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Abstract. In this paper, we propose an iterated tabu search (ITS) algorithm for the well-known combinatorial 
optimization problem, the traveling salesman problem (TSP). ITS is based on so-called intensification (improvement) 
and diversification (reconstruction) (I&D) paradigm. The goal of the intensification is the search for a locally optimal 
solution in the neighbourhood of the current solution. The diversification is responsible for escaping from the current 
local optimum and moving towards new regions in the solution space. Using the limited standard tabu search (TS) in 
the role of an effective intensification (local improvement) procedure resulted in promising solutions obtained during 
the experimentation with a number of the test data from the library of TSP instances TSPLIB. The results show that the 
proposed variant of ITS outperforms both the straightforward TS algorithm and the other heuristic algorithms tested. 

Keywords: combinatorial optimization, traveling salesman problem, heuristics, meta-heuristics, standard tabu 
search, iterated tabu search. 

 
 

Indroduction 

The traveling salesman problem (TSP) can be for-
mulated as follows. Given matrix D = (dij)n×n and the 
set Π of permutations of the integers from 1 to n, find 
a permutation π = (π(1), π(2), ..., π(n))∈Π that 
minimizes 
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The interpretation of n, D  and π  is as follows: n 
is the number of cities; D  is the matrix of distances 
between all pairs of these cities; j = π(i) denotes city j 
to visit at step i. Usually, permutations are called 
tours, and the pairs (π(1),π(2)), ..., (π(i),π(i+1)), ..., 
(π(n),π(1)) are called edges. So, solving the TSP 
means searching for the shortest closed tour in which 
every city is visited exactly once. 

The TSP is a typical problem of combinatorial op-
timization (CO). This means that theoretical and 
practical insight achieved in the study of the TSP can 
often be helpful in solving other problems in this area. 
This problem is easy to state, but hard to solve. It has 
been proved that the TSP is NP-hard [9], and cannot 
be solved to optimality within polynomially bounded 
computation time. Therefore, heuristic algorithms 
have to be used in order to find near-optimal (locally 
optimal) solutions. The heuristics [25, 28, 30] are not 

able to guarantee that a problem will be solved in 
terms of obtaining the exact solution (it may not even 
be possible to state how close to optimality a 
particular solution is); however, heuristics seek good, 
high quality solutions at a reasonable computational 
cost (time). 

Many heuristics have been "tailored" especially 
for the TSP, among them, tour construction heuristics 
[3, 5, 33], descent local search (2-opt [6], 3-opt [20], 
k-opt (Lin-Kernighan like heuristics) [21, 23], etc.). 
TSP has also been widely used as a problem for 
testing various meta-heuristics, like simulated 
annealing [17, 29], tabu search [7, 18], genetic algo-
rithms [8]. (For a more exhaustive list of the heuristics 
for the TSP, the reader is addressed to [16, 19 ,27, 
32].) 

We are also using this problem as a "platform" for 
investigation of the performance of optimization tech-
nique we call the iterated tabu search (ITS). The paper 
is organized as follows. In Section 1, the paradigm of 
iterated tabu search is outlined. A variant of ITS for 
the traveling salesman problem is discussed in Sec-
tions 2. In Section 3, we present some experimental 
results. Section 4 completes the paper with concluding 
remarks. 
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A. Misevičius 

1. The paradigm 

Since the TSP is a representative example (ins-
tance) of combinatorial optimization problems, we 
will briefly introduce the basic definitions related to 
these problems. CO studies hard problems in which 
the task is to find "the best element" in a finite con-
figuration (solution) space, with respect to some (real-
valued) function. More formally, an instance of a CO 
problem can be described as a pair (S,  f), where S is 
the set of feasible solutions (also called solution 
space), and f: S → ℜ is the objective (cost) function 
which assigns a (real) value to each solution. (Without 
loss of generality, we assume that f seeks a global 
minimum.) The goal is to find a solution sopt ∈ S  such 
that 
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The solution sopt is called a globally optimal solu-
tion (global optimum) of the problem (S,  f). Sopt  ⊆  S 
denotes the set of optimal solutions, and fopt  = f(sopt) 
denotes the optimal value of the objective function 
(optimal cost). 

In addition, a neighbourhood function Θ: S → 2S 
is given: it attaches for each s ∈ S a set Θ(s) ⊆ S − a 
set of neighbouring solutions of s. Each solution s′ ∈ 
Θ(s) can be reached from s by an operation called a 
move, and s is said to move to s′ when such an 
operation is performed. 

TSP-heuristics operate rather upon pairs of 
elements (j1 = π(i),  j2 = π(i+1)) (i.e. edges) than single 
elements (j = π(i)). Taking this fact into account, the 
distance betwee two permutations (tours) is defined as 
the number of pairs of elements (edges) that are 
contained in the first permutation (tour) but not in the 
second permutation (tour) [4]. Mathematically, the 
distance between permutations π and π ′  may be de-
clared as ρ(π,π ′ ) = Ω
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, where Ω is the set that 
consists of all possible pairs (π(i), π((i mod n) + 1)) 
(i∈{1, 2, ..., n}) such that ∃ j: 
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We can then easily define the neighbourhood 
function Θλ of order λ (1 < λ ≤ n): 

 , | {)( Π∈′′= πππλΘ  }),( λππρ ≤′ , where π is from 
Π. If λ=2, one obtains 2-exchange neighbourhood 
function, which is often used in the TSP-heuristics. In 
this case, a move from the current permutation π to the 
neighbouring one )(2 ππ Θ∈′

Π→Ν×Ν×Π

 may be described by 
using a perturbation operator (function) p(π,i,j): 

