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In this work we introduce symbolic knowledge representation and reasoning capabilities to enrich

perceptual anchoring. The idea that encompasses perceptual anchoring is, the creation and maintenance

of a connection between the symbolic and perceptual description that refer to the same object in the

environment. However, without higher level reasoning, perceptual anchoring is still limited. Hence

we direct our focus to combining a knowledge representation and reasoning (KRR) system with the

anchoring module to exploit a knowledge inference mechanisms. We implemented a prototype of

this novel approach to explore through elementary experimentation the advantages of integrating a

symbolic knowledge system to the anchoring framework in the context of an intelligent home. Our

results show that using the KRR we are better able to cope with ambiguities in the anchoring module

through exploitation of human robot interaction.

1. Introduction

An emerging trend in the field of robotics is the notion of symbiotic robotic systems which

consists of a robot, human and (smart) environment cooperating together in performing

different tasks 5. By asisting the robot with information provided by the human or smart

objects, some of the current challenges in robotics can be circumvented. For instance, lo-

calization of the robot can be done with a system of surveillance cameras and object recog-

nition tasks can be assisted by passive technologies like RFID. Human assistance and co-

operation can also be used to provide instructions to the robot and to assist the robot in

case of failure or ambiguious situations when several choices are possible. The motivation

behind the symbiotic system is the integration of robotics into everyday life. Therefore, it

is essential to allow a range of different users to be able to communicate to the system, this

range should include both expert users and even bystanders.

A natural form of communication between humans and the robots is natural language

dialogue. Amoung the many challenges that this task presents, in this paper, we concen-

trate on the correspondence that must necessarily exist between the linguistic symbols used

by a human and the sensor data perceived by the robot. We call anchoring the process

of creating and maintaining over time the connection between the symbols and the corre-

sponding perceptual representation that refer to the same physical objects. Already in the

field of robotics, anchoring has been explored in systems that use planning and a variety of

sensing modalities (e.g. vision and olfaction). In this paper we examine the possiblity to in-

tegrate the anchoring framework in a symbiotic robotic system which includes a knowledge
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representation and reasoning component. We argue that this integration is an important in-

gredient to obtaining a natural and effective interaction, particularly in cases where a robot

may assist the human in simple tasks. In this paper, the use of the KRR is further advocated

to also allow the human to assist the robot in simple anchoring tasks, such as the disam-

biguation of objects, thereby exploring a deeper form of mutual human robot interaction

(HRI).

The validation of the system is done in the context of an intelligent home environment,

which can be used for ambient assisted living for the elderly or disabled. In this intelligent

home, an existing framework called the PEIS-Ecology is used to coordinate the exchange

of information between the robot, other pervasive technologies in the environment and the

human user. To illustrate the utility of KRR in anchoring three case studies are presented.

The first focusses on the inclusion of spatial relations in the anchoring framework. A set of

binary spatial relations, “at”, “near”, “left”, “right”, “in front”, and “behind” are used for

2D space. As spatial prepositions are inherently rather vague, we are using fuzzy sets to

define graded spatial relations. The proposed method computes a spatial relations-network

for anchored symbols and stores that in the KRR. A second case uses multi-modal infor-

mation about objects which includes both spatial information and in this case, olfactory

information. The KRR is then used to assist the robot in determining which perceptual

actions can be taken to collect further information about object properties. The third case

investigates the possibility to reason about object properties in order to determine optimal

candidate selection. Each of the case studies have been selected based on novelty of our

approach and the relevance for an intelligent home application.

This paper is organised as follows: Section 2 describes the computational framework

used for anchoring and some aspects of the anchoring problem. In Section 3 we introduce

the knowledge representation system and its coupling with the anchoring process. Sec-

tion 4 describes the implementation of the system and shows its functioning in Section 5.

Section 6 discusses our approach with respect to related work with a final conclustion and

mention of future work in Section 7.

2. Perceptual Anchoring

As described in the introduction, the task of anchoring is to create and maintain in time

the correspondence between symbols and percepts that refer to the same physical object.

This correspondence is reified in a data structure α(t), called an anchor. It is indexed by

time as the perceptual system continously generates new percepts; and the created links

are dynamic, since the same symbol may be connected to new percepts every time a new

observation of the corresponding object is acquired. So at each time instance t, α(t) con-

tains a symbol identifying that object, a percept generated by the latest observation of the

object, and a perceptual signature meant to provide the (best) estimate of the values of the

observable properties of the object.

The main parts of anchoring are4 :

• A symbol system including a set X = {x1, x2, . . .} of individual symbols (vari-

ables and constants), a set P = {p1, p2, . . .} of predicate symbols, and an infer-



January 7, 2008 14:1 WSPC/INSTRUCTION FILE IJAIT08

Using Knowledge Representation for Perceptual Anchoring in a Robotic System 3

ence mechanism whose details are not relevant here.

• A perceptual system including a set Π = {π1, π2, . . .} of possible percepts, a

set Φ = {φ1, φ2, . . .} of attributes, and perceptual routines whose details are not

relevant here. A percept is a structured collection of measurements assumed to

originate from the same physical object; an attribute φi is a mesurable property of

percepts with values in the domain D(φi). Let D(Φ) =
⋃

φ∈Φ
D(φ).

