
Using JFLAP to Interact with Theorems in Automata Theory

Eric Gramond and Susan H. Rodger�

Duke University, Durham, NC
rodger@cs.duke.edu

Abstract

An automata theory course can be taught in an interactive,
hands-on manner using a computer. At Duke we have been
using the software tool JFLAP to provide interaction and
feedback in CPS 140, our automata theory course. JFLAP
is a tool for designing and running nondeterministic ver-
sions of finite automata, pushdown automata, and Turing
machines. Recently, we have enhanced JFLAP to allow one
to study the proofs of several theorems that focus on conver-
sions of languages, from one form to another, such as con-
verting an NFA to a DFA and then to a minimum state DFA.
In addition, our enhancements combined with other tools al-
low one to interactively study LL and LR parsing methods.

1 Introduction

Traditionally the automata theory course has been taught
without computers. Students work on assignments using
pencil and paper with no immediate feedback. As a result,
this course can be more difficult for some students than most
of the other computer science courses which have hands-on
interaction in the form of programming.

There are two reasons why many students have more dif-
ficulty with the automata theory course than other computer
science courses. The first reason is that automata theory
has more mathematics than most computer science subjects.
Discrete mathematics is usually a prerequisite or taught as
part of the course. The automata theory course consists of
mathematical notation that must be grasped in order to un-
derstand the proofs of the theorems studied. The second rea-

�The work of this author is supported by the National Science Foundation’s Di-
vision of Undergraduate Education through grant DUE-9555084 and by the National
Science Foundations’s Computer and Information Science & Engineering Directorate
through grant CISE-9634475.

son is that students do not receive immediate feedback when
working problems using pencil and paper. Weaker students
especially need to work additional problems to understand
concepts, and need to know if their solutions are correct.

The notation in the automata theory course is needed to
describe theoretical representations of languages (automata
and grammars). Tools such as JFLAP provide students an
alternative visual representation and a chance to create and
simulate these representations. As students interact and re-
ceive feedback on concepts with the visual representations
provided in JFLAP, they may become more comfortable with
the mathematical notation used in the formal representation.

Recently we have extended JFLAP to allow one to in-
teract with proofs of several theorems that focus on conver-
sions of languages from one form to another. In most of
the conversions, the user creates the new representation with
aid from JFLAP. The conversions in JFLAP are nondeter-
ministic finite automaton (NFA) to deterministic finite au-
tomaton (DFA), DFA to minimum state DFA, NFA to regular
grammar, regular grammar to NFA, nondeterministic push-
down automaton (NPDA) to context-free grammar (CFG),
and three algorithms for CFG to NPDA. Two of the CFG to
NPDA conversions are useful in studying LL and LR pars-
ing.

In this paper, we describe related results in Section 2 and
the original version of JFLAP briefly in Section 3. The mod-
ifications to JFLAP for experimenting with proofs of the-
orems on transformations for regular and context-free lan-
guages are described in Section 4. Section 5 describes how
JFLAP can be used to study LL and LR parsing. We describe
how JFLAP is used in the classroom in Section 6 and give
concluding remarks in Section 7.

2 Related Work

In another theoretical area of computer science, algorithms
and data structures, many tools including [5, 6, 9, 11] have
been developed for creating animations of algorithms that
can be used in teaching. Studies show [1] the need for stu-
dents to participate in creating the animations as opposed to
just passively watching the animations. Not nearly as many
tools have been developed for automata theory that provide
hands-on interaction. In this section we discuss some au-
tomata theory tools others have developed or are currently



working on.
The project WebLab [4] includes concept animation, the

activity of animating a particular concept, and it presents ex-
amples for a Java animator for deterministic finite state au-
tomata. Their goal is to develop a repretory of animations
from the theory of computing including automata, gram-
mars, languages and NP-completeness.

Turing’s World [2] is a Macintosh program that focuses
on Turing machines. One can create and run Turing ma-
chines. A special feature allows one to define submachines,
and then use the submachines to build quite complex Tur-
ing machines. Turing’s world also allows one to build finite
automata and nondeterministic machines.

3 JFLAP

In this section we briefly describe the original version of
JFLAP [10], and in the next section we describe the new
modifications to JFLAP.