, which gives for each permutation the 
permutation that is obtained by removing the two 

edges at the ith and jth position and inserting two 
different edges. In the other words, the pairs 
(π(i),π(i+1)) and (π(j), π((j mod n) + 1)) are deleted, 
and the pairs (π(i), π(j)) and (π(i+1), π((j mod n) + 1)) 
are added (see Figure 1). More specifically, p(π,i,j) 
gives π ′  such that π′(i) = π(i), π′(i+1) = π(j), π′(j) = 
π(i+1), π′((j mod n) + 1) = π((j mod n) + 1), where 1 ≤ 
i, j ≤ n ∧ 1 < j − i < n − 1; in addition, if j − i − 2 ≥ 1, 
then π′(i + k + 1) = π(j − k) for every k ∈ {1, ..., j − i − 
2}, in order to guarantee ρ(π, π ′ ) = 2. (For a move 
from certain permutation to p(⋅, i, j), we will also use a 
compact notation mij. An expression ijm⊕=′ ππ  
would mean that π ′  is obtained from π by applying 
p(π, i, j).) Note that the formula for calculation the 
objective function (tour length) difference ∆z = z(p(π, 
i, j)) − z(π) is very simple (i.e. z(p(π,i,j)) − z(π) = 
dπ(i),π(j) + dπ(i+1),π((j mod n)+1) − dπ(i),π(i+1) − dπ(j),π((j mod n)+1)) 
and takes O(1) time. 
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Figure 1. Deleting and adding edges
 in a tour 

 

1.1. Standard tabu search 

Before describing the tabu search (TS) method, 
let us recall for a moment the well-known descent 
local search (LS) heuristic (also known as hill clim-
bing). The descent LS algorithm starts from an initial 
(maybe, randomly generated) solution s°. Further, the 
search process is continued by performing some 
sequential transformations of solutions, i.e. making 
moves from solutions to solutions. A move is applied 
to the current solution s in order to get a new solution 
s′ from the neighbourhood of the current solution 
Θ(s). The moves are controlled, i.e. decisions about to 
move to the neighbouring solutions, or not, are taken 
depending on the qualities of solutions (the objective 
function values f). So, if the decision is "positive", 
then the current solution is replaced by the 
neighbouring one, which will be used as a "starting 
point" for the subsequent trials; otherwise, the search 
is continued with the current solution. In classical 
descent LS algorithms, the decision is "positive" if 
only the new solution is definitely better than the 
current one (i.e. the difference in the objective func-
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tion values is negative (∆f  =  f(s′) − f(s) < 0, where s′ 
∈ Θ(s))). The whole process is continued until the 
current solution s becomes to be locally optimal, that 
is, no better solution exists in the neighbourhood of 
the current solution (∀s′ ∈ Θ(s):  f(s′) ≥ f(s)). (Given a 
neighbourhood Θk, the solution obtained by descent 
LS may be regarded to as an optimal solution with 
respect to this neighbourhood, i.e. k-opt(imal) solu-
tion. Hence, the names of corresponding procedures: 
2-opt, 3-opt, and so on.) 

In some sense, tabu search [11,12] originates 
from the policy described above. However, the TS 
goes beyond this paradigm. In contrast to classical LS 
(which is limited to finding one locally optimal 
solution only), TS-based algorithms continue the 
search even if a locally optimal solution is found. 
Briefly speaking, TS is a process of subsequent moves 
from one local optimum to another. The best local 
optimum found during this process is the resulting 
solution of TS. Thus, TS is an extended descent local 
search. TS enables to escape local optima. Con-
sequently, it explores much more larger part of the 
solution space when comparing with LS. Hence, TS 
offers more opportunities for discovering high quality 
solutions than traditional LS. 

The central idea of the TS method is allowing 
climbing moves when no improving neighbouring 
solution exists, i.e. a move is allowed even if a new 
solution s′ from the neighbourhood of the current 
solution s is worse than the current one. Naturally, the 
return to the locally optimal solutions previously 
visited is to be forbidden in order to avoid cycling of 
the search. TS is based on a methodology of prohi-
bitions: some moves are "frozen" (become "tabu") 
from time to time. 

More formally, TS starts from an initial solution 
s° in S. The process is then continued in an iterative 
way − moving from a solution s to a neighbouring one 
s′. At each step of the procedure, a certain subset Θ′(s) 
of the neighbouring solutions of the current solution is 
considered, and the move (to the solution s′∈ Θ′(s) ⊆ 
Θ(s)) that improves most the objective function value f 
is chosen. Naturally, s′ must not necessary be better 
than s: if there are no improving moves, the TS 
algorithm chooses one that least degrades (increases) 
the objective function, i.e. a move is performed to the 
neighbour s′ (even if f(s′) > f(s)). In order to eliminate 
an immediate returning to the solution just visited, the 
reverse move must be forbidden. This is done by 
storing the corresponding solution (move) (or its 
"attribute") in a memory (called a tabu list (T)). The 
tabu list keeps information on the last |T| moves which 
have been done during the search process (thus, a 
move from s to s′ is considered as tabu if s′, or its 
"attribute", is contained in T). This way of proceeding 
hinders the algorithm from going back to a solution 
reached in the last |T| steps. However, the 
straightforward prohibition may sometimes lessen the 

efficiency of the search. Moreover, it might be worth 
returning after a while to a solution visited previously 
to search in another promising direction. Consequent-
ly, an aspiration criterion is introduced to permit the 
tabu status to be dropped under certain favourable 
circumstances. Usually, a move from s to s′ (no matter 
its status) is permitted if f(s′)  <  f(s∗), where s∗ is the 
best solution found so far. The resulting decision rule 
can thus be described as follows: replace the current 
solution s by the new solution s′ if 

f(s′)<f(s∗) or ( )(minarg
)(

sfs
sΘs

′′=′
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    s′ (or "attribute" of s′) is not tabu). (3) 

The search process is stopped as soon as a termi-
nation criterion is satisfied (for example, a fixed a 
priori number of iterations (trials) has been per-
formed). The pseudo-code for the standard (pure) tabu 
search paradigm is presented in Figure 2. More details 
on fundamentals of TS, its modifications and 
applications can be found in [13, 14]. 