• A predicate grounding relation g ⊆ P × Φ × D(Φ), which embodies the cor-

respondence between (unary) predicates and values of measurable attributes. The

relation g maps a certain predicate to compatible attribute values.

The following definitions allow to characterize objects in terms of their (symbolic and

perceptual) properties:

• A symbolic description σ is a set of unary predicates from P .

• A perceptual signature γ : Φ 7→ D(Φ) is a partial mapping from attributes to

attribute values.

Fig. 1. Graphical illustration of the anchoring framework: the anchoring module connects the perceptual and

the symbolic systems in a physically embedded intelligent system. The perceptual system consists of visual and

olfactory percepts.

2.1. Creation and Maintenance of Anchors

The extension of the framework previously presented allows the creation of anchors in

both a top-down and a bottom-up fashion: bottom-up acquisition is triggered by recog-

nition events from the sensory system when percepts can not be associated with existing

anchors; top-down acquisition occurs when a symbol needs to be anchored to a perceptual

description (such a request may come from a top-level planner) 11. These functionalities

are realized through an acquire and find functionality. See Fig 1 for a graphical illustration.

At each update cycle of the perceptual system, when new perceptual information is

received, it is important to determine if the new information should be associated to an
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existing anchor (data association problem). A track functionality addresses the problem

of tracking objects over time. Furthermore for specific cases of top-down anchoring two

important features should be highlighted:

Complete versus Partial Matchings: Matchings between a symbolic description and a

perceptual signature can be partial or complete. Given a percept π and a descrip-

tion σ, we say that π fully matches σ if each attribute in π matches a property in σ

and vice-versa; π partially matches σ if each attribute in π matches a property in

σ; otherwise π does not match σ.

Definite versus Indefinite Descriptions: The given symbolic descriptions can be either

definite or indefinite: a description is definite if it denotes a unique object, for

example “my coffee-cup on the table”; an indefinite description does not require

that the object is unique, but that the object corresponds to the description, for

example “a coffee-cup”.

Given a request in the form of a symbolic description and information about whether

this is a definite or indefinite description, the anchoring module has to find a matching

candidate and has to detect possible ambiguities. If an unambiguous match is found, the

anchoring module selects that candidate for anchoring. In the case if there are ambiguities

and/or no fully matching candidates are found, the anchoring process could make use of

a high-level task planner to create and execute a recovery plans with the aim of searching

for unperceived objects or collecting more perceptual properties 3. In order to do this,

higher level knowledge about which properties are relevant for disambiguation is needed.

Furthermore, in cases where ambiguities cannot be resolved by active perception, higher

level knowledge about objects and the behaviour of objects may also be used. The intention

of this work is to exploit more powerful tools to solve such ambiguous cases by using a

richer symbolic description.

3. Knowledge Representation

The conceptual knowledge that we are using structured in a hierarchy, a so called ontology,

allowing definition of concepts at different levels of abstraction and supporting subsump-

tion inference. An ontology specifies an abstract and simplified view of the domain that we

want to model and can be, at least partially and up to a certain level of detail, defined inde-

pendently from a specific application. Practically, an ontology constitutes an agreement to

use a shared vocabulary and constraints on the interpretation of terms that is consistent with

the modelled domain. A major advantage of the use of an ontology is that knowledge in a

knowledge base can be exchanged between agents, including humans, without depending

on an interpretation context and that it can be easily queried.

The knowledge base consists of two parts: a terminological component, called T-Box,

that contains the description of the relevant concepts and their relations; and an asser-

tional component, called A-Box, storing concept instances and assertions on those in-

stances. Keeping both parts separate is convenient in order to maintain the distinction be-

tween conceptual knowledge and the assertions actually concerning a scenario. The con-
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ceptual knowledge is mostly static and largely independent of an actual anchoring scenario,

whereas the assertions might be of very dynamic nature.

For our domain, the anchoring problem, we require an ontology that covers all the

physical entities and their perceptual properties that can occur in an anchoring scenario,

and thus are recognised by the perceptual system. In addition, we want to use knowledge

that can be inferred from basic knowledge about anchors or that is collected from exter-

nal sources with cognitive capabilities, such as other anchoring processes or in particular

humans interacting with the system. Modelling an ontology is in general a difficult task

and is not our direct concern; therefore we chose to base our ontology on a subset of the

ontology framework DOLCE (A Descriptive Ontology for Linguistic and Cognitive Engi-

neering) 13, an upper-level ontology developed for the Semantic Web. From the possible

options we selected DOLCE because it suits our needs and is comparably simple.

The main concepts in DOLCE are divided into the categories Endurants, Perdurants,

Qualities, and Abstracts. Endurants are entities that are present at whole, including all their

proper parts, at any time they are present (for example natural objects, like cups, or other

agents), whereas Perdurants are only partially present, their parts evolving and unfolding

over time (for example an event). Qualities describe basic entities that can be perceived and

measured by agents. DOLCE makes a distinction between the quality of an entity which is

a concept inherent to that entity, and the actual value of that quality, its quale, often called

property. This stems from the idea of a conceptual space 8.

Ent it y

Endurant Abst ract
Qualit y

(left  out )

Physical
Endurant

Physical
Object

Am ount  of
Mat ter

Agent ive
Physical
Object

Non-Agent ive
Physical
Object

Natural
Person

Art ifact

Liquid

Abst ract
Relat ion

Region

Spat ial
Relat ion

Quale
Physical
Region

Color Sm ell
Space
Region

Spat ial
Region

Fig. 2. An excerpt of the used ontology for perceptual anchoring, based on DOLCE.