JFLAP (Java Formal Languages and Automata Package)
is a tool for creating and simulating several versions of au-
tomata, including finite automata, pushdown automata, 1-
tape Turing machines and 2-tape Turing machines. The user
creates a graph representing a transition diagram, labels the
transitions, enters an input, and then steps through the exe-
cution of the machine. JFLAP allows one to create nonde-
terministic machines, with two choices for execution. In the
“fast” mode, the user receives a message indicating either
the input was not accepted, the input was accepted, or the
execution is taking a long time. If the input was accepted,
the user can select to step through an animation of the pro-
cessing of the input to acceptance. In the “step” mode, the
user starts in the start state and steps through the execution.
All possible configurations reached are shown at each stage.
However if the number of configurations exceeds 15, then
the user must control the execution by freezing or removing
some configurations.

At Duke we have used JFLAP with the textbooks [7, 8].
JFLAP has been designed with flexible definitions to allow
for its use with most automata theory textbooks. For exam-
ple, the transition for a pushdown automaton can have zero
or more items in each field. That is, nothing is popped or
one or more characters are popped, nothing is pushed or one
or more characters are pushed, and input is ignored or one
or more input characters are processed.

4 Modi�cations to JFLAP to study Proofs

The main modifications to JFLAP allow one to step through
the proofs of several theorems representing the transforma-
tion of a language from one representation to another. In
most cases, the user creates one representation using JFLAP
and then JFLAP aids the user in creating an equivalent rep-
resentation in another form. Transformations have been cre-
ated for regular languages and context-free languages.

Other modifications made to JFLAP include an additional
execution mode, and improved editing capabilities. A third
execution choice is now available in which one can enter sev-
eral input strings and receive the acceptance status of all the

strings. The improved editing capabilities include the ability
to move the labels on transitions, and to increase or decrease
the size of loops.

In this section we give more detail and examples of the
transformations.

4.1 Regular language transformations

There are four transformations for regular languages: con-
verting an NFA to a DFA, a DFA to a minimum state DFA,
an NFA to a regular grammar, and a regular grammar to an
NFA.

Figure 1: An NFA in JFLAP

In converting an NFA to a DFA, the user first creates an
NFA in a JFLAP building window, and then selects the op-
tion to convert to a DFA. Figure 1 shows an NFA created
with JFLAP and the options menu has selected the option
to convert the NFA to a DFA. If the automaton created is
already deterministic, the user is informed. Otherwise, a
second building window appears. The user draws the cor-
responding DFA in this window. A state in the DFA may
represent several states from the NFA. Thus, in the DFA, a
state has an additional label in which the user enters the cor-
responding state numbers from the NFA. At any point during
the construction of the DFA, the user can select a check fea-
ture which will report any errors made in the drawing. The
user can also select an option to automatically expand a se-
lected state, drawing the transitions out of this state. Another
option can draw the complete DFA. Figure 2 shows the cor-
responding DFA to the NFA in Figure 1. There is an option
to remove the labels attached to the states, revealing the state
numbers.

In converting a DFA to a minimum state DFA, the user
first creates a DFA in a JFLAP building window (or can use
the resulting DFA from the conversion from NFA to DFA)
and then selects the option to convert to a minimum state
DFA. A second window appears in which a user will try to
build two trees to determine which states are distinguishable
from other states. Initially, all final states are grouped to-
gether as indistinguishable, and all nonfinal states are grouped
together as indistinguishable (the roots of the two trees). A



Figure 2: Corresponding DFA

node in the tree with more than one state is expandable to
add two children if there is a letter of the DFA’s alphabet to
distinguish any of the two states. The user repeatedly selects
letters that can distinguish states, defining the new children,
until no nodes can be further expanded. The interaction in
this window is similar to other windows. The user can create
the tree themselves, have it partially expanded automatically,
or have the complete trees generated automatically. Figure 3
shows the trees of distinguishable states for the DFA from
Figure 2. The rightmost leaf node in the left tree contains
two states 4 and 5 that are indistinguishable, meaning this
leaf node cannot be further split. Once the correct trees are
shown, the user selects an option to continue, and a third
build window appears with states shown, each state is equiv-
alent to a leaf in the trees. Using the information from the
first build window, the user can complete the DFA by adding
the appropriate arcs, or can select an option to automatically
add them. Figure 4 shows the minimal state DFA for the
DFA from Figure 2. Note that two of the states from Fig-
ure 2 were combined into one state in Figure 4.