1.2. Iterated tabu search 

Although TS is a powerful optimization tool, it 
typically face, in its canonical form, less or more dif-
ficulties. Some of them are: a huge number of local 
optima over the solution space, cycles (i.e. repeating 
sequences) of the search configurations (states), and 
the phenomenon of so-called "deterministic chaos" (or 
chaotic attractors) [1]. The last one can be charac-
terized by the situation in which "getting stuck" in 
local optima and cycles are absent but the search 
trajectory is still confined in a limited region of the 
solution space. (The trajectories are random although 
the system (the set of solutions) is deterministic (fi-
nite).) So, the search trajectory will visit only a limited 
part of the solution space: if this portion does not 
contain the global minimum (optimum), it will never 
be found. 

In order to try to overcome these difficulties, an 
essential extension of the standard TS − iterated tabu 
search can be proposed. (It should be noted that 
several attempts to enhance the pure TS have been 
already made. One of the most famous modifications 
is the reactive tabu search [1]. Nevertheless, we think 
of ITS as a, probably, more aggressive attempt. First 
of all, this is due to the new important features we will 
discuss in this section.) 

The standard (pure) TS goes beyond the descent 
LS, and ITS tries to go beyond the standard TS. The 
heart of ITS is the concept of intensification and diver-
sification (I&D). The early origins of this concept go 
back to 1986 [2]. Since that time, various modifica-
tions and enhancements of the basic idea have been 
proposed, among them, iterated Lin-Kernighan algo-
rithm [15], "large step Markov chains" [24], variable 
neighbourhood search [26], and, finally, iterated local 
search (ILS) [22]. 

 



A. Misevičius 

function tabu_search(s); 
  // input: s − the initial solution; output: s∗ − the best solution found // 

  s∗ := s; 
  initialize the tabu list T; 
  repeat // continue the main cycle of TS // 

    given neighbourhood function Θ, tabu list T, and aspiration 
criterion, 
    find the best possible solution s′ ∈ Θ′(s) ⊆ Θ(s), where Θ′(s) consists of  
    solutions that (or their "attributes") are not currently in the tabu  
    list T or satisfy the aspiration criterion; 
    s := s′; // replace the current solution by the new one // 
    insert the solution s (or its "attribute") into the tabu list T; 
    if f(s) < f(s∗) then s∗ := s; // save the best so far solution // 
    update the tabu list T 
  until termination criterion is satisfied; 
  return s∗ 
end. 

 
Figure 2. Paradigm of standard tabu search 

Very roughly, ILS can be thought of as a "ruin 
and recruit" principle based optimization policy. There 
are two main phases (components) in the ILS para-
digm: 1) the reconstruction phase (it can be viewed as 
diversification of the search), and 2) the local im-
provement phase (it can be viewed as intensification 
of the search). The additional component is the selec-
tion of a candidate for the reconstruction. During the 
first phase, an existing solution is reconstructed 
(perturbed) in a proper way. In the second phase, one 
tries to improve the solution just "ruined" as best as 
one can; hopefully, the new (improved) solution is 
better than the solutions obtained in the previous 
iterations. By repeating these phases many times one 
seeks for high quality results. ITS is very similar to 
ILS. The main distinguishing feature of ITS is that the 
standard (or, maybe, modified) TS procedure plays a 
role of an effective intensification (i.e. local im-
provement). 

So, ITS is initiated by the improvement of an 
initial solution (by means of the traditional TS). As a 
result, the first optimized solution, say s•, is achieved. 
Further, a given solution undergoes a "destruction", 
and a new solution, say s~, is obtained. The goal of 
such a reconstruction is not to destroy the current 
solution absolutely − on the contrary, it is highly desir-
able that the resulting solution inherits some cha-
racteristics of the previous local optimum, since parts 
of this optimum may be close to the ones of the 
globally optimal solution. It is important, however, 
that a proper level of diversification is kept up. The 
reconstruction should be neither too strong, nor too 
weak − otherwise the resulting algorithm might be 
quite similar to a pure random ("blind") multistart, or 

the process would periodically return to solutions to 
which the reconstruction has been applied. 

Regarding the solutions to be reconstructed, two 
alternatives exist: a) an exploitation, and b) an explo-
ration. The exploitation is achieved by choosing only 
the currently best local optimum (the best so far (BSF) 
solution) as a candidate for the reconstruction. The 
exploration takes place if one of locally optimal 
solutions (not necessary the best local optimum) found 
so far is accepted as a candidate solution − in fact, 
each optimized solution can be considered as a 
potential candidate for the reconstruction. In the case 
of exploration, a variety of strategies may be used for 
the candidate selection. In the simplest case, so-called 
"where you are" (WYA) strategy is applied, i.e. every 
new local optimum is accepted. However, more 
sophisticated policies are available, for example, the 
selection from a pool (memory) of locally optimal 
solutions, like in the population based (genetic) 
algorithms. 