Fig 2 shows an excerpt of our domain ontology for the anchoring problem used in this

work. Objects known to the anchoring module are sub-concepts of Physical Object and

can have a number of qualities (colour, smell, size), defined by the leaves of the Quale

hierarchy. In this work, we do not employ the concept Quality to represent properties and

their values, but use the symbolic property values delivered by the perceptual system, which
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are explicitly mapped as instance properties to the KB and uses a hand-crafted grounding

relation, delivering percepts of the form:

((OBJECT (ID 1)(SHAPE MUG)(COLOR WHITE)

(POSITION (1400 400))))

Another aspect of most KRR systems is the possibility to define rules that trigger ac-

tions when facts are added, removed, or changed in the A-Box, or when the subsumption

inference classifies an instance as being of a more specific type. We try to make use of

some rules that provide extended inference capabilities beyond the simple concept-based

ones provided by the T-Box reasoner of the chosen KRR system; see the next section for

an example.

4. Implementation

The anchoring framework is implemented in LISP and is connected to a suitable perceptual

system. The anchoring module is integrated into the robot control architecture and makes its

functionalities and established anchors available to other parts of the system. For example

a high-level task planner that operates on the anchors symbolic description or the low-level

behavioural control system that uses the perceptual signature of anchors to navigate to

objects. The knowledge base is implemented using the LOOM knowledge representation

system 2, running in a separate LISP process and hooked to the anchoring module through

a middle-ware software further explained in Section 5.

4.1. Simple Inferences

For each object, when it is anchored, its symbolic description is created in the KB: an

instance of the respective concept (object class) is created with the given properties, like

its colour. A first advantage of keeping the symbolic description of anchors in a knowledge

base is the fact that the descriptions used to find anchors can be much richer and can include

inferable knowledge.

So far, we added a simple hierarchy of drinking vessels to the ontology, defined as

follows (in LOOM):

(defconcept Vessel

:is-primitive Artifact)

(defconcept Drinking-Vessel

:is-primitive Vessel)

(defconcept Mug

:is (:and Drinking-Vessel

(:filled-by Has-Size ’SMALL)))

(defconcept Has-Handle)

(defconcept Cup

:is (:and Mug Has-Handle))

(defconcept Color

:is-primitive Quale)

(defrelation Has-Color

:domain Physical-Object

:range Color)
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(defconcept Size

:is-primitive Quale)

(defrelation Has-Size

:domain Physical-Object

:range Size)

The vision system can identify mugs and cups, with cups having a handle; the handle

is treated as a property of the cup and is not a separate physical entity. This avoids the

problem of anchoring compound objects that we do not want to address here.

In our scenarios, mugs and cups, and more general, vessels can contain liquids that we

consider to be of class Amount-Of-Matter; the concept of a liquid does not exist without its

container, therefore we introduce a dependency on the respective relation Contains-Liquid:

(defconcept Liquid

:is (:and Amount-Of-Matter

(:exactly 1 Contains-Liquid)))

(defrelation Contains-Liquid

:domain Vessel

:range Liquid)

To make use of the odour classification that the robot provides, we add a smell property

that is inherent to the class Amount-Of-Matter and a second relation asserting the smell of

an object (Smells-Of ):

(defconcept Smell

:is (:and Physical-Quality

(:exactly 1 Has-Smell)))

(defrelation Has-Smell

:domain Amount-Of-Matter

:range Smell)

(defrelation Smells-Of

:is (:satisfies (?x ?y)

(:or (Has-Smell ?x ?y)

(:for-some (?z)

(:and (Contains-Liquid ?x ?z)

(Has-Smell z? ?y))))))

Now, given for example the facts Liquid(coffee-liquid), Smell(coffee-smell), Has-

Smell(coffee-liquid, coffee-smell), and the assertion Smells-Of(mug, coffee-smell) we want

the system to infer that the mug contains a liquid smelling of coffee, which we consider

the only reasonable explanation in our scenario. Such an inference is not possible given the

description above, and in fact this is an abduction inference that is not possible per se in the

KRR system. For this reason we had to explicitly map each substance, to each substance-

smell.

(tellm

(Has-Smell coffee-liquid coffee-smell)

(Has-Smell ethanol-liquid ethanol-smell)

(Has-Smell hexanal-liquid hexanal-smell)

(Has-Smell octanol-liquid octanol-smell)

(Has-Smell 3-hexanal-liquid 3-hexanal-smell)

(Has-Smell linalool-liquid linalool-smell)

...

...
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)

Then using a hand-crafted production rule Assert-Contains-Liquid-Has-Smell, we

achieved this simple inference mechananism (in LOOM):

(defproduction Assert-Contains-Liquid-Has-Smell (?x ?y)

:situation (:and (Vessel ?x) (Smell ?y))

:with (:and (Liquid ?z) (Has-Smell ?z ?y))

:response ((tellm (Contains-Liquid ?x ?z))))

Whenever a Smells-Of assertion is added to the A-Box of the KB, the rule Assert-

Contains-Liquid-Has-Smell asserts that the respective vessel contains the liquid with that

smell, assuming that there is only one such.