Figure 3: Tree of distinguishable states

Figure 4: Minimum state DFA

In converting an NFA to a regular grammar, the user first
creates an NFA in a JFLAP building window (or can use the
resulting NFA or DFA from one of the other conversions)
and then selects the option to convert to a regular grammar.
The equivalent regular grammar appears in a new window.

In converting a regular grammar to an NFA, the user first
enters a regular grammar in a grammar window, and then
selects the option to convert to an NFA. A build window
appears, and the user constructs the equivalent NFA, or can
use other options to have the NFA automatically built.

4.2 Context-free languages

There are four transformations for context-free languages:
converting an NPDA to a CFG, and three algorithms for con-
verting a CFG to an NPDA.

Figure 5: Pushdown Automaton Created with JFLAP

In converting an NPDA to a CFG, the user first creates
an NPDA in a JFLAP building window, and then selects
the option to convert to a CFG. The NPDA must have two
additional requirements before conversion is allowed as de-
scribed in [8]. For the first requirement, each transition must
either increase or decrease the stack by one symbol. If the
user’s NPDA does not meet this requirement, the user can re-
place any transition by two or more transitions that all satisfy
this requirement. For the second requirement, the NPDA
must have only one final state, and the stack must be empty



Figure 6: Corresponding CFG in JFLAP

for this state to be reached. Both of these requirements are
presented in [8] as a build up to the theorem to convert an
NPDA to a CFG. Once the user’s NPDA is in the correct for-
mat, the conversion to CFG option will result in a new win-
dow with the corresponding CFG. The rules of the CFG that
correspond to one transition from the NDPA are grouped to-
gether in one column and the corresponding transition from
the NDPA shown in a second column.

Figure 5 shows an NPDA in the required format, and Fig-
ure 6 shows the corresponding CFG. Notice that for rules
that increase the size of the stack by one character such as
(a; Z;AZ), there are several grammar rules generated. For
rules that decrease the size of the stack by one character such
as(b; A; ), there is only one corresponding grammar rule.

In converting a CFG to an NPDA, the user first enters
a context-free grammar in the grammar window, and then
selects the algorithm for conversion to an NPDA. Each al-
gorithm assumes the grammar is in a specific form. One of
the algorithms assumes the grammar is in Greibach Normal
Form. The other two algorithms will work with any context-
free grammar, but are used in illustrating LL and LR parsing,
so one should enter an LL or LR grammar. After the algo-
rithm has been selected, an NPDA building window appears
with three states. The user must complete the NPDA with
appropriate transitions based on the algorithm chosen. The
user receives feedback as to whether or not their solution is
correct. The solution can also be automatically generated.

5 LL and LR parsing

JFLAP in combination with the tool jeLLRap can be use-
ful for examining LL and LR parsing. The tool jeLLRap (a
Java version of LLparse and LRparse [3]) is an instructional
tool for building LL(1), LL(2) and LR(1) parse tables from
grammars, and then simulating the parsing of input. The un-
derlying foundation of these parsing methods is a pushdown
automaton combined with lookaheads to remove the non-

determinism. Modifications to JFLAP allow one to enter an
LL or LR grammar and then construct the equivalent NPDA.
Since this NPDA is most likely nondeterministic (and expo-
nential in execution time on input), the student must guide
the execution of the NPDA by choosing the appropriate tran-
sition using lookaheads. That is, the student must understand
the LL and LR algorithms well in order to choose the appro-
priate transition.

Figure 7: Context-free grammar

Figure 7 shows an LR(1) grammar with 4 rules has been
entered. Figure 8 shows the corresponding npda for LR pars-
ing. Note that this NPDA is nondeterministic as there are
several places where one can either shift or reduce. If the
naive user enters a small input string of size 6 and tries the
fast run, the user will be informed that the execution is tak-
ing too long. In this case, the user must execute using the
step run, and must understand how lookaheads are used in
order to choose the correct configuration to continue tracing
to reach acceptance.