The reconstructed solution s~ serves as an input 
for the subsequent tabu search procedure, which starts 
immediately after the reconstruction is finished. The 
TS procedure returns the new optimized solution s•, 
which (or some other local optimum) in turn is re-
constructed, and so on. The new better solution (s∗) 
found at the current iteration is saved in a memory. 
This type of proceeding continues until a stopping 
condition is met, for example, a fixed number of 
iterations has been executed. The pseudo-code of the 
ITS paradigm is shown in Figure 3. 
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function iterated_tabu_search(s); 
  // input: s − the initial solution; output: s∗ − the best solution found // 

  s• := tabu_search(s); // improve the initial solution by using TS procedure, get the resulting solution s• 
// 

  s := s•; s∗ := s•; 
  repeat // continue the cycle of the iterated tabu search // 

    s := candidate_acceptance(s•,s, ...); // select a solution for the subsequent reconstruction // 
    s~ := reconstruction(s); // "ruin" the selected solution, obtain a new solution s~ // 

    s• := tabu_search(s~); // improve the solution s~ by TS, get the resulting optimized solution s• // 
    if f(s•) < f(s∗) then s∗ := s• // save the best so far solution (as a possible result of ITS) // 
  until termination criterion is satisfied; 
  return s∗ 
end. 

 
Figure 3. Paradigm of iterated tabu search 

It should be noted that ITS is a general purpose 
meta-heuristic − not a pure heuristic algorithm. Such a 
meta-heuristic succeeds in search if only involves the 
specific problem knowledge. So, the local 
improvement (intensification), as well as the 
reconstruction (diversification) procedures must be 
"tailored" for a particular problem (i.e. must be as 
much problem-oriented as possible), while the 
framework itself is, in general, invariable. 

2. A variant of iterated tabu search for the 
TSP 

2.1. Initial solution construction 

The question of whether or not to use a tour 
construction heuristic for the initial solution is not that 
simple to answer. For example, Reinelt [32] found that 
is better to start with an efficient construction heuris-
tic. However, Lin and Kernighan [21] concluded that 
the use of sophisticated construction heuristic is just 
wasting time. Besides, the construction heuristics are 
usually deterministic, so it may not be possible to 
obtain more than one different solution. 

In our algorithm, the initial solutions are gene-
rated in a random way, although using construction 
heuristics may result in a significant reduction of CPU 
time. 

2.2. Local improvement (intensification) 

In ITS, the local improvement is based on the 
standard tabu search. In fact, we apply only short runs 
of the TS procedure − we call this approach a limited 
tabu search (LTS). The experiments have demonst-
rated that these limited iterations allow saving 
considerable amount of CPU time; on the other hand, 
LTS in combination with diversification operators is 

quite enough to seek for near-optimal solutions. 
Another modification is related to the way which TS 
explores the neighbourhood. (Note that we use the 2-
exchange neighbourhood Θ2.) So, instead of exploring 
each time the complete neighbourhood Θ2, we apply 
the TS runs for some smaller portions of this 
neighbourhood (again, this is done for the sake of 
reduction of CPU time). The portions are processed 
sequentially, one by one. The size of these portions θ  
can be defined by a user-defined parameter. 

The tabu list is organized as an n×n matrix T of 
integer numbers. At the beginning, all the entries of T 
are set to zero. As the search progresses, the entries tij 
store the current number of the iteration plus the tabu 
list factor h. In this case, a move mij (as described in 
Section 1) is tabu if the value of tij is equal or greater 
than the current iteration number. Note, that by using 
the matrix based tabu list, testing whether a move is 
tabu or not requires only one comparison (i.e. it is 
performed in a constant time). The detailed template 
of the TS procedure for the TSP is given in Figure 4. 

We also propose to add an additional component 
(feature) to this TS procedure. The idea is to use an 
alternative intensification mechanism under certain 
circumstances, for example, if the current difference in 
the objective function values is negative. In this case, 
the basic TS procedure is temporally "interrupted" in 
order to apply 2-opt (or other fast LS) procedure. The 
reason is to prevent accidental miss of local optima 
and to intensify search at the moments of decreasing 
of the objective function. This alternative intensifi-
cation is omitted if it already took place within the last 
r iterations. Here, r can be related to the current tabu 
list size h: r  = ωh, where ω  is the alternative intensi-
fication frequency factor. The template of the 2-opt 
procedure is presented in Figure 5. 
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function TS(π,n,τ,θ); // the tabu search procedure for the TSP // 
  // input: π − the current permutation (tour); n − the problem size; τ − the number of iterations; // 

  //     θ − the size of the portions of the neighbourhood Θ2; i, j − the current move indices; // 
  //     h − the current tabu list size; ω − the alternative intensification frequency factor // 

  // output: π• − the best solution found // 
  π• := π; T := 0; c := 1; c′ := 1; ),1,1(: nniifn −==′ ; r := ωh; improved := "FALSE"; 

  while (c ≤ τ) or improved = "TRUE" then begin // main cycle // 
    ∆zmin := ∞; 
    for w := 1 to θ do begin // find the best non-tabu move in the part of Θ2(π) // 
      ))1,1,2(,,(: +−<′<= iniifinjifi ; n ),1,1(: nniif −==′ ; )2,1,(: ++′<= ijnjifj ; 

      ∆z := z( ijm⊕π )−z(π); 
      tabu := if(tij ≥ c, "TRUE", "FALSE"); aspired := if(z(π) + ∆z < z(π•), "TRUE", "FALSE"); 
      if ((∆z < ∆zmin) and not tabu) or aspired then begin ∆zmin := ∆z; u := i; v := j 
end 
    end; // for // 

    improved := if(∆zmin < 0, "TRUE", "FALSE"); 
    if ∆zmin < ∞ then begin 
      π := uvm⊕π ; // replace the current permutation (tour) by the new one // 

      tuv := c + h // make the corresponding move tabu // 
    end; // if // 
    if improved = "TRUE" and (c − c′ ≥ r) then begin π := TWO_OPT(π,n); c′ := c end; 
    if z(π) < z(π•) then π• := π; // save the best so far permutation (tour) //  
    c := c + 1 
  end; // while // 
  return π• 
end. 