4.2. Spatial Relations

Egocentric Frame of Reference

REFO

LO

Robot (Origo)

Deictic Orientation
of REFO

REFO

LO

Local Frame of Reference

d local

α local

Transformation

Fig. 3. Frame of reference, and computation of distance and direction angle.

Spatial relations are used in the symbolic description of objects and allow to distinguish

objects by their location w.r.t. other objects and play an important role when it comes to

human-robot interaction. Two classes of binary spatial relations between a reference ob-

ject REFO and the located object LO are considered: the distance (topological) relations

“at” and “near”, and the directional (projective) relations “front of”, “behind”, “right”,

and “left”. The interpretation of a projective relation depends on a frame of reference; for

reasons of simplicity we assume a deictic frame of reference with an egocentric origin co-

inciding with the robot platform. Similar to the approach in 10, we model spatial relations

as concepts in the ontology (see Section 3): we consider a spatial relation a sub-concept of

Abstract Relation (itself a subclass of Abstract), having as properties a reference object, a

located object (both Physical Objects; the origin is omitted in this implementation), and a

spatial region, an instance of the Abstract concept Spatial Region, which is one of the six

defined (in LOOM):

(defconcept Abstract-Relation

:is-primitive Abstract)

(defconcept Spatial-Relation

:is (:and Abstract-Relation
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(:exactly 1 Has-Reference-Object)

(:exactly 1 Has-Located-Object)

(:exactly 1 Has-Spatial-Region)))

(defconcept Spatial-Region)

(tellm (create AT Spatial-Region)

(create NEAR Spatial-Region)

(create LEFT Spatial-Region)

(create RIGHT Spatial-Region)

(create BEHIND Spatial-Region)

(create IN-FRONT Spatial-Region))

(defrelation Has-Reference-Object

:domain Spatial-Relation

:range Physical-Object)

(defrelation Has-Located-Object

:domain Spatial-Relation

:range Physical-Object)

(defrelation Has-Spatial-Region

:domain Spatial-Relation

:range Spatial-Region)

For the computation and evaluation of these spatial relations we use the model pre-

sented in Gapp 7 and apply it to 2D space. The evaluation of a spatial relation results in

a degree of applicability in a range between “not” and “fully” applicable, respectively. A

local coordinate system at the REFO aligned to its deictic orientation, as shown in Fig 3,

is defined, and the local coordinates of the LO w.r.t. the REFO are computed. From this

the Euclidean distance dlocal and the direction angle θlocal are computed.

We use simple trapezoidal membership functions µtopo and µproj for the evaluation

(others are possible, e.g. spline functions):

atopo : (LO, REFO) 7→ µtopo(dlocal(LO))

aproj : (LO, REFO) 7→ µproj(θlocal(LO))

with topo ∈ {at, near} and proj ∈ {front, behind, left, right} that partition the space in

qualitative acceptance areas. Fig 4 shows a possible definition of the functions µtopo (top)

and µproj (bottom).

The computation of spatial relations can be triggered on command and can be restricted

to a set of anchors, usually those that are relevant in the current context. The algorithm

computes all possible spatial relations between all given anchors and selects the resulting

set of applicable relations, those relations with a degree of applicability above a predefined

threshold. For each of the selected relations an instance of Spatial Relation is created in the

knowledge base with the corresponding reference and located objects and Spatial Region.

To allow spatial references to objects from an egocentric perspective of the robot, we

define a special anchor named Me that is always located at the origo of the reference frame,

with position (0, 0). For example, the robot now can process queries like “the red ball to

the left of you” assuming that the system relates the reference “you” to the anchor Me.

An example of the use of spatial relations is given in Section 5.2.
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2.0

Fig. 4. Evaluation functions for topological and projective relations.

4.3. Managing Object Properties

A specially interesting case is one in which the importance of an object’s property may

vary depending on context. Consider the example of an intelligent home where a request

is made to a robot to retrieve a specific fruit. In general normally fresh fruits are suitable

candidates. Knowing that certain fruits, such as bananas, may have a varying color property

depending on its freshness, this information can be used to determine the suitability as

candidate anchor, without requiring the user to make a detailed request for a ’yellow fresh

banana’.

To handle this type of information in the KB, we extend our ontology’s hierarchy to

define concepts representing objects (e.g. fruits), where these objects are a sub-class of the

physical objects domain, having properties such as colour, size, shape, age and name (in

LOOM) such as:

(defconcept Fruit :is-primitive

(and Physical-Object

(:exactly 1 Has-Name)

(:exactly 1 Has-Colour)

(:exactly 1 Has-Size)

(:exactly 1 Has-Shape)

(:exactly 1 Has-Fruit-Age)))

In this way, each anchor that comes from sensory systems creates an instance of the

concept fruits to the ABox. The spatial reasoning component remains as it is, since it is

designed to function properly in every situation, whether we try to find cups, or fruits. In

the implementation, the temporal aspect is considered as a set of states rather than linear

time temporal logic (LTL). Although LOOM is capable of linear time temporal reasoning,

we find that the ”state” approach efficiently interconnects with the spatial component which

is designed in description logic.

