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Abstract

We propose a new method to compute bid prices in network revenue management problems. The
novel aspect of our method is that it explicitly considers the temporal dynamics of the arrivals of
the itinerary requests and generates bid prices that depend on the remaining leg capacities. Our
method is based on relaxing certain constraints that link the decisions for different flight legs by
associating Lagrange multipliers with them. In this case, the network revenue management problem
decomposes by the flight legs and we can concentrate on one flight leg at a time. When compared
with the so-called deterministic linear program, we show that our method provides a tighter upper
bound on the optimal objective value of the network revenue management problem. Computational
experiments indicate that the bid prices obtained by our method perform significantly better than
the ones obtained by standard benchmark methods.



The idea of bid prices forms a powerful tool for solving network revenue management problems. This
idea associates a bid price with each flight leg that captures the opportunity cost of a unit of capacity.
An itinerary request is accepted only if there is enough capacity and the revenue from the itinerary
request exceeds the sum of the bid prices associated with the flight legs that are in the requested
itinerary; see Williamson (1992) and Talluri and van Ryzin (1998). One of the traditional approaches
in the literature for computing bid prices involves solving a deterministic linear program. However, this
linear program tends to be somewhat crude in the sense that it only uses the expected numbers of the
itinerary requests that are to arrive until the time of departure and does not incorporate the probability
distributions or temporal dynamics of the arrivals of the itinerary requests.

In this paper, we propose a new method to compute bid prices in network revenue management
problems. Our method is motivated by the following intuitive observation. The network revenue
management problem is difficult because if we accept an itinerary request, then we have to consume
the capacity on every flight leg that is in the requested itinerary. We relax this requirement by using
Lagrangian relaxation. In particular, we allow ourselves to individually accept or reject the flight
legs that are in a requested itinerary. When we allow such “partially accepted” itineraries, the problem
decomposes by the flight legs and we can concentrate on one flight leg at a time. This approach provides
a method to compute bid prices that explicitly considers the temporal dynamics of the arrivals of the
itinerary requests. Furthermore, the bid prices computed in this manner depend on the remaining leg
capacities, which is a feature lacking in the existing methods.

Our work builds on previous research. Hawkins (2003) and Adelman and Mersereau (2007) develop
a Lagrangian relaxation method for what they call weakly coupled dynamic programs. In these dynamic
programs, the evolutions of the different components of the state variable are affected by different types
of decisions and these different types of decisions interact through a set of linking constraints. The
authors propose relaxing the linking constraints by associating Lagrange multipliers with them. In this
paper, we show that the network revenue management problem can be viewed as a weakly coupled
dynamic program. In addition, the Lagrangian relaxation method in Hawkins (2003) and Adelman and
Mersereau (2007) runs into computational difficulties when applied to the network revenue management
problem. Specifically, this method requires finding a good set of Lagrange multipliers by minimizing the
so-called dual function and the dual function may involve thousands of dimensions. We show that it is
indeed possible to minimize the dual function efficiently by using standard subgradient optimization.

Network revenue management is an active area of research. The idea of bid prices dates back
to Simpson (1989) and Williamson (1992), where the authors use the deterministic linear program
mentioned above to compute bid prices. Talluri and van Ryzin (1998) give a careful analysis of the
policies that are based on bid prices and point out that the idea of bid prices is equivalent to using
linear value function approximations in the dynamic programming formulation of the network revenue
management problem. Talluri and van Ryzin (1999) propose a randomized version of the deterministic
linear program that uses actual samples of the itinerary requests that are to arrive until the time
of departure. Their goal is to remedy the fact that the deterministic linear program only uses the
expected numbers of the itinerary requests. Phillips (2005) describes a sequential estimation procedure
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to compute bid prices. This procedure builds on the popular expected marginal seat revenue heuristic
of Belobaba (1987) and addresses the probabilistic nature of the itinerary requests. Bertsimas and
Popescu (2003) propose a method that captures the total opportunity cost of the leg capacities consumed
by an itinerary request more accurately. Their method essentially uses nonseparable and concave
value function approximations. Adelman (2007) computes bid prices by using the linear programming
representation of the dynamic programming formulation of the network revenue management problem.
His approach explicitly considers the temporal dynamics of the arrivals of the itinerary requests, but does
not generate bid prices that depend on the remaining leg capacities. Computational experiments indicate
that the bid prices obtained by the methods proposed by Talluri and van Ryzin (1999), Bertsimas and
Popescu (2003) and Adelman (2007) tend to perform better than the ones obtained by the deterministic
linear program. Finally, other methods, besides bid prices, have been proposed for solving network
revenue management problems. We do not go into the details of these methods and refer the reader to
Talluri and van Ryzin (2004) for a comprehensive coverage of the network revenue management field.

In this paper, we make the following research contributions. 1) We develop a new method to
compute bid prices in network revenue management problems. Our method explicitly considers the
temporal dynamics of the arrivals of the itinerary requests and generates bid prices that depend on
the remaining leg capacities. 2) Our method is based on relaxing certain constraints by associating
Lagrange multipliers with them. We show that we can efficiently find a good set of Lagrange multipliers
by using standard subgradient optimization. 3) We show that our method provides an upper bound
on the optimal objective value of the network revenue management problem. A well-known method to
obtain such an upper bound is to use the aforementioned deterministic linear program. We show that
the upper bound obtained by our approach is tighter than the one obtained by the deterministic linear
program. 4) Computational experiments indicate that the bid prices obtained by our method perform
significantly better than the ones obtained by standard benchmark strategies. Furthermore, our method
noticeably improves the upper bounds obtained by these benchmark strategies.