 
Figure 4. Pseudo-code of the tabu search procedure for the TSP 

 

function TWO-OPT(π,n); // 2-opt based on the steepest descent (best improvement) for the TSP // 
  // input/output: π − the initial/locally optimal permutation (tour); n − the problem size // 
  k := 1; l := 2; n′ := n−1; 
  repeat // main cycle // 

    ∆zmin := 0; // ∆zmin − the minimum difference of the objective function values // 
    for w := 1 to |Θ2| do begin 
      ))1,1,2(,,(: +−<′<= knkifknlifk ; n ),1,1(: nnkif −==′ ; )2,1,(: ++′<= klnlifl ; 

      ∆ := z( klm⊕π )−z(π); 

      if ∆ < ∆zmin then begin ∆zmin := ∆; u := k; v := l end 
    end; // for // 
    if ∆zmin < 0 then π := uvm⊕π  // replace the current permutation (tour) by the new one // 
  until ∆zmin ≥ 0; 
  return π 
end. 

 
Figure 5. Pseudo-code of the 2-opt algorithm for the TSP 
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2.3. Reconstruction (diversification) 

For the solution reconstruction, we propose a 
procedure entitled as a randomized greedy reconnect. 
The procedure consists of three main steps (see also 
Figure 6): 1) "ruin" (destruction) of the current so-
lution; 2) local improvement of the part (segment) of 
the solution; 3) rebuilding the solution. In more 
details, the current solution is disintegrated in a 
random way, so that a part of the solution is obtained. 
Further, a greedy local improvement based on the 
nearest neighbour (NN) algorithm [33] is applied to 
this segment. Finally, the locally optimized segment is 

copied back to its original position, i.e. the tour is 
reconnected (recreated). The only control parameter 
for the greedy reconnect procedure is the reconstruc-
tion level µ, i.e. the actual length of the tour segment 
to be processed by NN. We let the parameter µ vary in 
some interval [µa, µb] ⊆ [3, n]; here, the values of µa, 
µb can be related to the problem size n, i.e. 
µa = max(3, ξ1n) and µb = max(3, ξ2n), where ξ1, ξ2 
(0 < ξ1 ≤ ξ2 ≤ 1) are user-defined coefficients. Figures 
7, 8 show the templates of the corresponding 
procedures in an algorithmic language form. 

 
 
 disintegration 
 local improvement by NN 
 recreation 
 
 
 Figure 6. The graphical interpretation of the reconstruction process 

 

function RGR(π,µ); // the randomized greedy reconnect procedure for the TSP // 
  // input/output: π − the current/reconstructed permutation (tour), µ − the reconstruction level // 
  choose a position i (1 ≤ i ≤ n) in π at random; 
  starting at the position i, copy µ items from π to πtmp  
  (if i + µ − 1 > n, the copying is done in a wrap-around fashion); 
  π′tmp := NN(πtmp); // apply the nearest neighbour heuristic to πtmp, get π′tmp // 

  copy the contents of π′tmp back to π; 
  return π 
end. 

 
Figure 7. Pseudo-code of the randomized greedy reconnect procedure for the TSP 

 

function NN(π); // the nearest neighbour heuristic for the TSP // 
  // input: π − the current permutation (tour); output: πnew − the resulting permutation // 
  select a random city j from π; 
  πnew(1) := j; 
  for i := 2 to |π| do begin // continue while there are any unvisited cities // 

    find the nearest (to j) unvisited city k in π; 
    πnew(i) := k; 
    j := k 
  end; // for // 
  return πnew 

end. 
 

Figure 8. Pseudo-code of the nearest neighbour heuristic for the TSP 

In addition to the greedy reconnect procedure de-
scribed, an alternative reconstruction mechanism may 
be applied. It takes place after the situation of 
stagnation of the search is detected. Stagnation is said 
to reveal itself if the best so far solution remains 

unchanged for a quite long time. Figure 9 depicts an 
example of a typical situation. In such situations, we 
simply make "cold restarts", i.e. generate new solu-
tions from scratch. 
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Figure 9. Illustration of the stagnation situation:  
(a) cost (objective function value) vs time (search iteration); (b) the BSF solution cost vs time.  

Note. As a data source, the TSP instance gr24 from TSPLIB [31] was used 

2.4. Candidate acceptance  

In our implementation of the ITS algorithm, we 
have chosen the exploitation (see Section 1.2) as a 
candidate acceptance strategy. This means that the 
only actually best solutions (BSF-solutions) are 
candidates for the subsequent reconstruction. The 
reason was that we found that the exploitation strategy 
yielded better results than the alternative exploration 

(WYA) strategy. Speaking in an algorithmic language, 
the candidate solution at the qth iteration of ITS is 
defined according to the formula  

, where π

<= • )(()( ππ zifq

•π

),),( )1()1( −•− qqz πππ (q) is the candidate solu-
tion at the current iteration, π(q−1) is the candidate solu-
tion before the last execution of the improvement (TS) 
procedure (the BSF solution), and  is the solution 
obtained by the improvement procedure. 

 

function ITS(π,n,Q,τ,θ,h,ω,ξ1,ξ2); // the iterated tabu search procedure for the TSP // 
  // input: π − the current (initial) permutation (tour); n − the problem size; // 
  //     Q − the total number of iterations; τ − the number of iterations for the TS procedure; // 
  //     θ − the size of the portions of the neighbourhood Θ2; h − the current tabu list size; // 
  //     ω − the alternative intensification frequency factor; ξ1, ξ2 − the reconstruction factors // 
  // output: π∗ − the best permutation found // 
  π• := TS(π,n,τ,θ); // improve the current (initial) solution preliminary // 
  π := π•; π∗ := π•; i := 1; j := 2; n′ := n−1; 
  µa := max(3,ξ1n); µb := max(3,ξ2n); µ := µa−1; 
  for q := 1 to Q do begin // main cycle // 
    if stagnation condition is met  
       then begin generate new solution π ~; µ := µa−1 end 
       else begin 
         ; // choose the candidate for the reconstruction // )( πππππ ,),()(: •• <= zzif

         )( abif µµµµµ ,1,: +<= ; // update the reconstruction level // 
         π ~ := RGR(π,µ) // apply randomized greedy reconnect procedure to π∗, get π~ // 
       end; // else // 
    π• := TS(π~,n,τ,θ); // try to improve the reconstructed solution // 
    if z(π•) < z(π∗) then begin 
      π∗ := π•; // save the best so far permutation // 
      µ := µa−1 // reset the reconstruction level // 
    end // if // 
  end; // for // 
  return π∗ 
end. 

