (pure) TS goes beyond the descent
LS, and ITS tries to go beyond the standard TS. The
heart of ITS is the concept of intensification and diver-
sification (I&D). The early origins of this concept go
back to 1986 [2]. Since that time, various modifica-
tions and enhancements of the basic idea have been
proposed, among them, iterated Lin-Kernighan algo-
rithm [15], "large step Markov chains" [24], variable
neighbourhood search [26], and, finally, iterated local
search (ILS) [22].

A. Misevičius

function tabu_search(s);
 // input: s − the initial solution; output: s∗ − the best solution found //

 s∗ := s;
 initialize the tabu list T;
 repeat // continue the main cycle of TS //

 given neighbourhood function Θ, tabu list T, and aspiration
criterion,
 find the best possible solution s′ ∈ Θ′(s) ⊆ Θ(s), where Θ′(s) consists of
 solutions that (or their "attributes") are not currently in the tabu
 list T or satisfy the aspiration criterion;
 s := s′; // replace the current solution by the new one //
 insert the solution s (or its "attribute") into the tabu list T;
 if f(s) < f(s∗) then s∗ := s; // save the best so far solution //
 update the tabu list T
 until termination criterion is satisfied;
 return s∗
end.

Figure 2. Paradigm of standard tabu search

Very roughly, ILS can be thought of as a "ruin
and recruit" principle based optimization policy. There
are two main phases (components) in the ILS para-
digm: 1) the reconstruction phase (it can be viewed as
diversification of the search), and 2) the local im-
provement phase (it can be viewed as intensification
of the search). The additional component is the selec-
tion of a candidate for the reconstruction. During the
first phase, an existing solution is reconstructed
(perturbed) in a proper way. In the second phase, one
tries to improve the solution just "ruined" as best as
one can; hopefully, the new (improved) solution is
better than the solutions obtained in the previous
iterations. By repeating these phases many times one
seeks for high quality results. ITS is very similar to
ILS. The main distinguishing feature of ITS is that the
standard (or, maybe, modified) TS procedure plays a
role of an effective intensification (i.e. local im-
provement).

So, ITS is initiated by the improvement of an
initial solution (by means of the traditional TS). As a
result, the first optimized solution, say s•, is achieved.
Further, a given solution undergoes a "destruction",
and a new solution, say s~, is obtained. The goal of
such a reconstruction is not to destroy the current
solution absolutely − on the contrary, it is highly desir-
able that the resulting solution inherits some cha-
racteristics of the previous local optimum, since parts
of this optimum may be close to the ones of the
globally optimal solution. It is important, however,
that a proper level of diversification is kept up. The
reconstruction should be neither too strong, nor too
weak − otherwise the resulting algorithm might be
quite similar to a pure random ("blind") multistart, or

the process would periodically return to solutions to
which the reconstruction has been applied.

Regarding the solutions to be reconstructed, two
alternatives exist: a) an exploitation, and b) an explo-
ration. The exploitation is achieved by choosing only
the currently best local optimum (the best so far (BSF)
solution) as a candidate for the reconstruction. The
exploration takes place if one of locally optimal
solutions (not necessary the best local optimum) found
so far is accepted as a candidate solution − in fact,
each optimized solution can be considered as a
potential candidate for the reconstruction. In the case
of exploration, a variety of strategies may be used for
the candidate selection. In the simplest case, so-called
"where you are" (WYA) strategy is applied, i.e. every
new local optimum is accepted. However, more
sophisticated policies are available, for example, the
selection from a pool (memory) of locally optimal
solutions, like in the population based (genetic)
algorithms.

The reconstructed solution s~ serves as an input
for the subsequent tabu search procedure, which starts
immediately after the reconstruction is finished. The
TS procedure returns the new optimized solution s•,
which (or some other local optimum) in turn is re-
constructed, and so on. The new better solution (s∗)
found at the current iteration is saved in a memory.
This type of proceeding continues until a stopping
condition is met, for example, a fixed number of
iterations has been executed. The pseudo-code of the
ITS paradigm is shown in Figure 3.

32

Using Iterated Tabu Search for the Traveling Salesman Problem

33

function iterated_tabu_search(s);
 // input: s − the initial solution; output: s∗ − the best solution found //

 s• := tabu_search(s); // improve the initial solution by using TS procedure, get the resulting solution s•
//

 s := s•; s∗ := s•;
 repeat // continue the cycle of the iterated tabu search //

 s := candidate_acceptance(s•,s, ...); // select a solution for the subsequent reconstruction //
 s~ := reconstruction(s); // "ruin" the selected solution, obtain a new solution s~ //

 s• := tabu_search(s~); // improve the solution s~ by TS, get the resulting optimized solution s• //
 if f(s•) < f(s∗) then s∗ := s• // save the best so far solution (as a possible result of ITS) //
 until termination criterion is satisfied;
 return s∗
end.

