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Abstract

We present an algorithm that uses a low resolution 3D
sensor for robust face recognition under challenging con-
ditions. A preprocessing algorithm is proposed which ex-
ploits the facial symmetry at the 3D point cloud level to
obtain a canonical frontal view, shape and texture, of the
faces irrespective of their initial pose. This algorithm also
fills holes and smooths the noisy depth data produced by
the low resolution sensor. The canonical depth map and
texture of a query face are then sparse approximated from
separate dictionaries learned from training data. The tex-
ture is transformed from the RGB to Discriminant Color
Space before sparse coding and the reconstruction errors
from the two sparse coding steps are added for individual
identities in the dictionary. The query face is assigned the
identity with the smallest reconstruction error. Experiments
are performed using a publicly available database contain-
ing over 5000 facial images (RGB-D) with varying poses,
expressions, illumination and disguise, acquired using the
Kinect sensor. Recognition rates are 96.7% for the RGB-D
data and 88.7% for the noisy depth data alone. Our results
justify the feasibility of low resolution 3D sensors for robust
face recognition.

1. Introduction
Face recognition has attracted significant research inter-

est in the past two decades due to its broad applications in
security and surveillance. Sometime, face recognition can
be performed non-intrusively, without the user’s knowledge
or explicit cooperation. However, facial images captured in
an uncontrolled environment can have varying poses, facial
expressions, illumination and disguise. Since the type of
variations are unknown for a given image, it becomes crit-
ical to design a face recognition algorithm that can handle

Figure 1. The proposed face recognition framework.

all these factors simultaneously.

Simultaneously dealing with different variations is a
challenging task for face recognition. Traditional ap-
proaches have tried to tackle one challenge at a time using
2D images i.e. texture. The illumination cone method [5]
models illumination changes linearly. They have shown that
the set of all images of a face under the same pose but dif-
ferent illuminations lies on a low dimensional convex cone
which can be learned from a few training images. Although
this technique can be used to generate facial images under
novel illuminations, it assumes that faces are convex and re-
quires training images to be taken with point light source.
The Spare Representation Classifier (SRC) method [19] can
handle face images with disguise (e.g. wearing sunglasses)
by removing/correcting the outlier pixels. However, these
pixels may have similar texture intensity to the human face
and thus can not be identified. Some researchers have also
tried to solve the pose problem using 2D images. For exam-
ple, Gross et al. [6] construct the Eigen-light fields which
are the 2D appearance models of a face from all viewpoints.
This method requires many training images under different
poses and dense correspondences between them which are
difficult to achieve. Similarly, Sharma and Jacobs [16] use
Partial Least Squares (PLS) to linearly map facial images
in different poses to a common linear subspace where they



are highly correlated. However, such a linear subspace may
not exist. In fact, pose variations are highly non-linear and
can not be modeled by linear methods. This is why the
performance of the above methods drops dramatically with
extreme pose variations.

The most reliable way to address the pose problem is
with 3D face models. Facial geometry is invariant to illu-
mination and various imaging conditions whereas 2D im-
ages are a direct function of the lighting conditions (direc-
tion and spectrum). Although, the 3D imaging process can
be influenced by lighting conditions, the 3D data itself is
illumination invariant. Facial images under different illumi-
nation conditions can be generated using a 3D face model
[17]. In addition, it can be used to correct the facial pose or
to generate infinite novel poses. For example, the Iterative
Closest Point (ICP) [1] algorithm finds the optimal trans-
formation to minimize the closest point distance between
two point clouds. Some approaches [9, 12] use the final
ICP registration error for face recognition. However, this
point-to-point error is sensitive to expression variations. To
handle the expression problem, Bronstein et al. [3] proposed
an expression-invariant representation of the facial surfaces
based on isometric deformations. Mian et al. [12] proposed
a multi-modal part-based method that utilizes texture infor-
mation and focuses on the rigid parts of the face. Kakadi-
aris et al. [8] proposed the Annotated Face Model (AFM)
to register the input 3D face to an expression-invariant de-
formable model. Recently, Passalis et al. [13] further ex-
tended the AFM method with facial symmetry to handle
missing data caused by self-occlusion in non-frontal poses.
A comprehensive survey on 3D face recognition methods is
outside the scope of this paper and is given in [2]. Existing
3D face recognition methods are not designed to handle dis-
guise. More importantly, they all assume the availability of
high resolution 3D face scanners. Such scanners are costly,
bulky in size and have slow acquisition speed which limit
their applications.