 
Figure 10. Pseudo-code of the iterated tabu search procedure for the TSP 
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The template of the resulting algorithm is pre-
sented in Figure 10. The default values of the control 
parameters for the ITS algorithm are: Q = Cn (C = 1 ÷ 
3); τ = 0.6n; θ  = 0.15n; h  = 0.25n; ω = 0.08; 
ξ1 = 0.30; ξ2 = 0.35. 

3. Computational experiments 

In order to evaluate the efficiency of the proposed 
algorithm, some experiments have been carried out. 
The well-known set of the test data taken from the 
library of the TSP instances TSPLIB [31] were used. 
The algorithms used in the experimentation are as 
follows: 
 1) the multi-start 2-opt (M-2-OPT) algorithm; 
 2) the 4-opt (4-OPT) algorithm; 
 3) the variant of a simulated annealing (SA) algo-

rithm; 
 4) the variant of a standard (pure) tabu search (TS) 

algorithm; 
 5) the iterated tabu search (ITS) algorithm. 

All the algorithms are coded by the author. The 
programming language Free Pascal is used. 

The performance measures of the algorithms are: 
a) the average deviation of solutions from a provably 
optimal solution − δ  ( %][ )(100 optopt zzz −=δ , 
where z  is the average objective function value (tour 
length) over 10 runs (single applications of the 
algorithm to a given instance), and zopt is the objective 
function value of the optimal solution (values zopt are 
taken from [31])); b) the number of solutions that are 
within 1% optimality (over 10 runs) − C1%; c)  the 
number of the optimal solutions found − Copt. 

The results of the comparison are presented in 
Table 1. Firstly, it can be seen that the 2-opt based 
multi-start appears better then the straightforward 4-
opt in many cases. In turn, SA works better than the 
multi-2-opt. Unexpectedly, SA seems even to be better 
than the pure tabu search. Regarding the iterated tabu 
search, it clearly outperforms both the standard tabu 
search (see Figure 11) and all the other algorithms 
tested with respect to the performance measures used 
(first of all, the average deviation). Note that the 
efficiency of ITS can be improved even more by 
increasing the number of iterations or tuning the 
values of other control parameters. The enhancements 
of the performance by modifying/extending the 
components of ITS are also possible (see Section 4). 

Some results of other known TSP-heuristics can 
be cited for the sake of more objectivity. In Knox’s 
paper [18], a version of the standard tabu search based 
algorithm was proposed. The author reports few 
results for small TSP instances (n≤75). The solutions 
are very close to optimal, however the CPU times are 
quite large (for example, more than 600 seconds are 
needed for an instance with 50 cities). 

In [15], Johnson introduced an improved variant 
of the famous Lin-Kernighan heuristic. This algorithm 
was able to produce solutions that are within about 
0.8% optimality on instances of size ≤100. The other 
efficient implementation of Lin-Kernighan algorithm 
yielded solutions that were from 0.24% to 3.04% of 
optimal solutions on instances of size 48 to 226. In 
[8], very few results are given; for example, for the 
instance kroa100, the average quality of the solutions 
is 0.00% − this took 11 seconds.  

Table 1. Comparison of the algorithms (Part I). The best results obtained are printed in bold face.  
 CPU times per run are given in seconds. (900 MHz PENTIUM computer was used in the experimentation) 

Instance  n zopt 
δ [, C1%/Copt,] time 

 M-2-OPT 4-OPT SA TS ITS 

a280 280 2579 6.73, 0/ 0, 19  — 0.03 10/ 9, 78 2.04, 3/ 0, 140  0  25 
att48 48 10628 0.75, 6/ 0, 0.1 1.59, 3/ 0, 1.0  0 6.0 0.85, 7/ 1, 0.8  0  0.1 
bayg29 29 1610 0.26, 10/ 4, 0.1 1.44, 4/ 1, 0.1  0 5.0  0  0.2  0  0.0 
bays29 29 2020 0.03, 10/ 9, 0.1 0.97, 6/ 0, 0.1  0 5.0  0  0.2  0  0.0 
berlin52 52 7542 0.63, 7/ 6, 0.2 2.88, 1/ 0, 1.5  0 7.0 0.48, 8/ 8, 1.1  0  0.1 
bier127 127118282 2.43, 0/ 0, 1.4 1.97, 1/ 0, 170 0.66, 5/ 5, 18 2.51, 2/ 0, 12  0  1.5 
brazil58 58 25395 0.00, 10/ 7, 0.1 0.94, 7/ 5, 2.9  0  8.0  0  1.4  0  0.2 
brg180 180 1950 8.82, 0/ 0, 3.9 0.10, 10/ 8, 700 16.30, 0/ 0, 36  0  23  0  0.5 
burma14 14 3323  0  0.0 0.57, 9/ 5, 0.0  0  0.5  0  0.1  0  0.0 
ch130 130 6110 2.64, 0/ 0, 1.6 2.39, 1/ 0, 190 0.27, 9/ 5, 19 2.56, 0/ 0, 14  0  2.9 
ch150 150 6528 4.12, 0/ 0, 2.4 2.51, 1/ 0, 400 0.33, 10/ 1, 24 1.06 6/ 1, 21  0  3.5 
d198 198 15780 2.22, 0/ 0, 6.0 1.28, 4/ 0, 1800 0.10, 10/ 2, 40 0.37, 9/ 0, 42  0  60 
d493 493 35002 5.55, 0/ 0, 170  — 0.64, 10/ 0, 320 2.76, 0/ 0, 900 0.28, 10/ 1, 900 
dantzig42 42 699 0.16, 9/ 8, 0.1 0.36, 10/ 5, 0.5  0  6.0 0.07, 10/ 9, 0.6  0  0.0 
eil51 51 426 2.28, 0/ 0, 0.2 1.83, 2/ 0, 1.6 0.02, 10/ 9, 7.0 0.09, 10/ 6, 0.9  0  0.5 
eil76 76 538 3.90, 0/ 0, 0.3 2.36, 1/ 1, 17  0  10  0  2.7  0  0.4 
eil101 101 629 4.69, 0/ 0, 0.8 2.99, 0/ 0, 48  0  14 0.18, 9/ 6, 5.9  0  1.2 
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Table 1. Comparison of the algorithms (Part II). The best results obtained are printed in bold face.  
 CPU times per run are given in seconds. (900 MHz PENTIUM computer was used in the experimentation) 