Figure 3. Paradigm of iterated tabu search

It should be noted that ITS is a general purpose
meta-heuristic − not a pure heuristic algorithm. Such a
meta-heuristic succeeds in search if only involves the
specific problem knowledge. So, the local
improvement (intensification), as well as the
reconstruction (diversification) procedures must be
"tailored" for a particular problem (i.e. must be as
much problem-oriented as possible), while the
framework itself is, in general, invariable.

2. A variant of iterated tabu search for the
TSP

2.1. Initial solution construction

The question of whether or not to use a tour
construction heuristic for the initial solution is not that
simple to answer. For example, Reinelt [32] found that
is better to start with an efficient construction heuris-
tic. However, Lin and Kernighan [21] concluded that
the use of sophisticated construction heuristic is just
wasting time. Besides, the construction heuristics are
usually deterministic, so it may not be possible to
obtain more than one different solution.

In our algorithm, the initial solutions are gene-
rated in a random way, although using construction
heuristics may result in a significant reduction of CPU
time.

2.2. Local improvement (intensification)

In ITS, the local improvement is based on the
standard tabu search. In fact, we apply only short runs
of the TS procedure − we call this approach a limited
tabu search (LTS). The experiments have demonst-
rated that these limited iterations allow saving
considerable amount of CPU time; on the other hand,
LTS in combination with diversification operators is

quite enough to seek for near-optimal solutions.
Another modification is related to the way which TS
explores the neighbourhood. (Note that we use the 2-
exchange neighbourhood Θ2.) So, instead of exploring
each time the complete neighbourhood Θ2, we apply
the TS runs for some smaller portions of this
neighbourhood (again, this is done for the sake of
reduction of CPU time). The portions are processed
sequentially, one by one. The size of these portions θ
can be defined by a user-defined parameter.

The tabu list is organized as an n×n matrix T of
integer numbers. At the beginning, all the entries of T
are set to zero. As the search progresses, the entries tij
store the current number of the iteration plus the tabu
list factor h. In this case, a move mij (as described in
Section 1) is tabu if the value of tij is equal or greater
than the current iteration number. Note, that by using
the matrix based tabu list, testing whether a move is
tabu or not requires only one comparison (i.e. it is
performed in a constant time). The detailed template
of the TS procedure for the TSP is given in Figure 4.

We also propose to add an additional component
(feature) to this TS procedure. The idea is to use an
alternative intensification mechanism under certain
circumstances, for example, if the current difference in
the objective function values is negative. In this case,
the basic TS procedure is temporally "interrupted" in
order to apply 2-opt (or other fast LS) procedure. The
reason is to prevent accidental miss of local optima
and to intensify search at the moments of decreasing
of the objective function. This alternative intensifi-
cation is omitted if it already took place within the last
r iterations. Here, r can be related to the current tabu
list size h: r = ωh, where ω is the alternative intensi-
fication frequency factor. The template of the 2-opt
procedure is presented in Figure 5.

A. Misevičius

function TS(π,n,τ,θ); // the tabu search procedure for the TSP //
 // input: π − the current permutation (tour); n − the problem size; τ − the number of iterations; //

 // θ − the size of the portions of the neighbourhood Θ2; i, j − the current move indices; //
 // h − the current tabu list size; ω − the alternative intensification frequency factor //

 // output: π• − the best solution found //
 π• := π; T := 0; c := 1; c′ := 1;),1,1(: nniifn −==′ ; r := ωh; improved := "FALSE";

 while (c ≤ τ) or improved = "TRUE" then begin // main cycle //
 ∆zmin := ∞;
 for w := 1 to θ do begin // find the best non-tabu move in the part of Θ2(π) //
))1,1,2(,,(: +−<′<= iniifinjifi ; n),1,1(: nniif −==′ ;)2,1,(: ++′<= ijnjifj ;

 ∆z := z(ijm⊕π)−z(π);
 tabu := if(tij ≥ c, "TRUE", "FALSE"); aspired := if(z(π) + ∆z < z(π•), "TRUE", "FALSE");
 if ((∆z < ∆zmin) and not tabu) or aspired then begin ∆zmin := ∆z; u := i; v := j
end
 end; // for //

 improved := if(∆zmin < 0, "TRUE", "FALSE");
 if ∆zmin < ∞ then begin
 π := uvm⊕π ; // replace the current permutation (tour) by the new one //

 tuv := c + h // make the corresponding move tabu //
 end; // if //
 if improved = "TRUE" and (c − c′ ≥ r) then begin π := TWO_OPT(π,n); c′ := c end;
 if z(π) < z(π•) then π• := π; // save the best so far permutation (tour) //
 c := c + 1
 end; // while //
 return π•
end.