Table 1. Comparison of 3D data acquisition devices.

Device
Speed
(sec)

Charge
Time

Size
(inch3)

Price
(USD)

Acc.
(mm)

3dMD 0.002 10 sec N/A >$50k <0.2
Minolta 2.5 no 1408 >$50k ∼0.1
Artec Eva 0.063 no 160.8 >$20k ∼0.5
3D3 HDI R1 1.3 no N/A >$10k >0.3
SwissRanger 0.02 no 17.53 >$5k ∼10
DAVID SLS 2.4 no N/A >$2k ∼0.5
Kinect 0.033 no 41.25 <$200 ∼1.5-50

Some common 3D acquisition devices are compared in
Table 1. High quality 3D scanners, for instance, the Minolta
used in the well-known Face Recognition Grand Challenge
(FRGC) [15], requires 2.5 seconds to capture a single 3D
scan. Such a slow speed is not practical for scanning non-
static faces. Requesting the subject to sit perfectly still for
2.5 seconds is not practical in many cases. High cost and

slow acquisition time also make the collection of training
data difficult. A single sample per person is usually not suf-
ficient to represent all possible variations in the face [4],
and many techniques such as Linear Discriminant Analysis
(LDA) and Sparse Representation Classifier (SRC) [19] re-
quire many training samples. On the other hand, some 3D
data acquisition devices trade data quality for high speed
and low cost. For example, the Kinect sensor is extremely
low cost, high in capture speed and compact in size. These
properties are more appealing for user non-intrusive face
recognition applications. On the downside, the 3D data pro-
vided by Kinect is very noisy and has low depth resolution.
One can see from Figure 2 that, compared to the Minolta
3D scan, the Kinect 3D face model is hardly recognizable as
human face and most of the popular face landmarks such as
eye or mouth corners are not precisely locatable even man-
ually. In this paper, we look into the feasibility of using the
Kinect depth data for face recognition under varying pose,
expressions, illumination and disguise.

Figure 2. Sample texture and 3D faces acquired with Minolta and
Kinect. 3D faces are rendered as smooth shaded surfaces.

We propose a face recognition algorithm designed
specifically for low resolution 3D sensors. It consists of
novel preprocessing steps for estimating a canonical frontal
view from non-frontal views. Our algorithm requires only
the nose tip position. An efficient Iterative Closest Point
(ICP) method and facial symmetry are used to canonicalize
non-frontal faces. A multi-modal sparse coding based ap-
proach is proposed to utilize Kinect color texture and depth
information (RGB-D). Ultimately, we can recognize faces
under different poses, expressions, illumination and dis-
guise using a single algorithm, which is compact and scal-
able. The proposed system is evaluated on a publicly avail-
able dataset namely CurtinFaces, which contains over 5000
samples of 52 subjects captured using the Kinect sensor.
High recognition rates are achieved under challenging ex-
periments. These results justify the feasibility of perform-
ing non-intrusive face recognition using a low-cost sensor.

To the best of our knowledge, the proposed algorithm is
the first to utilize low quality 3D data from a consumer level
sensor for addressing the challenging pose invariant face
recognition problem. In addition, the idea of harnessing fa-
cial symmetry to estimate missing data and subsequently
correcting the estimation error with sparse coding is an in-



novative combination.

2. Robust Face Recognition using Kinect
Figure 1 shows a block diagram of the proposed algo-

rithm. Details of each component are given below.

2.1. Canonical Preprocessing

Figure 3. An example of canonical preprocessing on profile view.

Given a 6D point cloud (XYZ-RGB), the proposed pre-
processing algorithm canonicalizes the face model and pro-
duces a depth map and RGB texture image. Unlike common
range data preprocessing which only aims to remove holes
and spikes, the proposed algorithm also aims to achieve
view-point invariant representation. In fact, all the data we
obtained from the Kinect sensor do not have spikes1. Holes
are filled during the resampling step. An example is shown
in Figure 3 and each preprocessing step is detailed below.

