
Aberystwyth University

Using k-NN to analyse images of diverse germination phenotypes and detect
single seed germination in Miscanthus sinensis
Awty-Carroll, Danny; Clifton-Brown, John; Robson, Paul

Published in:
Plant Methods

DOI:
10.1186/s13007-018-0272-0

Publication date:
2018

Citation for published version (APA):
Awty-Carroll, D., Clifton-Brown, J., & Robson, P. (2018). Using k-NN to analyse images of diverse germination
phenotypes and detect single seed germination in Miscanthus sinensis. Plant Methods, 14, [5].
https://doi.org/10.1186/s13007-018-0272-0

Document License
CC BY

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 27. Aug. 2022

https://doi.org/10.1186/s13007-018-0272-0
https://pure.aber.ac.uk/portal/en/persons/danny-awtycarroll(ec19f3ca-5f44-4b46-a79a-5aadd2fc2118).html
https://pure.aber.ac.uk/portal/en/persons/paul-robson(1c8d3f21-d8fd-404a-8ac6-d8863bb22c8e).html
https://pure.aber.ac.uk/portal/en/publications/using-knn-to-analyse-images-of-diverse-germination-phenotypes-and-detect-single-seed-germination-in-miscanthus-sinensis(06437bc8-de0e-4e68-b268-27afe5a36b6a).html
https://pure.aber.ac.uk/portal/en/publications/using-knn-to-analyse-images-of-diverse-germination-phenotypes-and-detect-single-seed-germination-in-miscanthus-sinensis(06437bc8-de0e-4e68-b268-27afe5a36b6a).html
https://doi.org/10.1186/s13007-018-0272-0


Awty-Carroll et al. Plant Methods  (2018) 14:5 

https://doi.org/10.1186/s13007-018-0272-0

METHODOLOGY

Using k-NN to analyse images of diverse 
germination phenotypes and detect single seed 
germination in Miscanthus sinensis
Danny Awty-Carroll* , John Clifton-Brown and Paul Robson

Abstract 

Background: Miscanthus is a leading second generation bio-energy crop. It is mostly rhizome propagated; how-

ever, the increasing use of seed is resulting in a greater need to investigate germination. Miscanthus seed are small, 

germination is often poor and carried out without sterilisation; therefore, automated methods applied to germination 

detection must be able to cope with, for example, thresholding of small objects, low germination frequency and the 

presence or absence of mould.

Results: Machine learning using k-NN improved the scoring of different phenotypes encountered in Miscanthus 

seed. The k-NN-based algorithm was effective in scoring the germination of seed images when compared with 

human scores of the same images. The trueness of the k-NN result was 0.69–0.7, as measured using the area under a 

ROC curve. When the k-NN classifier was tested on an optimised image subset of seed an area under the ROC curve of 

0.89 was achieved. The method compared favourably to an established technique.

Conclusions: With non-ideal seed images that included mould and broken seed the k-NN classifier was less consist-

ent with human assessments. The most accurate assessment of germination with which to train classifiers is difficult 

to determine but the k-NN classifier provided an impartial consistent measurement of this important trait. It was more 

reproducible than the existing human scoring methods and was demonstrated to give a high degree of trueness to 

the human score.

Keywords: k-NN, Miscanthus, Seed, Machine learning, Classification, Germination, Image analysis, Robust 

classification, Bio-energy, Seed imaging
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Background

�e use of image analysis techniques has been increas-

ing in the biological sciences, offering high-through-

put, unbiased and quantitative measurements [1] with 

reduced errors [2], but at the expense of real time inter-

action with samples. �e slower set up but faster obser-

vations make image analysis ideal for time course studies 

[3], such as growth or germination, and the use of opti-

cal data makes such analysis ideal for calculating visual 

attributes such as plant size non-destructively, as in the 

case of field or automated glasshouse biomass assess-

ments. �is phenotyping technology lags behind that of 

genotyping technologies; however, it is increasingly being 

implemented to test or screen highly varied genotypes 

[4].

Miscanthus is a leading bio-energy crop and has a 

number of highly favourable attributes including a high 

net energy balance and the ability to grow on marginal 

land. It is not a food crop and therefore does not com-

pete with food production unlike other potential bio-

energy crops such as maize and Sugar Beet [5–7]. Most 

Miscanthus is grown from pieces of Miscanthus × gigan-

teus rhizome which is a slow and expensive method of 

propagation especially at high numbers; therefore, to 

expand Miscanthus production seed based Miscanthus 

hybrids are being developed [8]. Seed-based propagation 

has the potential to rapidly increase the propagation rates 
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and reduce planting costs [9]. Miscanthus seed are small, 

heterogeneous due to outbreeding [10, 11], with low ger-

mination rates at low temperatures [12] and therefore 

to improve seed propagation our understanding of seed 

biology and the control of germination in particular in 

this species must be improved.