Figure 4. Pseudo-code of the tabu search procedure for the TSP

function TWO-OPT(π,n); // 2-opt based on the steepest descent (best improvement) for the TSP //
 // input/output: π − the initial/locally optimal permutation (tour); n − the problem size //
 k := 1; l := 2; n′ := n−1;
 repeat // main cycle //

 ∆zmin := 0; // ∆zmin − the minimum difference of the objective function values //
 for w := 1 to |Θ2| do begin
))1,1,2(,,(: +−<′<= knkifknlifk ; n),1,1(: nnkif −==′ ;)2,1,(: ++′<= klnlifl ;

 ∆ := z(klm⊕π)−z(π);

 if ∆ < ∆zmin then begin ∆zmin := ∆; u := k; v := l end
 end; // for //
 if ∆zmin < 0 then π := uvm⊕π // replace the current permutation (tour) by the new one //
 until ∆zmin ≥ 0;
 return π
end.

Figure 5. Pseudo-code of the 2-opt algorithm for the TSP

34

Using Iterated Tabu Search for the Traveling Salesman Problem

35

2.3. Reconstruction (diversification)

For the solution reconstruction, we propose a
procedure entitled as a randomized greedy reconnect.
The procedure consists of three main steps (see also
Figure 6): 1) "ruin" (destruction) of the current so-
lution; 2) local improvement of the part (segment) of
the solution; 3) rebuilding the solution. In more
details, the current solution is disintegrated in a
random way, so that a part of the solution is obtained.
Further, a greedy local improvement based on the
nearest neighbour (NN) algorithm [33] is applied to
this segment. Finally, the locally optimized segment is

copied back to its original position, i.e. the tour is
reconnected (recreated). The only control parameter
for the greedy reconnect procedure is the reconstruc-
tion level µ, i.e. the actual length of the tour segment
to be processed by NN. We let the parameter µ vary in
some interval [µa, µb] ⊆ [3, n]; here, the values of µa,
µb can be related to the problem size n, i.e.
µa = max(3, ξ1n) and µb = max(3, ξ2n), where ξ1, ξ2
(0 < ξ1 ≤ ξ2 ≤ 1) are user-defined coefficients. Figures
7, 8 show the templates of the corresponding
procedures in an algorithmic language form.

 disintegration
 local improvement by NN
 recreation

 Figure 6. The graphical interpretation of the reconstruction process

function RGR(π,µ); // the randomized greedy reconnect procedure for the TSP //
 // input/output: π − the current/reconstructed permutation (tour), µ − the reconstruction level //
 choose a position i (1 ≤ i ≤ n) in π at random;
 starting at the position i, copy µ items from π to πtmp
 (if i + µ − 1 > n, the copying is done in a wrap-around fashion);
 π′tmp := NN(πtmp); // apply the nearest neighbour heuristic to πtmp, get π′tmp //

 copy the contents of π′tmp back to π;
 return π
end.

Figure 7. Pseudo-code of the randomized greedy reconnect procedure for the TSP

function NN(π); // the nearest neighbour heuristic for the TSP //
 // input: π − the current permutation (tour); output: πnew − the resulting permutation //
 select a random city j from π;
 πnew(1) := j;
 for i := 2 to |π| do begin // continue while there are any unvisited cities //

 find the nearest (to j) unvisited city k in π;
 πnew(i) := k;
 j := k
 end; // for //
 return πnew

end.

Figure 8. Pseudo-code of the nearest neighbour heuristic for the TSP

In addition to the greedy reconnect procedure de-
scribed, an alternative reconstruction mechanism may
be applied. It takes place after the situation of
stagnation of the search is detected. Stagnation is said
to reveal itself if the best so far solution remains

unchanged for a quite long time. Figure 9 depicts an
example of a typical situation. In such situations, we
simply make "cold restarts", i.e. generate new solu-
tions from scratch.

A. Misevičius

Figure 9. Illustration of the stagnation situation:
(a) cost (objective function value) vs time (search iteration); (b) the BSF solution cost vs time.

Note. As a data source, the TSP instance gr24 from TSPLIB [31] was used

2.4. Candidate acceptance

In our implementation of the ITS algorithm, we
have chosen the exploitation (see Section 1.2) as a
candidate acceptance strategy. This means that the
only actually best solutions (BSF-solutions) are
candidates for the subsequent reconstruction. The
reason was that we found that the exploitation strategy
yielded better results than the alternative exploration

(WYA) strategy. Speaking in an algorithmic language,
the candidate solution at the qth iteration of ITS is
defined according to the formula

, where π

<= •)(()(ππ zifq

•π

),),()1()1(−•− qqz πππ (q) is the candidate solu-
tion at the current iteration, π(q−1) is the candidate solu-
tion before the last execution of the improvement (TS)
procedure (the BSF solution), and is the solution
obtained by the improvement procedure.