2.1.1 Nose Tip Detection

Due to the level of noise in Kinect depth data (as illus-
trated in Figure 2), the nose tip is the most reliable land-
mark that can be located on such 3D face model. Some
approaches [12, 14] can detect the nose tip on a 3D face un-
der different expressions and poses. However, the 3D data
is high resolution in those cases. In this work, we assume
that the approximate nose tip location has been detected.
Since the nose tip is required only for face cropping and
rough alignment, the system can work as long as the de-
tected point is close enough to the true location.

2.1.2 3D Face Cropping and Pose Correction

Given the nose tip position, face cropping can be easily
done in 3D. Following [12], we use a sphere of 8cm radius
to crop the face. Specifically, we first translate the point
cloud such that the nose tip is at the origin. Then points
that are more than 8cm away from the origin are removed.

1It is possible that filtering is done inside the Kinect hardware or API.

As a result, a 6D point cloud (XYZ-RGB) of only the face
surface area are obtained.

Figure 4. The reference face model.

The Iterative Closest Point (ICP) algorithm [1] is an ac-
curate technique for alignment. However, it is known to be
computationally expensive, and hence registering the query
face to every frontal gallery face in search of the best align-
ment is not feasible. Instead, we register the query (XYZ
only) to a reference model. Since different subjects have
different face shape, the reference face model must be a re-
liable representation of common 3D faces. Such a reference
face can not be constructed from the Kinect 3D data due to
its noise level. Therefore, we build the reference face using
face models (with no expression) from the FRGC [15] and
the UWA database [11]. The reference face is constructed
by aligning the scans, resampling them on a uniform grid
and then taking their mean. The reference face has 64 points
between the centers of the eyes. The number of points from
the center of the lip to the line joining the eyes is also 64.
The complete face has 128x128 points. Figure 4 shows the
reference face used in our experiments. All faces including
the training data and query face are registered to this refer-
ence face with six ICP iterations.

2.1.3 Symmetric Filling

Although the left and right regions of human face are not
perfectly symmetric, the variations caused by facial asym-
metry are less than the variations caused by different iden-
tities [13]. Unlike the work in [13] which mirrors the AFM
external forces from one side to the other and then generates
two different fitted AFMs for recognition, we utilize facial
symmetry in the preprocessing stage at the point cloud level.

After pose correction, we create a mirrored point cloud
by replacing the X values in the original point cloud by their
opposite numbers (-X). However, not all the mirrored points
are useful because we only want to fill in the missing data.
Ideally, no point should be added on a frontal face, while
all points should be mirrored on a profile view. To this end,
for each mirrored point, we compute its Euclidean distance
using (XY values only) to the closest point in the original
point cloud. If this distance is less than δ, the mirrored point
is removed. The idea is to add the mirrored point only if
there is no neighboring point at that location. Note that Z is
not used when calculating the distance, because the differ-
ence in Z is usually caused by facial asymmetry rather than



missing data. The remaining mirrored points are then com-
bined with the original point cloud. A sample symmetric
filling is illustrated in Figure 3.

The threshold δ can be chosen based on the spatial res-
olution of the sensor or the point cloud itself. In our ex-
periments, it was user defined. Depending on the original
sample density, high values of δ will lead to a noisy sur-
faces while values too low will not benefit from symmetric
filling. We empirically found that a good balance can be
achieved with δ = 2mm, however the performance is not
affected much when setting δ to values between 1-5mm.

2.1.4 Smooth Re-sampling

There are three main objectives of re-sampling. First, it
smooths out the noisy surface generated by the Kinect sen-
sor and symmetric filling. Second, it fills up holes that still
remain after symmetric filling. Lastly, it reduces the effect
of face misalignment on the 2D grid caused by ICP registra-
tion. To this end, we fit a smooth surface to the point cloud
(XYZ) using a publicly available code2. This algorithm fits
a surface to the points using approximation as opposed to
interpolation. Surface fitting is performed using a smooth-
ing (or stiffness) factor that does not allow the surface to
bend abruptly thereby alleviating the effects of noise and
outliers. For each face, 128 × 128 points are re-sampled
uniformly from its minimum X and Y to the maximum X
and Y values. The advantage of re-sampling from min to
max is that it can align the face on a 2D grid. Notice that
we do not smooth the RGB texture since it is not noisy and
smoothing will only blur it. Instead, we just re-sample it to
the same XY location with interpolation. After re-sampling,
the X and Y grids are discarded and four 128×128 matrices
of depth and RGB are obtained. These are down-sampled
to 32× 32 for further processing.