Here, we introduce the concept “age” for fruits, which may be assigned with specific

values from the one-way state set. We do not allow a fruit to change states backwards :
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(defset Fruit-Age :is ( :the-ordered-set ’FRESH ’MATURE ’ROTTEN))

(defrelation Has-Fruit-Age

:domain Fruit

:range Fruit-Age

:characteristics :single-valued)

Then we define some additional relations, that would help the KB to classify each fruit

instance that is anchored, with the appropriate age. With respect to TBox specification:

Fresh-Banana :is ( :or (the Has-Fruit-Age (the-set ’FRESH))

(the Has-Colour (the-set ’YELLOW)))

Mature-Banana :is ( :or (the Has-Fruit-Age (the-set ’MATURE))

(the Has-Colour (the-set ’BROWN)))

Rotten-Banana :is ( :or (the Has-Fruit-Age (the-set ’ROTTEN))

(the Has-Colour (the-set ’BLACK)))

So the KB can tell about the age of the bananas based on their colour, or their previous

(if any) classification. To be able to prevent returning in-consumable Fruits, we then define

a production rule which consistently checks for Rotten-Fruits instances and after announc-

ing their age, it removes them from the ABox since we do not desire our service robot to

return such instances :

(defproduction announce-and-forget-rotten-fruits

:when (:detects (Rotten-Fruit ?f))

:perform (say-fruit-age ?f (forget-all-about ?f)))

That way, we are able to perform some basic inferences, using only information pro-

vided by the anchoring component, utilizing higher level reasoning. Hence, we can focus

on the logic aspects and dynamic properties of objects, rather than computing sensory in-

formation directly. As an additional challenge for future work, using information about

dynamic properties in the KB can be used to recognize again an object that has been previ-

ously perceived even if some of theproperties have changed over time.

4.4. Human-Robot Interaction (HRI)

The user interface to the robot consists of a plain text based application, where the user can

type in sentences in simple English. The sentence is analysed by a recursive descent parser

and translated into a symbolic description. The grammar allows commands of the form

“find ...” followed by a description of the object. The description consists of a main part and

can be followed by sub-clauses describing objects that are spatially related to that object.

The main part and each of the sub-clauses can be either a definite or indefinite description,

indicated by the article “a” or “the”, and includes the object’s class, for example “cup”, and

optionally its colour and smell. The smell of an object is inferred from the clause “with ...”

following the object’s class, indicating that it contains a liquid; for example, “the cup with

coffee” is assumed to be a cup containing coffee, and as such, smelling of coffee.

The derived symbolic description is used to construct a query for the KB. The main

functionality is realised by a FIND routine, which collects candidates from the KB that
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match the description. If there is more than one candidate, the anchoring module checks

for further properties in the given description, apart from shape and colour, and selects

additional properties. If an ambiguity still persists, the system tries to asks the user about

which of the candidate objects to select.

5. Experiments

5.1. TestBed

We have constructed a reference implementation of a symbiotic system, as well as built a

demonstrator environment in which the following case studies can be performed.

The basic building blocks of our testbed is inspired by the notion of a the concept of

PEIS-Ecology, originally proposed by Saffiotti and Broxvall 16 which combines insights

from the fields of ambient intelligence and autonomous robotics, to generate a new ap-

proach to the inclusion of robotic technology into smart environments. In this approach,

advanced robotic functionalities are not achieved through the development of extremely

advanced robots, but rather through the cooperation of many simple robotic components

called PEIS . A PEIS can be as simple as a toaster and as complex as a humanoid robot.

In general, we define a PEIS to be a set of inter-connected software components, called

PEIS-components, residing in one physical entity. Each component may include links to

sensors and actuators, as well as input and output ports that connect it to other components

in the same or another PEIS. A PEIS-Ecology is then a collection of inter-connected PEIS,

all embedded in the same physical environment.

As part of the testbed, we have built a physical facility, called the PEIS-home, which

looks like a typical bachelor apartment of about 25m2. It consists of a living room, a bed-

room and a small kitchen. The PEIS-Home is equipped with communication and compu-

tation infrastructure, and with a number of sensors. Fig 5 shows a few snapshots of the

home.

In our ecology there is an iRobot’s Magellan Pro indoor research robot called Pippi.

In addition to the usual sensors, the robot is equipped with a CCD color camera and with

a Cyranose 320TM electronic nose used to identify and discriminate between odours. The

Cyranose 320TM electronic nose is a contained unit which relies on a 32-channel carbon-

black polymer composite chemiresistor array for odour sampling. The sensors on Pippi are

mounted in such a way that line of sight and line of “smell” are coordinated. This is done by

placing the e-nose below the camera and odour samples are drawn from a uni-directional

air-flow at the front of the robot, as shown in Fig 5. The detection of an odour is therefore

maximized when the robot is directly facing the source.

On-board Pippi also runs an instance of the Thinking Cap, an architecture for au-

tonomous robot control based on fuzzy logic 17, and an instanceof the player program
15, which provides a low-level interface between the robot’s sensors and actuators and the

PEIS-Ecology’s tuple-space.

Pippi responds to tuples providing commands and requests. These include tuples of

type Goal, providing navigation goals, and of type Smell, providing smell commands.

Pippi produces, among others, tuples that indicate the state of the navigation and the ol-
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Fig. 5. (Left) A rough sketch of the PEIS-Home with a picture of the control deck. (Lower Left), the kitchen, and

common room. (Right) A view of Pippi with the Cyranose 320 mounted underneath the camera.

factory classification results which are then updated in the anchors and KB respectively. A

schematic overview of the system components used and their connection is given in Fig 6,

many of the components are seperate PEIS components.