Germination of seed is frequently scored by eye when 

the radical has visibly emerged [13, 14], this should allow 

embryo protrusion to be consistently scored by different 

researchers [15]. However, when using small seed and high 

numbers of samples, counts are less repeatable and less 

true. A computer system that is able to impartially score 

germination in a repeatable and reproducible way, would 

remove unknown variation from human-based scoring. A 

computer vision system perfects repeatability, possibly at 

the expense of trueness, which is an acceptable compro-

mise in biological studies in which the relative impact of 

different factors on germination is important. Using pho-

tographs or other automatically recorded data for analysis, 

the algorithm can be refined and re-run on the samples in 

the future potentially by multiple research groups. Record-

ing all the data digitally makes the collection of data faster 

and more reliable , particularly as a human scorer can be 

affected by time of day, repetition, and tiredness.

Automated systems such as MARVIN (GTA Sen-

sorik GmbH) are often used for the accurate sizing and 

counting of seeds [16–19]. Measuring germination is 

more challenging; because depending on the experimen-

tal treatment, seed may not be sterile leading to mould 

growth, which may confound image analysis of radicle 

growth in scoring germination. Seed should be imaged 

repeatedly in the same position allowing algorithms to 

identify minor changes, and to disregard changes associ-

ated with mould or seed expansion due to water uptake, 

which should not be scored as germination.

Computer imaging of seed germination has been used 

to assess germination in Arabidopsis in comparison with 

human assessments [20]. A threshold (a set value used to 

screen out pixels) was applied to images to remove the 

background, the remaining objects were analysed in a 

selected colour range (e.g. RGB) and information about 

the seed’s average shade and perimeter determined. 

Parameters describing each object were collected and 

analysed simply and a distinction made between seed 

coat and whole seed including a radicle if present. Such 

methods have the potential to assess germination faster 

and with greater reproducibility than a human observer 

[20] provided the method uses only a final seed image and 

no initial photograph is needed for comparison. Using 

the difference between the object at different thresh-

olds, germination can be scored with a high trueness to 

a human reference point [20]. �e drawback to single 

image analysis is that the thresholding process needs to be 

very precise to achieve two images from one photograph 

that only differentiate the features such as the radicle or 

hypocotyl that are indicative of germination [20].

By using the idea of a ground truth, Ducournau 

et al. [21] was able to use receiver operating characteristic 

(ROC) curves to highlight the best strategy for producing 

data true to human vision; however, a significant unknown 

is the inaccuracy or bias of the human germination scores 

with which image analysis is compared. �e ability to score 

different seed types depends upon experience and may be 

affected by mood and time constraints [22]. To compare 

the computer’s ability directly against that of a human may 

be unfair because the human is not necessarily an indica-

tor of the real value; yet currently there is no more accu-

rate method of determining the real germination score. 

Ducournau et al. [21] used mean time to 50% germination 

as the primary factor of comparison between the com-

puter and the human analysis. In doing this, a seed-by-

seed comparison of germination scoring between people 

and computers was avoided to create a fairer comparison.

In this study we combine the use of computer image 

analysis, ROC curves and machine learning to assess phe-

notypically diverse seed germination in comparison with a 

large set of human assessed images. A k-nearest neighbour 

(k-NN) method [23] was chosen as an efficient machine 

learning method [24] that could be implemented in R with 

the ‘class’ package [25]. k-NN works by finding each point’s 

nearest neighbours in an n-dimensional Euclidian space, 

then grouping that point with the k neighbours with which 

it is most closely associated [24, 26]. Tree-based algo-

rithms were also considered but discounted because k-NN 

works with two categories and only two categories were 

needed (un-germinated and germinated) [27].