6 Use of JFLAP in the classroom

The tool JFLAP can be used both in and out of the class-
room. We use JFLAP during lecture to introduce topics,
to work examples, and to illustrate how easy it is to build
and run machines. For example, in lecture we ask students
to create an NPDA for a specific language. We ask them
to work in a group and give them five to ten minutes for



Figure 8: NPDA for LR parsing

this problem. Then with input from one group, we build the
NPDA using JFLAP and run the machine on sample input.
As an alternative problem, we give the students a language
and an incorrect NPDA and ask them to determine if the
NPDA is correct, and if it is incorrect, to figure out how to
fix it. We can then show the NPDA is incorrect by running
input it should accept, and then fix the NPDA based on the
student suggestions. Outside of the classroom, students use
JFLAP for homework assignments, to work additional prob-
lems, and to study for exams.

The original version of JFLAP has been used at several
universities around the world. At Duke we have had positive
results using JFLAP for several years. Student comments
from the spring 1998 semester overwhelmingly stated that
JFLAP was easy and helpful to use. Some students stated
that with the first JFLAP lab they preferred to write the au-
tomaton on paper first and then draw it in JFLAP. But they
were still happy to use JFLAP because it allowed them to
test and debug their automaton. By the time of the third lab,
they were comfortable enough to create the automaton us-
ing JFLAP instead of on paper. The main complaint with
JFLAP was that the transition labels could not be moved. In
our modifications to JFLAP this label is now slideable mak-
ing it easier to layout the transition diagram.

7 Conclusion and Future Work

New modifications to JFLAP guide the user through sev-
eral proofs of theorems that focus on transformations of lan-
guages from one form to another, where the forms are au-
tomata and grammars. Students are given a visual represen-
tation they can interact with in addition to the formal textual
representation. This alternative hands-on representation pro-
vides a means for an interactive automata theory course.

We plan to continue to expand JFLAP to allow for the
experimentation of other proofs of theorems in this course.
More information on JFLAP can be obtained from the web
addresshttp://www.cs.duke.edu/ �rodger

AcknowledgementJFLAP is a project that began in 1990
as NPDA and later FLAP and would not be possible without
the work of many students including Dan Caugherty, Mark
Losacco, Madga Procopiuc, and Tavi Procopiuc.

References

[1] A. Badre, C. Lewis, and J. Stasko, Empirically Evalu-
ating the Use of Animations to Teach Algorithms,Pro-
ceedings of the 1994 IEEE Symposium on Visual Lan-
guages,p. 48-54, 1994.

[2] J. Barwise and J. Etchemendy, Turing’s World 3.0 - An
Introduction to Computability Theory, 1993.

[3] A. O. Bilska, K. H. Leider, M. Procopiuc, O. Pro-
copiuc, S. H. Rodger, J. R. Salemme and E. Tsang,
A Collection of Tools for Making Automata Theory
and Formal Languages Come Alive,Twenty-eighth
SIGCSE Technical Symposium on Computer Science
Education, p. 15-19, 1997.

[4] C. Boroni, F. Goosey, M. Grinder, R. Ross and P.
Wissenbach, WebLab! A Universal and Interactive
Teaching, Learning, and Laboratory Environment for
the World Wide Web,Twenty-eighth SIGCSE Technical
Symposium on Computer Science Education, p. 199-
203, 1997.

[5] M. Brown, ZEUS: A System for algorithm animation
and multi-view editing.Proceedings of the IEEE 1991
Workshop on Visual Languages, p. 4-9, Kobe, Japan,
Oct. 1991.

[6] P. Gloor,AACE - Algorithm Animation for Computer
Science Education, IEEE Workshop on Visual Lan-
guages, p. 25-31, 1992.

[7] H. Lewis, C. Papadimitriou,Elements of the Theory of
Computation, Second Edition, Prentice Hall, 1998.

[8] P. Linz, An Introduction to Formal Languages and Au-
tomata, Second Edition,D. C. Heath and Company,
1996.

[9] W. Pierson and S. H. Rodger, Web-based Anima-
tions of Data Structures Using JAWAA,Twenty-ninth
SIGCSE Technical Symposium on Computer Science
Education, p. 267-271, 1998.

[10] M. Procopiuc, O. Procopiuc, and S. Rodger, Visualiza-
tion and Interaction in the Computer Science Formal
Languages Course with JFLAP,1996 Frontiers in Ed-
ucation Conference, Salt Lake City, Utah, p. 121-125,
1996.

[11] J. Stasko, Tango: A Framework and System for Algo-
rithm Animation,IEEE Computer, p.27-39, September
1990.