Robot Platform

Anchoring
Module

Perceptual
System

Vision Smell

KRR System
Task

Planner

User Interface

Navigation /
Robot Control

Fig. 6. Schematic overview of the system parts and their connections. The task planner is shown with dashed

box as it is not directly to the work presented here.

5.2. Case-Studies

Three sets of experiments were performed. The aim of each experiment is twofold, first the

examined case studies illustrate the ability of the KRR component to accept queries and

return interpretable information (Human Robot Interaction). Secondly, they illustrate the

ability of the KRR component to be used as an integral process of the anchoring module

assisting in the resolution of ambiguities as discussed in Section 2 and recognizing relevant

properties of objects.
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5.2.1. Spatial Relations for Finding Objects

In the first case, spatial relations are used to describe objects. Here the robot surveys a

static scene with three objects (two green garbage cans and a red ball), See Fig 7, and the

anchoring module creates anchors for these objects bottom-up (as soon as identified by

the vision system). The output of the anchoring module is summarized as follows below

(detailed description of the perceptual data is obmitted):

(ANCHOR :NAME ’GAR-4 :ID ’ANCHOR-1 :SYMBOLIC-DESCRIPTION ’((SHAPE=

GARBAGE) (COLOR= GREEN) :PERCEPTUAL-DESCRIPTION ...)

(ANCHOR :NAME ’BALL-2 :ID ’ANCHOR-2 :SYMBOLIC-DESCRIPTION ’((SHAPE=

BALL) (COLOR= RED) :PERCEPTUAL-DESCRIPTION ...)

(ANCHOR :NAME ’GAR-5 :ID ’ANCHOR-3 :SYMBOLIC-DESCRIPTION ’((SHAPE=

GARBAGE) (COLOR= GREEN) :PERCEPTUAL-DESCRIPTION ...)

The spatial relations for the objects are given in the following table and are stored in

the KB.

Table 1. Spatial Relations for the anchored objects.

GAR-4 BALL-2 GAR-5

GAR-4 — (BEHIND 0.95)(LEFT 0.62) (LEFT 0.94)

BALL-2 (FRONT 0.96) (RIGHT 0.2) — (FRONT 0.96) (LEFT 0.43)

GAR-5 (RIGHT 0.94) (BEHIND 0.96) (RIGHT 0.85) —

Fig. 7. Spatial Relations: scene from the robot’s viewpoint (left) and snapshot of the robot’s perceptual space

with the created anchors (right).

It is now possible to use spatial relations to query for an object, for example: “find the

green garbage left of ball”, returns ((ANCHOR ANCH-1 GAR-4 ... )) as result.

Simlarly, a human user can be asked to resolve an ambiguity in a find request: in the

scene from the previous example, the query is “Find the green garbage”. (This experiment

is scripted and uses a simple pre-formulated scheme to guide the interaction with the user

by text prompts.) As the find request returns more than one anchor (namely ANCH-1 and
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ANCH-3), the script determines an anchored object that is spatially related to these anchors

as reference object and presents the user with a choice, enumerating the returned anchors

and their spatial relation(s) to the reference object. Then the query is reformulated using

additionally the selected relation(s). For example:

? FIND THE GREEN GARBAGE

- FOUND 2 CANDIDATES: PLEASE CHOOSE

- 1. GREEN GARBAGE LEFT BEHIND OF RED BALL

- 2. GREEN GARBAGE RIGHT BEHIND OF RED BALL

? 1

- REFORMULATING...

- FOUND: ((ANCHOR ANCH-1 GAR-4 ...))

5.2.2. Coping with Multiple Modalities

In Section 4.1 we describe how simple inference can be used to deduce information about

untraditional sensors, such as olfaction. In the flavour of the previous case described where

an ambiguity is introduced, the robotic system uses its olfactory module for resolving an

ambiguious case amoung different cups. Pippi is given the command “Find a green cup

with coffee”. Four candidates are found, the KRR providing information that cups, which

are vessels can contain liquid with an associated smell, triggers the task planner to generate

a plan to visit each candidate and collect an odour property. The ambiguity is then resolved

once a first match is found. An output of the camera image from the robot and the respective

local perceptual space is given in Fig 8. The output of the anchoring module described

below shows that at the perceptual signature of the object is updated with an odour property.

Fig. 8. KRR with olfaction: overhead view of the robot’s as it approaches a cup to collect an odour sample (left)

and snapshot of the robot’s perceptual space with the created anchors showing all candidates (right).