Instance  n zopt 
δ [, C1%/Copt,] time 

 M-2-OPT 4-OPT SA TS ITS 

fl417 417 11861 2.19, 0/ 0, 100  — 1.26, 4/ 0, 230 1.92, 3/ 0, 550 0.05, 10/ 5, 540 
fri26 26 937  0 0.1 0.38, 8/ 0, 0.0  0 5.2  0 0.2  0 0.0 
gil262 262 2378 5.13, 0/ 0, 17  — 0.24, 10/ 0, 75 2.94, 1/ 0, 145 0.00, 10/ 9, 350 
gr17 17 2085  0 0.0 0.17, 10/ 4, 0.0  0 2.0 0.04, 10/ 8, 0.0  0 0.0 
gr21 21 2707  0 0.1 1.77, 5/ 5, 0.1  0 3.2  0 0.1  0 0.0 
gr24 24 1272  0 0.1 1.82, 6/ 4, 0.1  0 4.9  0 0.2  0 0.0 
gr48 48 5046 0.38, 10/ 0, 0.2 1.00, 7/ 0, 6.0  0 6.4 0.20, 10/ 5, 0.8  0 0.1 
gr96 96 55209 2.05, 0/ 0, 0.7 1.62, 5/ 0, 42 0.20, 10/ 0, 14 1.99, 3/ 0, 6.1  0 1.2 
gr120 120 6942 3.38, 2/ 0, 1.2 3.16, 0/ 0, 120 0.35, 10/ 0, 18 0.42, 9/ 0,10.6  0 6.9 
gr137 137 69853 2.73, 0/ 0, 2.0 2.27, 2/ 0, 270 0.15 10/ 2, 22 1.17, 4/ 0, 16  0 2.4 
gr202 202 40160 4.13, 0/ 0, 6.0 2.99, 0/ 0, 1900 0.24, 10/ 2, 40 2.23, 1/ 0, 50  0 320 
gr229 229 134602 4.10, 10/ 0, 9.0  — 0.61, 9/ 0, 47 2.50, 1/ 0, 78 0.01, 10/ 9, 380 
gr431 431 171414 5.34, 10/ 0, 110  — 0.46, 10/ 0, 240 3.86, 0/ 0, 730 0.23, 10/ 1, 630 
hk48 48 11461 1.27, 3/ 0, 0.1 0.93, 6/ 3, 1.0 0.46, 10/ 0, 4.8 0.28, 9/ 5, 0.8  0 0.2 
kroa100 100 21282 1.13, 5/ 0, 0.8 0.56, 8/ 0, 48 0.13, 10/ 5, 13 2.62, 5/ 0, 6.7  0 0.7 
kroa150 150 26524 3.64, 0/ 0, 2.4 2.02, 1/ 0, 360 0.06, 10/ 1, 24 2.94, 1/ 0, 22  0 32 
kroa200 200 29368 4.18, 0/ 0, 6.0 2.85, 1/ 0, 1800 0.41, 10/ 0, 39 3.68, 0/ 0, 53  0 24 
krob100 100 22141 2.03, 1/ 0, 0.7 2.25, 3/ 0, 48 0.09, 10/ 7, 14 1.91, 2/ 0, 6.6  0 0.9 
krob150 150 26130 2.88, 0/ 0, 2.5 1.99, 0/ 0, 360 0.19, 10/ 0, 25 3.33, 0/ 0, 21  0 8.5 
krob200 200 29437 4.71, 0/ 0, 6.0 2.47, 0/ 0, 1900 0.18, 9/ 0, 39 5.00, 0/ 0, 54  0 86 
kroc100 100 20749 1.81, 1/ 0, 0.8 1.78, 4/ 1, 48 0.03, 10/ 8, 13 2.22, 2/ 0, 6.8  0 0.8 
krod100 100 21294 2.37, 1/ 0, 0.8 1.88, 2/ 0, 48 0.07, 10/ 7, 13 2.53, 2/ 0, 6.6  0 0.9 
kroe100 100 22068 2.05, 0/ 0, 0.8 1.43, 4/ 0, 48 0.31, 10/ 0, 13 1.01, 8/ 0, 6.7  0 1.1 
lin105 105 14379 1.23, 3/ 0, 0.8 1.97, 4/ 0, 60 0.12, 19/ 7, 15 3.13, 0/ 0, 7.7  0 0.8 
lin318 318 42029 4.60, 0/ 0, 45  — 0.83, 7/ 0, 120 3.95, 0/ 0, 280 0.29, 10/ 3, 180 
linhp318 318 41345 6.34, 0/ 0, 45  — 2.50, 0/ 0, 115 5.67, 0/ 0, 280 0.22, 10/ 4, 170 
pcb442 442 50778 7.07, 0/ 0, 120  — 0.55, 10/ 0, 250 1.58, 0/ 0, 690 0.37, 10/ 0, 510 
pr76 76 108159 0.91, 8/ 0, 0.4 1.69, 3/ 0, 12  0 10 0.39, 9/ 0, 2.9  0 0.3 
pr107 107 44303 0.90, 6/ 0, 0.9 1.14, 5/ 0, 72  0 14 1.17, 9/ 1, 7.3  0 0.8 
pr124 124 59030 0.49, 9/ 1, 1.5 1.09, 4/ 1, 160 0.06, 10/ 3, 18 1.25, 4/ 1, 12  0 0.6 
pr136 136 96772 2.87, 0/ 0, 1.8 2.58, 1/ 0, 250 0.43, 9/ 0, 21 0.95, 5/ 0, 15  0 11 
pr144 144 58537 0.15, 10/ 0, 2.4 0.16, 9/ 5, 340 0.15, 9/ 6, 23 2.75, 2/ 0, 18  0 1.2 
pr152 152 73682 0.84, 6/ 0, 2.8 0.77, 7/ 0, 380 0.22, 10/ 1, 25 1.82, 2/ 0, 22  0 16 
pr226 226 80369 1.23, 0/ 0, 9.5  — 0.37, 10/ 0, 47 2.22, 6/ 0, 66  0 65 
pr264 264 49135 4.89, 0/ 0, 16  — 0.05, 10/ 8, 66 1.92, 3/ 1, 125  0 21 
pr299 299 48191 5.04, 0/ 0, 30  — 0.15, 10/ 1, 90 4.22, 0/ 0, 200 0.01, 10/ 7, 290 
pr439 439 107217 5.44, 0/ 0, 120  — 1.85, 2/ 0, 240 5.22, 0/ 0, 720 0.18, 10/ 2, 740 
rat99 99 1211 4.48, 0/ 0, 0.6 2.95, 1/ 0, 48  0 13 0.26, 10/ 2, 6.3  0 0.8 
rat195 195 2323 7.47, 0/ 0, 5.0 3.44, 0/ 0, 1700 0.20, 10/ 0, 37 0.30, 10/ 0, 40  0 150 
rd400 400 15281 6.62, 0/ 0, 95  — 0.49, 10/ 0, 220 4.07, 0/ 0, 700 0.22, 10/ 2, 560 
si175 175 21407 0.45, 10/ 0, 3.7 0.21, 10/ 0, 900 0.04, 10/ 1, 31 0.27, 10/ 0, 28  0 11 
st70 70 675 0.76, 8/ 0, 0.2 1.84, 2/ 0, 70 0.02, 10/ 9, 9.0 1.04, 5/ 1, 2.2  0 0.3 
swiss42 42 1273  0 0.1 1.33, 5/ 2, 0.5  0 5.8 1.07, 7/ 7, 0.6  0 0.1 
ts225 225 126643 1.67, 2/ 0, 9.0  — 0.02, 10/ 7, 50 1.65 4/ 3, 62  0 4.3 
tsp225 225 3916 5.17, 0/ 0, 9.3  — 1.05, 2/ 0, 49 2.00, 1/ 0, 67  0 30 
u159 159 42080 3.14, 0/ 0, 3.0 2.55, 1/ 0, 370 0.68, 10/ 1, 26 3.26, 2/ 0, 25  0 1.4 
ulysses16 16 6859  0 0.0  0 0.0  0 3.4  0 0.1  0 0.0 
ulysses22 22 7013  0 0.1 0.11, 9/ 9, 0.1  0 5.4  0 0.1  0 0.0 