2.2. DCS Transform

Color information is proven to be useful especially in
the absence of shape clue [23]. In other words, color can
improve recognition robustness. Recent research shows
that color can improve face recognition performance signif-
icantly [21, 22, 18, 20]. Color images are usually modeled
using RGB space, which is a weak space for face recogni-
tion due to its high inter-component correlation [22]. There-
fore, researchers have focused on seeking a better color
space such as the Discriminat Color Space (DCS) where
faces are better separated [21][18, 20]. DCS finds a set of
linear combinations for the R, G and B components in order
to maximize class separability similar to the idea of LDA.
We use the original DCS method [21] which is effective and
reliable. We apply the DCS transform on the RGB texture
image after preprocessing.

2mathworks.com/matlabcentral/fileexchange/8998

2.3. Multi-modal Sparse Coding

The Sparse Representation Classifier (SRC) is shown to
be robust against disguise [19]. More importantly, it can
correct small portion of errors or missing data. Our pro-
posed canonical preprocessing algorithm usually results in
small errors due to the fact that the human face is not per-
fectly symmetric and because sometimes less than half the
face is visible in a profile view. Some data is completely
missing when the profile view is slightly larger than 90 de-
grees in which case there are no reference points for mirror-
ing. See Figure 3 as an example, which shows an error line
in the middle of the resulting canonical face image. This
kind of error can be effectively corrected by SRC.

In our proposed framework, we employ a multi-modal
SRC algorithm for face recognition. Specifically, SRC is
applied on the preprocessed depth map and the DCS color
texture separately. Since DCS texture consists of three
channels, they are first stacked into one augmented vec-
tor before SRC can be applied. Following the classifica-
tion strategy in [19], two set of similarity scores are ob-
tained based on individual class reconstruction error for the
depth and texture. These two scores are normalized using
the z-score technique [7] and summed for final decision.
The query is assigned the label of the class with the highest
similarity score.

In this paper, we formulate the sparse coding as the
LASSO problem with `1 penalty:

min
x
‖Ax− y‖2 + λ‖x‖1 (1)

where A is the dictionary i.e. the training samples, y is the
query face, x is the coding parameters vector and λ is a
constant that controls the coding sparsity. Through out this
paper, we set λ equal to 0.05 and Eq. (1) is solved using
the SPAMS package [10].

3. Experiment
In this section, the CurtinFaces dataset is introduced,

several experimental results are reported.

3.1. CurtinFaces Dataset

Figure 5. Sample un-preprocessed training images of a subject.

We use the online CurtinFaces database3, which is pub-
licly available, in our experiments. This dataset contains

3impca.curtin.edu.au/downloads/datasets.cfm

mathworks.com/matlabcentral/fileexchange/8998
impca.curtin.edu.au/downloads/datasets.cfm


over 5000 images of 52 subjects. We use a subset which
consists of 4784 images of 52 individuals with variations in
poses(P ), illumination(I), facial expressions(E) and sun-
glasses disguise. The database contains facial images with
and without glasses. However, the first 3 images per sub-
ject in frontal pose, left and right profile view are without
glasses. Additionally, for each subject, there are 49 images
at 7P × 7E and 35 images at 5I × 7E. Images with sun-
glasses are under five conditions (i.e. 3P and 2L). The full
set for each person consists of 92 images.

For training, we select 18 images per subject (see Figure
5). Each training image contains only one of the three varia-
tions (illumination, pose and expression). These images are
used to compute DCS projection as well as the coding dic-
tionary. Note that these images are also preprocessed with
the proposed algorithm prior to use. Note that the use of
multiple training images is practically feasible in the case of
Kinect as it can acquire RGBD data instantly at 30 frames
per second.

3.2. Pose and Expression Robust Face Recognition

Figure 6. Sample un-preprocessed test images with simultaneous
variation in pose and expression.

Table 2. Recognition rates (%) for poses × expression variations.
Note that the results for D (Depth map) and T (Texture map) are
obtained after preprocessing with the help of the 3D data.