(ANCHOR :NAME ’CUP-3 :ID ’ANCHOR-1 :SYMBOLIC-DESCRIPTION ’((SHAPE=

CUP) (COLOR= GREEN) (SMELL = COFFEE))

:PERCEPTUAL-DESCRIPTION (TRAJECTORY :NAME ’CUP-3 :TIMESTAMP 85

:KNOXEL (KNOXEL :DOMAIN ’VISION :TIMESTAMP 85 :PROPERTIES ’((SHAPE

CUP)(COLOR GREEN)(POSITION (1958.0 -347.0))))) :SMELL-DESCRIPTION (COFFEE) :LIFE 0.8)



January 7, 2008 14:1 WSPC/INSTRUCTION FILE IJAIT08

16 Amy Loutfi, Silvia Coradeschi, Marios Daoutis, Jonas Melchert

(ANCHOR :NAME ’CUP-4 :ID ’ANCHOR-2 :SYMBOLIC-DESCRIPTION ’((SHAPE=

CUP) (COLOR= GREEN) (SMELL = ETHANOL))

:PERCEPTUAL-DESCRIPTION (TRAJECTORY :NAME ’CUP-4 :TIMESTAMP 85

:KNOXEL (KNOXEL :DOMAIN ’VISION :TIMESTAMP 85 :PROPERTIES ’((SHAPE

CUP)(COLOR GREEN)(POSITION (2089.0 -154.0))))) :SMELL-DESCRIPTION (ETHANOL) :LIFE 0.9)

(ANCHOR :NAME ’CUP-2 :ID ’ANCHOR-3 :SYMBOLIC-DESCRIPTION ’((SHAPE=

CUP) (COLOR= GREEN))

:PERCEPTUAL-DESCRIPTION (TRAJECTORY :NAME ’CUP-2 :TIMESTAMP 85

:KNOXEL (KNOXEL :DOMAIN ’VISION :TIMESTAMP 85 :PROPERTIES ’((SHAPE

CUP)(COLOR GREEN)(POSITION (2029.0 98.0))))) :SMELL-DESCRIPTION NIL

:LIFE 1)

....

5.2.3. Managing Object Properties

Finally in section 4.3 concerning the objects’ dynamic properties handled by the KB, we

investigate the case where there are some scattered fruits on the floor, as show in Fig 9 (cur-

rently Pippi is too low to see objects on a table). From left to right we have one apple, one

rotten banana, one fresh banana, and an orange. The robot navigates around the floor and

correctly percieves and classifies the instances to the KB, obtaining the following anchors

(LISP):

(ANCHOR :NAME ’APPLE-1 :ID ’ANCHOR-1 :SYMBOLIC-DESCRIPTION ’((SHAPE

SPHERE)) :PERCEPTUAL-DESCRIPTION (TRAJECTORY :NAME ’APPLE-1 :TIMESTAMP 280

:KNOXEL (KNOXEL :DOMAIN ’VISION :TIMESTAMP 280 :PROPERTIES ’((SHAPE

SPHERE)(COLOR RED)(POSITION (1100.0 -35.0))))) :SMELL-DESCRIPTION NIL :LIFE 1)

(ANCHOR :NAME ’BANANA-1 :ID ’ANCHOR-2 :SYMBOLIC-DESCRIPTION ’((SHAPE BANANA-SHAPE))

:PERCEPTUAL-DESCRIPTION (TRAJECTORY :NAME ’BANANA-1 :TIMESTAMP 280 :KNOXEL

(KNOXEL :DOMAIN ’VISION :TIMESTAMP 280 :PROPERTIES ’((SHAPE BANANA-SHAPE)(COLOR

BLACK)(POSITION (1151.0 -5.0))))) :SMELL-DESCRIPTION NIL :LIFE 1)

(ANCHOR :NAME ’BANANA-2 :ID ’ANCHOR-3 :SYMBOLIC-DESCRIPTION ’((SHAPE

BANANA-SHAPE)) :PERCEPTUAL-DESCRIPTION (TRAJECTORY :NAME ’BANANA-2 :TIMESTAMP

280 :KNOXEL (KNOXEL :DOMAIN ’VISION :TIMESTAMP 280 :PROPERTIES ’((SHAPE

BANANA-SHAPE)(COLOR YELLOW)(POSITION (1420.0 20.0))))) :SMELL-DESCRIPTION

NIL :LIFE 1)

(ANCHOR :NAME ’ORANGE-1 :ID ’ANCHOR-4 :SYMBOLIC-DESCRIPTION ’((SHAPE SPHERE))

:PERCEPTUAL-DESCRIPTION (TRAJECTORY :NAME ’ORANGE-1 :TIMESTAMP 280 :KNOXEL

(KNOXEL :DOMAIN ’VISION :TIMESTAMP 280 :PROPERTIES ’((SHAPE BANANA-SHAPE)(COLOR

ORANE)(POSITION (1190.0 42.0))))) :SMELL-DESCRIPTION NIL

:LIFE 1)

We then ask the robot to pick the orange that is left of the apple (spatial missinforma-

tion). Since this is not the case, it responds with a valid proposition, that there is no orange

on the left of the apple, but there is one on the right of the banana. The user confirms that

the alternative candidate is indeed the requested object.

? FIND THE ORANGE LEFT OF THE APPLE

- NO MATCH FOUND

- ALTERNATIVE CANDIDATE :

- 1. ORANGE RIGHT OF FRESH-BANANA

? 1
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-REFORMULATING..

-FOUND: ((ANCHOR ANCHOR-4 ORANGE-1... ))

As a next step, we ask the robot to pick a banana on the right of the apple. Here, since

there are 2 banana candidates right of the apple and one of them is being classified as rotten,

it informs us about the situation and after deleting this option, it suggests that there is one

banana on the right of the apple, (that is suitable for consumption) and returns this instance

instead:

? FIND THE BANANA RIGHT OF APPLE

- FOUND 2 CANDIDATES :

- 1. ROTTEN-BANANA RIGHT OF APPLE

- 2. FRESH-BANANA RIGHT OF APPLE

- Fruit ROTTEN-BANANA is a rotten fruit!