 
In a more recent work [10], the tabu search like 

algorithm (called a complete local search) could find 
solutions that are from 1.13% to 8.62% far from 

optimal solutions for instances of size 52 to 200 (the 
CPU time reported is from 9.9 to 2206 seconds). 
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4. Concluding remarks 

The goal of this paper was rather testing the new 
optimization framework than creation of a highly 
refined algorithm for the traveling salesman problem. 
The iterated tabu search algorithm based on the 
improvement (intensification) and reconstruction 
(diversification) paradigm is proposed. The main idea 
is to try to achieve more efficiency by coupling the 
standard tabu search with the proper reconstruction 
(diversification) mechanism. The results obtained 
from the experiments with the TSP instances (espe-
cially, the smaller TSP instances) confirm that the 
performance of traditional TS is improved consider-
ably if the pure TS acts as an effective local improve-
ment procedure within the ITS paradigm. 

Regarding possible extensions of ITS, the fol-
lowing directions of improvement may be proposed: 

1) using the reactive tabu search (instead of the 

straightforward tabu search) as a probably more 
efficient local improvement procedure; 

 2) implementing other, more elaborated and robust 
reconstruction (diversification) operators within 
ITS; 3) trying new efficient "cold restart" 
techniques; 

 4) maintaining "the history" (the (long-term) 
memory) of the locally optimal solutions; 

 5) incorporating the limited runs of ITS into other 
meta-heuristics, for example, genetic (memetic) 
algorithms. 
In addition to that, it would be interesting using 

other more "tailored" algorithms (for example, the 
Lin-Kernighan heuristic) in the role of an 
intensification procedure. 

The results of ITS for the TSP are promising. So, 
it may be worthy applying the ITS-based approach to 
other difficult combinatorial optimization problems. 
This could by a subject of the future work. 
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 Figure 11. Illustration of results of the standard and iterated tabu search algorithms 
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