function ITS(π,n,Q,τ,θ,h,ω,ξ1,ξ2); // the iterated tabu search procedure for the TSP //
 // input: π − the current (initial) permutation (tour); n − the problem size; //
 // Q − the total number of iterations; τ − the number of iterations for the TS procedure; //
 // θ − the size of the portions of the neighbourhood Θ2; h − the current tabu list size; //
 // ω − the alternative intensification frequency factor; ξ1, ξ2 − the reconstruction factors //
 // output: π∗ − the best permutation found //
 π• := TS(π,n,τ,θ); // improve the current (initial) solution preliminary //
 π := π•; π∗ := π•; i := 1; j := 2; n′ := n−1;
 µa := max(3,ξ1n); µb := max(3,ξ2n); µ := µa−1;
 for q := 1 to Q do begin // main cycle //
 if stagnation condition is met
 then begin generate new solution π ~; µ := µa−1 end
 else begin
 ; // choose the candidate for the reconstruction //)(πππππ ,),()(: •• <= zzif

)(abif µµµµµ ,1,: +<= ; // update the reconstruction level //
 π ~ := RGR(π,µ) // apply randomized greedy reconnect procedure to π∗, get π~ //
 end; // else //
 π• := TS(π~,n,τ,θ); // try to improve the reconstructed solution //
 if z(π•) < z(π∗) then begin
 π∗ := π•; // save the best so far permutation //
 µ := µa−1 // reset the reconstruction level //
 end // if //
 end; // for //
 return π∗
end.

Figure 10. Pseudo-code of the iterated tabu search procedure for the TSP

search iterations (time)

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
es

25

30

35

40

2000

00

00

00

00

4500

0 100 200 300 400 500 600 700
2000

00

00

00

00

4500

0 100 200 300 400 500 600 700

25

30

35

40

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
es

search iterations (time)
(b) (a)

36

Using Iterated Tabu Search for the Traveling Salesman Problem

The template of the resulting algorithm is pre-
sented in Figure 10. The default values of the control
parameters for the ITS algorithm are: Q = Cn (C = 1 ÷
3); τ = 0.6n; θ = 0.15n; h = 0.25n; ω = 0.08;
ξ1 = 0.30; ξ2 = 0.35.

3. Computational experiments

In order to evaluate the efficiency of the proposed
algorithm, some experiments have been carried out.
The well-known set of the test data taken from the
library of the TSP instances TSPLIB [31] were used.
The algorithms used in the experimentation are as
follows:
 1) the multi-start 2-opt (M-2-OPT) algorithm;
 2) the 4-opt (4-OPT) algorithm;
 3) the variant of a simulated annealing (SA) algo-

rithm;
 4) the variant of a standard (pure) tabu search (TS)

algorithm;
 5) the iterated tabu search (ITS) algorithm.

All the algorithms are coded by the author. The
programming language Free Pascal is used.

The performance measures of the algorithms are:
a) the average deviation of solutions from a provably
optimal solution − δ (%][)(100 optopt zzz −=δ ,
where z is the average objective function value (tour
length) over 10 runs (single applications of the
algorithm to a given instance), and zopt is the objective
function value of the optimal solution (values zopt are
taken from [31])); b) the number of solutions that are
within 1% optimality (over 10 runs) − C1%; c) the
number of the optimal solutions found − Copt.

The results of the comparison are presented in
Table 1. Firstly, it can be seen that the 2-opt based
multi-start appears better then the straightforward 4-
opt in many cases. In turn, SA works better than the
multi-2-opt. Unexpectedly, SA seems even to be better
than the pure tabu search. Regarding the iterated tabu
search, it clearly outperforms both the standard tabu
search (see Figure 11) and all the other algorithms
tested with respect to the performance measures used
(first of all, the average deviation). Note that the
efficiency of ITS can be improved even more by
increasing the number of iterations or tuning the
values of other control parameters. The enhancements
of the performance by modifying/extending the
components of ITS are also possible (see Section 4).

Some results of other known TSP-heuristics can
be cited for the sake of more objectivity. In Knox’s
paper [18], a version of the standard tabu search based
algorithm was proposed. The author reports few
results for small TSP instances (n≤75). The solutions
are very close to optimal, however the CPU times are
quite large (for example, more than 600 seconds are
needed for an instance with 50 cities).

In [15], Johnson introduced an improved variant
of the famous Lin-Kernighan heuristic. This algorithm
was able to produce solutions that are within about
0.8% optimality on instances of size ≤100. The other
efficient implementation of Lin-Kernighan algorithm
yielded solutions that were from 0.24% to 3.04% of
optimal solutions on instances of size 48 to 226. In
[8], very few results are given; for example, for the
instance kroa100, the average quality of the solutions
is 0.00% − this took 11 seconds.