Methods

A set of approximately 5000 Miscanthus sinensis seed 

germinating over 11 days, were photographed using 

a DSLR (Nikon D90) at a resolution of 282 ×  341 pix-

els per seed image from an image of 4288 × 2848 pixels 

(see Fig.  1 for example of image data). �e seed were 

sterilised with a low concentration bleach solution (0.5% 

Sodium Hypochlorite). �ey were then treated with 

standard plant hormones [gibberellic acid (from 0.15 

to 750  mg  l−1), 1-naphthaleneacetic acid (from 0.01 to 

200 mg l−1), epibrassinolide (from 0.001 to 2 mg l−1) and 

abscisic acid (from 0.05 to 60  mg  l−1)], or had induced 

water stresses (NaCl and polyethylene glycol (8000 and 

4000  ppm respectively) producing water potentials of 

up to − 4.1 MPa) or they were stratified [28, 29]. Treat-

ments were given no further consideration in this study 

because they were purely to produce a diverse and chal-

lenging range of germination phenotypes with which to 

test the image analysis. All images were scored by one 
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person for consistency and the human score of this image 

set was the only reference point to which the computer 

score was compared. �e images were analysed with FIJI 

[22], a distribution of ImageJ [30] customised for biologi-

cal image analysis. Being common and open-source it has 

more flexibility to be used and developed by others than 

similar commercial systems. �e images were processed 

through FIJI’s 3D object counter to identify size, position, 

and grey scale data (e.g. mean grey value) and the results 

for the central most object in each frame was recorded 

for analysis (image source [31]). �e number of pixels at 

each RGB and HSB level was extracted in FIJI as histo-

gram values for each image, and recorded with the other 

data.

A machine learning approach was used, as the non-

ideal set of seed images used had been difficult to param-

eterise manually for image based germination scoring. 

�e training data was loaded into an n-dimensional 

matrix, with n being the number of parameters e.g. size 

of seed object, object shade. �e uncategorised data was 

added, and the parameters of each added datum were 

compared to all parameters in the training data. �e 

Fig. 1 Example images of seed germination from the dataset. An example of twelve of the 16,896 seed images. These also show some of the 

problems for automation of germination scoring
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k closest parameters by Euclidean distance (the near-

est neighbours) were used to classify the new entry by 

majority vote. If an odd number is selected for k the vote 

will unambiguous, otherwise the tie is broken at random. 

Larger numbers of k produce more smoothing in the 

classification boundary [26].

�is method was trained on a random set of half of the 

seeds and tested on the other half. �is step was repeated 

multiple times to test and improve trueness by refining 

the value of k and the number of classifiers included in 

the training set. Traits from FIJI object detection (area, 

shade, etc.) were used as well as RGB and HSB histogram 

values for each thresholded seed object (e.g. R0–R255), 

to give a colour distribution for each image [32]. Because 

the absolute values of traits were across a several fold 

range, all traits were normalised to between zero and 

one. Due to the large number of traits, the image analy-

sis was also tested after simplification to 21 component 

traits through a principle components analysis (PCA) 

(stats package: R [33]), this combined and summarised 

the main components of variation between images. An 

optimised subset of clear images (with no mould and 

only seeds that were distinctly germinated or not) that 

had been visually scored was also selected for use in the 

testing procedure. Each of these data sets—trait, trait 

with histogram, PCA, and idealised—were run n times to 

produce an average with a set of random splits of the data 

with an approximate 1:1 ratio of training to test data. All 

tests were run on a Intel® i7 2.8 GHz laptop with 64-bit 

Windows™ 7. Results were assessed using ROC curves, 

once these were calculated a combined score was deter-

mined to assess the final success of the k-NN methods 

once optimised. �e final success of each method tested 

was determined using a single measure from the ROC, 

the area under curve (AUC), that was statistically equal 

to the chance the algorithm would rank a random germi-

nated image more highly than a random un-germinated 

image [34].

�e human scoring of time sequences produced what 

was expected to be an ideal score against which to com-

pare. Pictures of seed from time zero (before the test 

started) were excluded from the k-NN method because 

this added an extra ∼  5000 un-germinated images and 

their purpose as a starting point in the FIJI classification 

was not necessary for k-NN.

Due to the scoring of time sequences, once a seed was 

marked as germinated all images after that time in the 

sequence were marked as germinated. �is resulted in a 

problem; seed images from later time points of seed that 

germinated and then died, and were originally scored by 

a human as germinated, would not appear germinated in 

isolation. To circumvent the problem the index of train-

ing data was reviewed by running the k-NN classifier and 

outputting the certainties (between 0.5—uncertain, 1—

certain). �e number of possible values was dependent 

on the value of k, so if all k of the nearest neighbours were 

the same the certainty would be 1 and if 4 of, for exam-

ple, 7 nearest neighbours agreed the certainty would be 

0.57. �e images that were classified as least certain in 

each run were manually checked, and updated if neces-

sary. Hereafter this set of image-identified germination 

amended by a human operator will be referred to as the 

‘amended human assessment’.