- Instance Removed

-REFORMULATING ....

-FOUND: ((ANCHOR ANCHOR-3 BANANA-2... ))

Fig. 9. Several fruits as seen by the robot.

6. Related Work

There are only a handful of works that consider knowledge representation and resoning for

an anchoring framework per se. Primarily work involving formal knowledge representation

for perceptual anchoring was done by Bonarini et al. 1 for the domain of robotic soccer.

They give a general description of a knowledge representation model based on the notion of

concept and its properties. Concepts are organised in a concept hierarchy according to their

super- and sub-concept relations. No details about an actually implemented knowledge base

or possible reasoning capabilities, apart from concept classification provided through the

concept hierarchy, are reported.

Alternatively, Mastrogiovanni et al. 14 describe a symbolic data fusion system for an

ambient intelligent environment consisting of several cognitive agents with different capa-

bilities, according to the extended JDL (Joint Directors of Laboratories) model: from sensor

and data fusion to situation and impact assessment. The lowest level consists of the network

of (virtual) sensors that provide a second level with percepts that are then fused symbol-

ically. Although not explicitly mentioned, the second level performs anchoring using a
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knowledge base in Description Logic. The system is capable of simple straight-forward

inferences and is basically used for data interpretation.

Integration of KRR for human robot interaction (HRI) has been studied in detail in

a noteworthy approach that incorporates knowledge representation and inference mecha-

nisms, to the ultimate goal of building a fully autonomous service/personal robot. Seabra

Lopes et al. 18,12 describe in the project named C.A.R.L. ( Communication, Action, Rea-

soning and Learning in Robotics ) a way to utilize the KRR component for knowledge

acquisition and information disambiguation. The KR language Carl uses is based on se-

mantic networks and UML object diagrams. This approach promotes interoperability be-

tween the KRR module and the SLU (Spoken Language Understanding) module, both of

which are equally vital to knowledge acquisition while making the robot capable of under-

standing concepts familiar to the human interlocutor. It is not mentioned however how the

anchoring component is being implemented in their agent based approach.

From a different perspective, the anchoring problem can be seen as a richer but not that

encompassing and challenging version of the problem that the Cognitive Vision community

is tackling. At its core, each cognitive vision system has to solve the anchoring problem

somehow. The work presented by Hois et al. 10 considers the problem of integrating spatial

relations into an domain ontology for a robot platform equipped with a 3D LASER scanner

that observes static scenes in an office environment. The ontology helps to classify the

detected objects, and in a second stage, the user can query the system for simple object

identification and localisation tasks, involving spatial relations.

Also in cognitive vision systems, spatial reasoning has been studied in detail in some

recent work presented by Kennedy et al. 19 that bring forth a cognitive architecture ap-

proach mostly implemented in ACT-R, to support spatial representation and reasoning. This

formed the basis for the robot to interact with other team members to track and approach

moving targets. Their spatial support layer is literally responsible for translating metric in-

formation to the cognitive map, which in turn performs some higher level reasoning about

the position of the target. The StealthBot, reasoned in the cognitive level similarly to how

people do, however it is considered mainly a domain specialized to the military operations

and applications.

A more generalised approach by Kruijff et al. 9 investigates a spatio-temporal model

for Human-Robot dialogue comprehension. They describe a combination of linguistic rea-

soning with reasoning about intentions and plans. Their focus is directed to the relation

between spatiotemporal-causal aspects of linguistically conveyed meaning and the plan-

ning these aspects reflect. While they maintain a planning based approach, the referred

Planner Memory (PM) somehow acts as an anchoring management system about actions,

objects and time. Despite that most of the individual components have been implemented

on the well-grounded theory, their current status indicates that the major integration of

those components is taking place , into a system for collaborative human-robot interaction.
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7. Future Work and Conclusions

In this work, we have used a KRR component to enhance an anchoring process in a symbi-

otic robotic system. In the future work we aim to tighten the integration of the KRR system,

making it the primary symbolic interface to the anchoring module, and possibly providing

a query language (or data structure) that is compatible with the other symbolic parts of the

system, like the task-planner or the user interface. The use of DOLCE’s Quale concept for

property values has not been addressed, but will be part of future work. The linguistic HRI

part is still very rudimental and based on a text interface and reminds of the capabilities

of Winograd’s SHRDLU system 20. We intend to use a simple speech dialogue system

in future work, similar to the system of Hois et al. 10. In such systems, the human-robot

interaction is limited to a (conventional) “master-slave” mode of communication, but our

interest is to enable the robot to make use of humans in order to compensate for percep-

tual or cognitive deficiencies. A good example in this line of thought is the “Peer-to-Peer

Human-Robot Interaction” project 6 that aims to develop a range of HRI techniques so that

robots and humans can work together in teams and engage in task-oriented dialogue. Still,

however, our work is the first to use a KRR system for the anchoring process. This first im-

plementation provided an ontology and a knowledge base (KB) for storing a set of objects

and properties, and spatial relations between those objects. The KB makes facilitates the

management of information and queries on the anchored objects can take a more advanced

form. The given examples, in which the system resolves an ambiguity by gathering percep-

tual information and finally involving the user in the anchoring task, reveals starting points

for future work in the context of symbiotic systems where robot, human and environment

cooperate.
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