Table 1. Comparison of the algorithms (Part I). The best results obtained are printed in bold face.
 CPU times per run are given in seconds. (900 MHz PENTIUM computer was used in the experimentation)

Instance n zopt
δ [, C1%/Copt,] time

 M-2-OPT 4-OPT SA TS ITS

a280 280 2579 6.73, 0/ 0, 19 — 0.03 10/ 9, 78 2.04, 3/ 0, 140 0 25
att48 48 10628 0.75, 6/ 0, 0.1 1.59, 3/ 0, 1.0 0 6.0 0.85, 7/ 1, 0.8 0 0.1
bayg29 29 1610 0.26, 10/ 4, 0.1 1.44, 4/ 1, 0.1 0 5.0 0 0.2 0 0.0
bays29 29 2020 0.03, 10/ 9, 0.1 0.97, 6/ 0, 0.1 0 5.0 0 0.2 0 0.0
berlin52 52 7542 0.63, 7/ 6, 0.2 2.88, 1/ 0, 1.5 0 7.0 0.48, 8/ 8, 1.1 0 0.1
bier127 127118282 2.43, 0/ 0, 1.4 1.97, 1/ 0, 170 0.66, 5/ 5, 18 2.51, 2/ 0, 12 0 1.5
brazil58 58 25395 0.00, 10/ 7, 0.1 0.94, 7/ 5, 2.9 0 8.0 0 1.4 0 0.2
brg180 180 1950 8.82, 0/ 0, 3.9 0.10, 10/ 8, 700 16.30, 0/ 0, 36 0 23 0 0.5
burma14 14 3323 0 0.0 0.57, 9/ 5, 0.0 0 0.5 0 0.1 0 0.0
ch130 130 6110 2.64, 0/ 0, 1.6 2.39, 1/ 0, 190 0.27, 9/ 5, 19 2.56, 0/ 0, 14 0 2.9
ch150 150 6528 4.12, 0/ 0, 2.4 2.51, 1/ 0, 400 0.33, 10/ 1, 24 1.06 6/ 1, 21 0 3.5
d198 198 15780 2.22, 0/ 0, 6.0 1.28, 4/ 0, 1800 0.10, 10/ 2, 40 0.37, 9/ 0, 42 0 60
d493 493 35002 5.55, 0/ 0, 170 — 0.64, 10/ 0, 320 2.76, 0/ 0, 900 0.28, 10/ 1, 900
dantzig42 42 699 0.16, 9/ 8, 0.1 0.36, 10/ 5, 0.5 0 6.0 0.07, 10/ 9, 0.6 0 0.0
eil51 51 426 2.28, 0/ 0, 0.2 1.83, 2/ 0, 1.6 0.02, 10/ 9, 7.0 0.09, 10/ 6, 0.9 0 0.5
eil76 76 538 3.90, 0/ 0, 0.3 2.36, 1/ 1, 17 0 10 0 2.7 0 0.4
eil101 101 629 4.69, 0/ 0, 0.8 2.99, 0/ 0, 48 0 14 0.18, 9/ 6, 5.9 0 1.2

37

A. Misevičius

38

Table 1. Comparison of the algorithms (Part II). The best results obtained are printed in bold face.
 CPU times per run are given in seconds. (900 MHz PENTIUM computer was used in the experimentation)