�e k-NN method was compared with ‘Germinator’, 

a standard package to automate germination detection 

devised by Joosen et al. [20]. 270 dish images (of 64 seeds 

per dish) were split into two groups for training and valida-

tion. �e ‘Germinator’ method first optimises the scoring 

of un-germinated seed in the training data, before pre-

dicting the germination in the validation data. �e use of 

individual seed images, as employed in the k-NN method, 

allowed for the calculation of the AUC from a ROC curve. 

�is could not be achieved using ‘Germinator’ and thus 

exact comparisons of the methodology employed by the 

two methods could not be made; however, broad compari-

sons of speed and accuracy were possible.

Results

For the main testing of the k-NN method, 16,896 seed 

images were used for which 25 variables from FIJI object 

detection (area, size of bounding box, mean median & 

standard deviation in shade, distance to centre of the 

object, width & height, etc.) and an additional 1536 vari-

ables from RGB and HSB histograms of the thresholded 

images were produced.

�e k-NN classifier was tested using the 25 varia-

bles produced by FIJI’s object detection using the same 

16,896 seed images. When assessed in comparison to 

the amended human assessment with a k value of 7 this 

gave an AUC for the ROC curve of 0.69, with 558/8394 

(0.066) false positives and 1345/8394 (0.16) false nega-

tives (Fig. 2). �e runtime was 2.3 s. Histogram data was 

collected on each image and was used to add more data 

for the classifier. Using the resulting full set of 1561 vari-

ables (and thus producing a 1561 dimensional space to 

assess the seed) was computationally intensive for exten-

sive testing (runtime of 3011 s); but for comparison one 

run with a k of seven resulted in an AUC for the ROC 

curve of 0.664 and 458/8394 (0.054) false positives and 

1526/8394 (0.153) false negatives (Fig. 2).

�e number of variables was reduced by PCA to the 

first 21 principle components which explained 70.8% of 

the variation. Because the PCA had reduced the number 

of variables for k-NN, the process could be run repeat-

edly, with a runtime of 183  s to produce the PCA and 

then 1.8 s to run the k-NN. �is k-NN process was used 
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to amend the human assessment where necessary until 

there were no more seeds for which an amendment 

was necessary. �e k-NN was run against the amended 

human assessment (Fig. 2) and gave an AUC of 0.706 and 

561/8502 (0.066) false positives and 1298/8502 (0.153) 

false negatives.

An optimised image set of 711 seed was tested and a 

subset chosen unevenly using a ratio of 1:2 to provide 233 

test seed. �is simplified the inputs to the 25 FIJI vari-

ables based on object detection. �e k-NN gave a false 

positive of 8/233 (0.034) and a false negative of 19/233 

(0.082) and an area under the ROC curve of 0.887 (Fig. 2).

In comparison analysing the images using ‘Germina-

tor’ [20] took 3 h to train on a set of 141 images contain-

ing 9024 seeds, and 5  min to run on a validation set of 

130 images with 8320 seeds. �e training optimised to 

a cumulative difference in the total number of un-ger-

minated seed of 1692 seeds out of 6728 human scored 

un-germinated seeds (25.1% different). In the validation 

set of images the total number of un-germinated seeds 

was 7.3% different from the total of the manual counts 

(412/5644), for the germinated seed this was 31.3% dif-

ferent (830/2656). In the 130 dishes of seed counted the 

number germinated was only the same as the manual 

count 5.4% of the time and on average the germination 

count for each plate was 10.5 seeds different than the 

manual counts.

Discussion

�is study of automated germination scoring through 

seed-by-seed analysis was tested on individual seeds 

using ROC curves, rather than score the number of seed 

germinated over the whole plate. Other studies have fit-

ted curves to germination scores over a time series to 

compare the models of human counts to the computer 

assessed counts [20], or have tested scores against total 

emergence to determine if the system could arrive at the 

same conclusions as found using human scoring as an 

absolute standard [35]. In this study, the classification of 

individual seed is used as the measure of success rather 

than the model of a germination curve for a seed batch. 

By doing so this method tests the per seed accuracy of 

automated scoring.

While an exact comparison with an existing germina-

tion detection tool (‘Germinator’ [20]), which works on 

a “by tray of seeds” basis, was impossible, a comparison 

test using the original images of the whole seed trays was 

produced. �e ‘Germinator’ method had a greater total 

run time than did the most complex of the k-NN tests, 

but speed was comparable once trained. �e accuracy 

of this method was much less, and while the total num-

ber of un-germinated seeds were very similar (7% dif-

ferent), the total germinated count was less close to the 

human score (31% different). However, these values allow 

under and over estimation between dishes to balance out 

the result; estimations of the per seed error were much 

higher, being on average 10.5 seeds different from a man-

ual count. �e difficulty in the ‘Germinator’ assessment 

was possibly due to over prediction of germination from 

the early presence of mould, followed by under predic-

tion due to small changes in early germination, then at 

later time points, poor scoring from inaccurately deter-

mining the number of seed on the dish, due to the pres-

ence of mould obscuring seed.