Without Symmetric With Symmetric
Pose D T Fusion D T Fusion
Frontal 100 100 100 100 100 100
±30oyaw 49.5 98.1 93.6 88.3 99.8 99.4
±60oyaw 14.9 80.4 55.1 87.0 97.4 98.2
±90oyaw 1.0 39.4 14.4 74.0 83.7 84.6
±60opitch 77.2 91.3 90.9 81.6 89.1 92.8
Average 46.2 87.6 77.0 85.4 95.0 96.3

In this experiment, we evaluate the proposed system
against pose and expression variations. There are 39 test im-
ages per subject as shown in Figure 6. Recognition is based

on a single RGBD query image per subject. The recogni-
tion rate is reported in Table 2 for different poses. The most
important result to be emphasized is the 84.6% recognition
rate for the profile views which is attributed to the proposed
symmetric preprocessing technique. One can see that when
the symmetric filling step is excluded, only 39.4% recogni-
tion rate is achieved. Moreover, both depth and texture ben-
efit greatly from the symmetric filling except for the texture
image with pitch poses (which drops from 91.3% to 89.1%)
where missing data can not be estimated by symmetry. In
all cases, depth map benefits the most from symmetric fill-
ing. Recognition rate using depth data alone increases from
46.2% to 85.4% on the average. This is because, besides
correcting the pose, symmetric data also helps in smooth-
ing the noisy facial depth surface. Although fusion of pre-
processed depth and texture only improves the performance
slightly, the depth information is also contributing towards
the pose correction and symmetric filling of the RGB data.

3.3. Illumination and Expression Robust
Face Recognition

Figure 7. Sample un-preprocessed test images with simultaneous
variation in illumination and expression.

Table 3. Recognition rates (%) for illumination × expression vari-
ations. Note that the results for D (Depth map) and T (Texture
map) are obtained after preprocessing with the help of the 3D data.

Without Symmetric With Symmetric
Illumination D T Fusion D T Fusion
Front 89.1 96.8 98.4 92.5 97.1 98.9
Back 89.4 96.6 97.6 93.8 96.5 98.6
Low Ambient 87.2 91.0 95.8 91.3 91.0 97.1
Average 88.8 95.6 97.6 92.8 95.6 98.4

In this experiment, we evaluate the proposed system
against illumination and expression variations. There are 30
test images per subject as shown in Figure 7. The recog-
nition rate is reported in Table 3. The most important re-
sult worth noticing is that the depth map benefit from sym-
metric filling in all cases (increase from 88.8% to 92.8%



on average), which is consistent with the pose experiment
in section 3.2. However, all faces in this experiment are
frontal. Therefore, the improved performance of depth map
must be due to the fact that the Kinect noisy data has been
smoothed by the symmetric filling. Moreover, fusing depth
and texture data improves the performance significantly in
this case especially in the case of limited light source (in-
creases from 91.3% to 97.1%). This is because the texture
information degrades dramatically when ambient lighting is
too low, while depth information is unaffected.

3.4. Robustness to Disguise

Figure 8. Sample un-preprocessed test images with disguise.

Table 4. Recognition rate (%) under pose/illum. variation and sun-
glasses. Note that the results for D (Depth map) and T (Texture
map) are obtained after preprocessing with the help of the 3D data.

Without Symmetric With Symmetric
Condition D T Fusion D T Fusion
Frontal 90.4 34.6 96.2 96.2 34.6 94.2
Illumination 90.4 32.7 92.3 94.2 32.7 93.3
Pose 23.1 33.7 40.4 81.7 33.7 85.6
Average 63.5 33.5 72.3 89.6 33.5 90.4

In this experiment, we evaluate the proposed system
against sunglasses disguise. There are 5 test images per
subject as shown in Figure 8. The recognition rate is re-
ported in Table 4. Notice that the depth information per-
forms much better than texture (56.1% better on the aver-
age). This is because the surface of sunglasses is very dif-
ferent to the surface of human faces and can be easily identi-
fied as outliers. On the other hand, the texture of sunglasses
(black in this case), is similar to the human eyes area es-
pecially when under strong shading caused by illumination.
Therefore, fusing the texture information can decrease the
performance. Lastly, one can see that the symmetric fill-
ing technique increases the performance of depth map in all
cases.