Instance n zopt
δ [, C1%/Copt,] time

 M-2-OPT 4-OPT SA TS ITS

fl417 417 11861 2.19, 0/ 0, 100 — 1.26, 4/ 0, 230 1.92, 3/ 0, 550 0.05, 10/ 5, 540
fri26 26 937 0 0.1 0.38, 8/ 0, 0.0 0 5.2 0 0.2 0 0.0
gil262 262 2378 5.13, 0/ 0, 17 — 0.24, 10/ 0, 75 2.94, 1/ 0, 145 0.00, 10/ 9, 350
gr17 17 2085 0 0.0 0.17, 10/ 4, 0.0 0 2.0 0.04, 10/ 8, 0.0 0 0.0
gr21 21 2707 0 0.1 1.77, 5/ 5, 0.1 0 3.2 0 0.1 0 0.0
gr24 24 1272 0 0.1 1.82, 6/ 4, 0.1 0 4.9 0 0.2 0 0.0
gr48 48 5046 0.38, 10/ 0, 0.2 1.00, 7/ 0, 6.0 0 6.4 0.20, 10/ 5, 0.8 0 0.1
gr96 96 55209 2.05, 0/ 0, 0.7 1.62, 5/ 0, 42 0.20, 10/ 0, 14 1.99, 3/ 0, 6.1 0 1.2
gr120 120 6942 3.38, 2/ 0, 1.2 3.16, 0/ 0, 120 0.35, 10/ 0, 18 0.42, 9/ 0,10.6 0 6.9
gr137 137 69853 2.73, 0/ 0, 2.0 2.27, 2/ 0, 270 0.15 10/ 2, 22 1.17, 4/ 0, 16 0 2.4
gr202 202 40160 4.13, 0/ 0, 6.0 2.99, 0/ 0, 1900 0.24, 10/ 2, 40 2.23, 1/ 0, 50 0 320
gr229 229 134602 4.10, 10/ 0, 9.0 — 0.61, 9/ 0, 47 2.50, 1/ 0, 78 0.01, 10/ 9, 380
gr431 431 171414 5.34, 10/ 0, 110 — 0.46, 10/ 0, 240 3.86, 0/ 0, 730 0.23, 10/ 1, 630
hk48 48 11461 1.27, 3/ 0, 0.1 0.93, 6/ 3, 1.0 0.46, 10/ 0, 4.8 0.28, 9/ 5, 0.8 0 0.2
kroa100 100 21282 1.13, 5/ 0, 0.8 0.56, 8/ 0, 48 0.13, 10/ 5, 13 2.62, 5/ 0, 6.7 0 0.7
kroa150 150 26524 3.64, 0/ 0, 2.4 2.02, 1/ 0, 360 0.06, 10/ 1, 24 2.94, 1/ 0, 22 0 32
kroa200 200 29368 4.18, 0/ 0, 6.0 2.85, 1/ 0, 1800 0.41, 10/ 0, 39 3.68, 0/ 0, 53 0 24
krob100 100 22141 2.03, 1/ 0, 0.7 2.25, 3/ 0, 48 0.09, 10/ 7, 14 1.91, 2/ 0, 6.6 0 0.9
krob150 150 26130 2.88, 0/ 0, 2.5 1.99, 0/ 0, 360 0.19, 10/ 0, 25 3.33, 0/ 0, 21 0 8.5
krob200 200 29437 4.71, 0/ 0, 6.0 2.47, 0/ 0, 1900 0.18, 9/ 0, 39 5.00, 0/ 0, 54 0 86
kroc100 100 20749 1.81, 1/ 0, 0.8 1.78, 4/ 1, 48 0.03, 10/ 8, 13 2.22, 2/ 0, 6.8 0 0.8
krod100 100 21294 2.37, 1/ 0, 0.8 1.88, 2/ 0, 48 0.07, 10/ 7, 13 2.53, 2/ 0, 6.6 0 0.9
kroe100 100 22068 2.05, 0/ 0, 0.8 1.43, 4/ 0, 48 0.31, 10/ 0, 13 1.01, 8/ 0, 6.7 0 1.1
lin105 105 14379 1.23, 3/ 0, 0.8 1.97, 4/ 0, 60 0.12, 19/ 7, 15 3.13, 0/ 0, 7.7 0 0.8
lin318 318 42029 4.60, 0/ 0, 45 — 0.83, 7/ 0, 120 3.95, 0/ 0, 280 0.29, 10/ 3, 180
linhp318 318 41345 6.34, 0/ 0, 45 — 2.50, 0/ 0, 115 5.67, 0/ 0, 280 0.22, 10/ 4, 170
pcb442 442 50778 7.07, 0/ 0, 120 — 0.55, 10/ 0, 250 1.58, 0/ 0, 690 0.37, 10/ 0, 510
pr76 76 108159 0.91, 8/ 0, 0.4 1.69, 3/ 0, 12 0 10 0.39, 9/ 0, 2.9 0 0.3
pr107 107 44303 0.90, 6/ 0, 0.9 1.14, 5/ 0, 72 0 14 1.17, 9/ 1, 7.3 0 0.8
pr124 124 59030 0.49, 9/ 1, 1.5 1.09, 4/ 1, 160 0.06, 10/ 3, 18 1.25, 4/ 1, 12 0 0.6
pr136 136 96772 2.87, 0/ 0, 1.8 2.58, 1/ 0, 250 0.43, 9/ 0, 21 0.95, 5/ 0, 15 0 11
pr144 144 58537 0.15, 10/ 0, 2.4 0.16, 9/ 5, 340 0.15, 9/ 6, 23 2.75, 2/ 0, 18 0 1.2
pr152 152 73682 0.84, 6/ 0, 2.8 0.77, 7/ 0, 380 0.22, 10/ 1, 25 1.82, 2/ 0, 22 0 16
pr226 226 80369 1.23, 0/ 0, 9.5 — 0.37, 10/ 0, 47 2.22, 6/ 0, 66 0 65
pr264 264 49135 4.89, 0/ 0, 16 — 0.05, 10/ 8, 66 1.92, 3/ 1, 125 0 21
pr299 299 48191 5.04, 0/ 0, 30 — 0.15, 10/ 1, 90 4.22, 0/ 0, 200 0.01, 10/ 7, 290
pr439 439 107217 5.44, 0/ 0, 120 — 1.85, 2/ 0, 240 5.22, 0/ 0, 720 0.18, 10/ 2, 740
rat99 99 1211 4.48, 0/ 0, 0.6 2.95, 1/ 0, 48 0 13 0.26, 10/ 2, 6.3 0 0.8
rat195 195 2323 7.47, 0/ 0, 5.0 3.44, 0/ 0, 1700 0.20, 10/ 0, 37 0.30, 10/ 0, 40 0 150
rd400 400 15281 6.62, 0/ 0, 95 — 0.49, 10/ 0, 220 4.07, 0/ 0, 700 0.22, 10/ 2, 560
si175 175 21407 0.45, 10/ 0, 3.7 0.21, 10/ 0, 900 0.04, 10/ 1, 31 0.27, 10/ 0, 28 0 11
st70 70 675 0.76, 8/ 0, 0.2 1.84, 2/ 0, 70 0.02, 10/ 9, 9.0 1.04, 5/ 1, 2.2 0 0.3
swiss42 42 1273 0 0.1 1.33, 5/ 2, 0.5 0 5.8 1.07, 7/ 7, 0.6 0 0.1
ts225 225 126643 1.67, 2/ 0, 9.0 — 0.02, 10/ 7, 50 1.65 4/ 3, 62 0 4.3
tsp225 225 3916 5.17, 0/ 0, 9.3 — 1.05, 2/ 0, 49 2.00, 1/ 0, 67 0 30
u159 159 42080 3.14, 0/ 0, 3.0 2.55, 1/ 0, 370 0.68, 10/ 1, 26 3.26, 2/ 0, 25 0 1.4
ulysses16 16 6859 0 0.0 0 0.0 0 3.4 0 0.1 0 0.0
ulysses22 22 7013 0 0.1 0.11, 9/ 9, 0.1 0 5.4 0 0.1 0 0.0