�e most important factors in the application of com-

puter vision for seed germination counting are reproduc-

ibility and speed compared with a human. If computer 

vision offers no advantage, there is no reason to switch 

from a manual assessment. All methods of pre-process-

ing the data before using k-NN provided a trueness to 

the human score of at least 0.66 area under a ROC curve. 

With a large set of ∼  16,000 seed images the method 

showed a robustness to other factors such as mould 

growth and changes in the size and colour of the seed 

over time. �e human score cannot be defined as an 

absolute measure because it lacks reproducibility. �e k-

NN score is trained on the human score and is therefore 

Fig. 2 ROC curves using different methods. ROC curves from four 

tests of k-NN using different methods. The ImageJ only line uses only 

the 25 outputs of the ImageJ object detection (dash-dot). All values 

expands the data to all 1561 variables (to include the histogram 

values for RGB and HSB) for the classifier (dot-dot). The PCA of all 

values uses a PCA to reduce the dimensionality of the data to 21 

principle components (dash-dash). An optimised image set used just 

the images that clearly demonstrated to a human un-germinated or 

germinated seed with the same 21 principle components (sold line). 

All results were generated using a random seed of 1234, to show one 

representative result
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also not an absolute measure but it does offer an impar-

tial, reproducible and consistent measure. However, the 

k-NN method requires a large set of human assessed data 

for training, which is time consuming.

Germination is a function of time and a machine learn-

ing approach could utilise the time at which the picture 

was taken, which may make analysis more effective; how-

ever, this was not utilised in this study, because it would 

be difficult to weight the times correctly to avoid bias in 

the result. For example, if a seed lot had reached 80% ger-

mination by day six, the k-NN would have an 80% chance 

of being correct when reporting on any seed over day five. 

Essentially this could lead to a polarised distribution of 

false positives and false negatives, as early germinating 

seed would be more likely to produce a false negative, and 

un-germinated seed would be more likely to produce false 

positives at later time points. �is would undermine the 

point of using machine learning on germination testing.

To assess the k-NN method, the human assessment of 

germination required adjustment. �is was due to how 

the human assessment was produced, and demonstrates 

the shortcomings of human scoring. �e best outcome 

achieved with the human scorers was on a sub sample 

of the seed for which germination state was clear to a 

human scorer. With this subsample of seed images, the 

k-NN achieved 0.89 (area under the ROC curve). In [36] 

the median time for 25 seeds to germinate had a stand-

ard deviation of 0.8  h on average between human scor-

ers over 18 dishes (photographed hourly). �e standard 

deviation of the computer to the mean human score was 

1.32  h with the human scores lagging behind the auto-

mated germination curve. �is demonstrates that an 

imperfect trueness of a computer vision system is not 

necessarily a problem, when the time to germinate is 

taken into account. �erefore, because software that con-

siders image time would still not have scored individual 

images in complete agreement with a human scorer, the 

k-NN method described, which has high but imperfect 

trueness to the human score, is effective at scoring seeds 

on an image-by-image basis.

�e technique investigated in this study could be used 

for high throughput imaging, particularly where the iden-

tification of individual germinated seed is of importance. 

�is simple machine learning method could be refined by 

further optimisation of the k-NN, or substitution and opti-

misation using support vector machines (SVM) or random 

forest at the data categorisation stage. To go further, convo-

lutional neural networks [37] have become the cutting edge 

of image categorisation in recent years but further work 

would be needed to optimise this more complex methods. 

�e image dataset used in this study has been used with a 

convolutional neural network [38], and produced a similar 

accuracy when compared with the k-NN method but with 

higher computational demands; this could with refinement 

provide another direction for further study.

�e k-NN method could also be expanded; for exam-

ple [39] used the analysed properties of the seed/seedling 

image after germination to measure early seedling elon-

gation. Commercially, seedling rates are calculated to 

produce an anticipated number of plants per unit area of 

seed sown. It is likely the approach developed will be uti-

lised to rapidly screen the germination potential of new 

seed batches before widespread deployment to determine 

if oversowing is required to maintain crop densities.
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ROC: receiver operating characteristic; AUC: area under curve; k-NN: k nearest 

neighbour; SVM: support vector machine; RGB: red, green and blue; HSB: hue, 
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