3.5. Timing

Table 5. Recognition time in seconds for the complete test set and
a single query image (average time).

Whole Set Single Query
Face Cropping 235 0.061
ICP Registration 13310 3.467
Symmetric Filling 3805 0.989
Resampling 1836 0.477
DCS Transform 4 0.001
Sparse Code (Depth) 100 0.026
Sparse Code (Texture) 323 0.084
Fusion 65 0.017
Total 19678 5.114

Table 5 reports the test time for our algorithm using a
64-bit Matlab implementation on an Intel Core2 Quad CPU
@ 3GHz and 4GB RAM. No extra effort was made for code
optimization except for sparse coding as mentioned in sec-
tion 2.3. Most of the time is taken by the Matlab implemen-
tation of the ICP algorithm. This can be avoided if a C++
implementation is used. The current system can recognize
a single query face in about 5 seconds irrespective of the
pose, expression and illumination condition.

4. Comparison to Other Techniques
To the best of our knowledge, this is the first work report-

ing results for face recognition under pose, illumination, ex-
pression and disguise using the Kinect sensor. Therefore,
performance can not be directly compared. However, in
Table 6, we summarize some other reported performances
in the literature that are related to non-intrusive face recog-
nition. The proposed framework achieves 88.7% average
recognition rate when using only the noisy depth data from
Kinect under our challenging experimental setup of Curtin-
Faces. As we illustrated previously in Figure 2, the Kinect
face without texture is too noisy to be recognizable by even
a human. Therefore, a recognition rate of 88.7% using the
Kinect depth data alone is a significant achievement. This
result also suggests the usefulness of such data for face
recognition. Our overall system achieves 96.7% recogni-
tion rate.

Table 6. Summary of reported performance in existing literature.

Method Dataset
(no. subject) Conditions Accuracy

This paper CurtinFaces
(52)

pose
illumination
expression
sunglasses

88.7% (3D)
91.1% (2D)

96.7% (2D+3D)

UR3D-S [13] UND+UHD
(865)

pose
expression 83.7% (3D)

PLS [16] CMU-PIE (68) pose 90.12% (2D)
Toderici
et al.[17] UHDB11 (23) illumination ∼92%

(3D aided 2D)
Mian
et al. [12] FRGC (466) expression

aging 95.37% (2D+3D)

SRC [19] AR (100) illumination
sunglasses 97.5% (2D)

Illumination
Cone [5] YaleB (10) pose

illumination 91.3% (2D)

There are also other approaches that tackle similar prob-
lems. For example, the UR3D-S [13] address the pose prob-
lem using facial symmetry. However, their approach is dif-
ferent from ours and they use high resolution 3D data. They
reported an average recognition rate of 83.7% using depth
data alone on a larger dataset. PLS [16] uses only 2D data
for pose invariant face recognition and achieves 90.12%
on a smaller dataset. Toderici et al. [17] proposed a 3D
bi-directional re-lighting method that achieves about 92%
under illumination variations. Mian et al. [12] proposed
a 2D+3D part based approach that could achieve 95.37%
on FRGC [15] with variation in expressions alone. The



SRC [19] method, using only 2D data, achieved 97.5% for
sunglasses disguise on a relatively small dataset. The illu-
mination Cone [5] approach achieves 91.3% when there are
pose and illumination variations at the same time. Never-
theless, none of these existing techniques are designed to
handle poses, expressions, illumination and disguise simul-
taneously.

5. Conclusion
We proposed a practical solution for robust face recogni-

tion using depth and texture information from a consumer
level 3D sensor. We found that, facial symmetry can be used
to aid face recognition under non-frontal view and it also
helps in smoothing out noisy depth data. Although 3D data
provided by consumer sensors like Kinect are very noisy,
it is still useful for face recognition. Specifically, the 3D
information can be used to preprocess the texture, improv-
ing face recognition accuracy significantly in situation of
extreme pose variations. The preprocessed depth map also
help face recognition, especially under low ambient lighting
condition and sunglasses disguise. By utilizing RGB-D in-
formation, the proposed system performs face recognition
with satisfactory accuracy even under simultaneous varia-
tions in pose, expression, illumination and disguise. These
results suggest that non-intrusive face recognition can be
performed well with high-speed low-cost 3D sensors, even
though they have low depth resolution.
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