In a more recent work [10], the tabu search like

algorithm (called a complete local search) could find
solutions that are from 1.13% to 8.62% far from

optimal solutions for instances of size 52 to 200 (the
CPU time reported is from 9.9 to 2206 seconds).

Using Iterated Tabu Search for the Traveling Salesman Problem

4. Concluding remarks

The goal of this paper was rather testing the new
optimization framework than creation of a highly
refined algorithm for the traveling salesman problem.
The iterated tabu search algorithm based on the
improvement (intensification) and reconstruction
(diversification) paradigm is proposed. The main idea
is to try to achieve more efficiency by coupling the
standard tabu search with the proper reconstruction
(diversification) mechanism. The results obtained
from the experiments with the TSP instances (espe-
cially, the smaller TSP instances) confirm that the
performance of traditional TS is improved consider-
ably if the pure TS acts as an effective local improve-
ment procedure within the ITS paradigm.

Regarding possible extensions of ITS, the fol-
lowing directions of improvement may be proposed:

1) using the reactive tabu search (instead of the

straightforward tabu search) as a probably more
efficient local improvement procedure;

 2) implementing other, more elaborated and robust
reconstruction (diversification) operators within
ITS; 3) trying new efficient "cold restart"
techniques;

 4) maintaining "the history" (the (long-term)
memory) of the locally optimal solutions;

 5) incorporating the limited runs of ITS into other
meta-heuristics, for example, genetic (memetic)
algorithms.
In addition to that, it would be interesting using

other more "tailored" algorithms (for example, the
Lin-Kernighan heuristic) in the role of an
intensification procedure.

The results of ITS for the TSP are promising. So,
it may be worthy applying the ITS-based approach to
other difficult combinatorial optimization problems.
This could by a subject of the future work.

0

0 ,5

1

1 ,5

2

2 ,5

3

3 ,5

4

4 ,5

5

a2
80

d1
98

fl4
17

gi
l2

62

gr
22

9

kr
oa

20
0

lin
31

8

b4
42

pr
43

9

ra
t1

95

rd
40

0

si
17

5

ts
22

5

ts
p2

25

u1
59

 TS

ITS

 δ

 pc

instances
 Figure 11. Illustration of results of the standard and iterated tabu search algorithms

References
 [1] R. Battiti, G. Tecchiolli. The reactive tabu search.

ORSA Journal on Computing, 1994, Vol.6, 126 - 140.
 [2] E.B. Baum. Towards practical "neural" computation

for combinatorial optimization problems. In J.S. Den-
ker (ed.) Neural networks for computing, American
Institute of Physics, New York, 1986, 53 - 58.

 [3] J.L. Bentley. Experiments on traveling salesman heu-
ristics. Proceedings of the First Annual ACM-SIAM
Symposium on Discrete Algorithms, 1990, 91 - 99.

 [4] K. Boese. Cost versus distance in the traveling sales-
man problem. Tech. Report CSD-950018, UCLA CS
Dept., USA, 1995.

 [5] N. Christofides. Worst-case analysis of a new heuris-
tic for the traveling salesman problem. Tech. Report
388, Carnegie Mellon University, Pittsburgh, USA,
1976.

 [6] G.A. Croes. A method for solving traveling-salesman
problems. Operations Research, 1958, Vol.6, 791 -
812.

 [7] C.-N. Fiechter. A parallel tabu search algorithm for
large traveling salesman problems. Discrete Applied
Mathematics, 1994, Vol.51, 243 - 267.

 [8] B. Freisleben, P. Merz. A genetic local search algo-
rithm for solving symmetric and a symmetric traveling
salesman problems. Proceedings of the 1996 IEEE In-
ternational Conference on Evolutionary Computation,
Nagoya, Japan, 1996, 616 - 621.

 [9] M.R. Garey, D.S. Johnson. Computers and Intracta-
bility: A Guide to the Theory of NP-Completeness.
Freeman, San Francisco, 1979.

[10] D. Ghosh, G. Sierksma. Complete local search with
memory. Journal of Heuristics, 2002, Vol.8, 571 -
584.

[11] F. Glover. Tabu search: part I. ORSA Journal on
Computing, 1989, Vol.1, 190 - 206.

[12] F. Glover. Tabu search: part II. ORSA Journal on
Computing, 1990, Vol.2, 4 - 32.

[13] F. Glover, M. Laguna. Tabu Search, Kluwer, Dord-
recht, 1997.

39

A. Misevičius

[14] A. Hertz, E. Taillard, D. de Werra. Tabu search. In
E.Aarts, J.K.Lenstra (eds.), Local Search in
Combinatorial Optimization, Wiley, Chichester, 1997,
121 - 136.

[15] D.S. Johnson. Local optimization and the traveling
salesman problem. In Proceedings of the 17th Inter-
national Colloquium on Automata, Languages and
Programming. Lecture Notes in Computer Science,
Vol.443, Springer, Berlin, 1990, 446 - 461.

[16] D.S. Johnson, L.A. McGeoch. The traveling
salesman problem: a case study. In E.Aarts, J.K.
Lenstra (eds.), Local Search in Combinatorial Optimi-
zation, Wiley, Chichester, 1997, 215 - 310.

[17] S. Kirkpatrick, C.D. Gelatt, Jr., M.P. Vecchi.
Optimization by simulated annealing. Science, 1983,
Vol.220, 671 - 680.

[18] J. Knox. Tabu search performance on the symmetric
traveling salesman problem. Computers & Operations
Research, 1994, Vol.21, 867 - 876.

[19] G. Laporte. The traveling salesman problem: an
overview of exact and approximate algorithms.
European Journal of Operational Research, 1992,
Vol.59, 231 - 247.

[20] S. Lin. Computer solutions of the traveling salesman
problem. Bell System Tech. Journal, 1965, Vol.44,
2245 - 2269.

[21] S. Lin, B.W. Kernighan. An effective heuristic
algorithm for the traveling-salesman problem. Opera-
tions Research, 1973, Vol.21, 498 - 516.

[22] H.R. Lourenco, O. Martin, T .Stützle. Iterated local
search. In F. Glover, G. Kochenberger (eds.), Hand-
book of Metaheuristics, Kluwer, Norwell, 2002, 321 -
353.

[23] K. Mak, A. Morton. A modified Lin-Kernighan
traveling salesman heuristic. ORSA Journal on Com-
puting, 1992, Vol.13, 127 - 132.

[24] O. Martin, S.W. Otto, E.W. Felten. Large-step
Markov chains for the traveling salesman problem.
Complex Systems, 1991, Vol.5, 299 - 326.

[25] Z. Michalewicz, D.B. Fogel. How to Solve It: Modern
Heuristics. Springer, Berlin-Heidelberg, 2000.

[26] N. Mladenović, P. Hansen. Variable neighbourhood
search. Computers & Operations Research, 1997,
Vol.24, 1097 - 1100.

[27] C. Nilsson. Heuristics for the traveling salesman
problem. Tech. Report, Linköping University, Sweden,
2003.
http://www.ida.liu.se/~TDDB19/reports_
2003/htsp.pdf.

[28] I.H. Osman, J.P. Kelly. Meta-heuristics: an overview.
In I.H.Osman, J.P.Kelly (eds.), Meta-Heuristics:
Theory and Applications, Kluwer, Norwell, 1996, 1 -
21.

[29] J. Pepper, B. Golden, E. Wasil. Solving the traveling
salesman problem with annealing-based heuristics: a
computational study. IEEE Transactions on Systems,
Man, and Cybernetics, Part A, 2002, Vol. 32, 72 - 77.

[30] C.R. Reeves. Modern heuristic techniques. In V.J.
Rayward-Smith, I.H. Osman, C.R. Reeves, G.D. Smith
(eds.). Modern Heuristic Search Methods, Wiley,
Chichester, 1996, 1–25.

[31] G. Reinelt. TSPLIB − A traveling salesman problem
library. ORSA Journal on Computing, 1991, Vol.3-4,
376−385. [See also http://www.iwr.uni-
heidelberg.de/groups/comopt/software/T
SPLIB95/.]

[32] G. Reinelt. The traveling salesman: computational so-
lutions for TSP applications. Lecture Notes in Com-
puter Science, 1994, Vol.840, Springer, Berlin.

[33] D.E. Rosenkrantz, R.E. Stearns, P.M. Lewis. An
analysis of several heuristics for the traveling
salesman problem. SIAM Journal on Computing,
1977, Vol.6, 563−581.

40