The rest of the paper is organized as follows. Section 1 formulates the network revenue management
problem as a dynamic program. Section 2 describes the Lagrangian relaxation idea and shows that our
method provides an upper bound on the optimal objective value of the network revenue management
problem. Section 3 establishes that our method obtains bid prices that depend on the remaining leg
capacities. Section 4 shows that our method can efficiently find a good set of Lagrange multipliers by
using standard subgradient optimization. Section 5 contrasts our method with the deterministic linear
program. Section 6 presents computational experiments.

1 Problem Formulation

We have a set of flight legs that can be used to satisfy the itinerary requests that arrive randomly over
time. At each time period, an itinerary request arrives and we have to decide whether to accept or reject
this itinerary request. An accepted itinerary request generates a revenue and consumes the capacities
on the relevant flight legs. A rejected itinerary request simply leaves the system.

The problem takes place over the finite horizon T = {1, . . . , τ} and all flight legs depart at time
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period τ +1. The set of flight legs is L and the set of itineraries is J . If we accept a request for itinerary
j, then we generate a revenue of fj and consume aij units of capacity on flight leg i. If flight leg i is not
in itinerary j, then we naturally have aij = 0. The initial capacity on flight leg i is ci1. The probability
that a request for itinerary j arrives into the system at time period t is pjt. For notational brevity, we
assume that

∑
j∈J pjt = 1 for all t ∈ T . If there is a positive probability of having no itinerary requests

at time period t, then we can handle this by defining a dummy itinerary ψ with aiψ = 0 for all i ∈ L,
fψ = 0 and pψt = 1 − ∑

j∈J pjt. We assume that the itinerary requests at different time periods are
independent of each other. Throughout the paper, we do not differentiate between column and row
vectors. We use |A| to denote the cardinality of set A.

We let xit be the remaining capacity on flight leg i at time period t so that xt = {xit : i ∈ L}
captures the remaining leg capacities at time period t. We capture the decisions at time period t by
ut = {ujt : j ∈ J }, where ujt takes value 1 if we accept the itinerary request at time period t whenever
this itinerary request is for itinerary j, and takes value 0 if we reject the itinerary request at time period
t whenever this itinerary request is for itinerary j. Since our ability to accept an itinerary request is
limited by the remaining leg capacities, the set of feasible decisions at time period t is

U(xt) =
{
ut ∈ {0, 1}|J | : aij ujt ≤ xit ∀ i ∈ L, j ∈ J }

.

Using xt as the state variable at time period t, we can formulate the problem as a dynamic program.
Letting C = max{ci1 : i ∈ L} and C = {0, 1, . . . , C}, since the remaining capacity on any flight leg at
any time period is less than or equal to C, we use C|L| as the state space. In this case, the optimal
policy can be found by computing the value functions through the optimality equation

Vt(xt) = max
ut∈U(xt)





∑

j∈J
pjt

{
fj ujt + Vt+1(xt − ujt

∑

i∈L
aij ei)

}


 , (1)

where ei is the |L|-dimensional unit vector with a 1 in the element corresponding to i ∈ L. Given
the state variable xt, it is easy to show that the optimal decisions at time period t are given by
u∗t (xt) = {u∗jt(xt) : j ∈ J }, where

u∗jt(xt) =

{
1 if fj + Vt+1(xt −

∑
i∈L aij ei) ≥ Vt+1(xt) and aij ≤ xit for all i ∈ L

0 otherwise;
(2)

see Adelman (2007). The main difficulty in solving the optimality equation in (1) arises from the fact
that we have to make an “all or nothing” decision. Specifically, we either accept the itinerary request,
in which case the capacities on all relevant flight legs are consumed, or we reject the itinerary request, in
which case the leg capacities do not change. Our solution method is based on relaxing this requirement.
In other words, when an itinerary request arrives, we allow ourselves to accept or reject the individual
flight legs. We make this idea precise in the following section.

2 Lagrangian Relaxation

In this section, we develop a solution method that is based on the idea of accepting or rejecting the
individual flight legs.
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We begin by introducing some new notation. We augment L by a fictitious flight leg φ with infinite
capacity. We extend the decisions at time period t as yt = {yijt : i ∈ L ∪ {φ}, j ∈ J }, where yijt takes
value 1 if we accept flight leg i when a request for itinerary j arrives at time period t, and takes value
0 otherwise. In this case, it is easy to see that the optimality equation

Vt(xt) = max
∑

j∈J
pjt

{
fj yφjt + Vt+1(xt −

∑

i∈L
yijt aij ei)

}
(3)

subject to aij yijt ≤ xit ∀ i ∈ L, j ∈ J (4)

yijt − yφjt = 0 ∀ i ∈ L, j ∈ J (5)

yijt ∈ {0, 1} ∀ i ∈ L, j ∈ J (6)

is equivalent to the optimality equation in (1). Since the capacity on the fictitious flight leg is infinite,
we do not keep track of it in our state variable and the state variable in the dynamic program above is
still xt = {xit : i ∈ L}.

In the feasible solution set of problem (3)-(6), only constraints (5) link the different flight legs. This
suggests associating the Lagrange multipliers λ = {λijt : i ∈ L, j ∈ J , t ∈ T } with these constraints
and solving the dynamic program

V λ
t (xt) = max

∑

j∈J
pjt

{[
fj −

∑

i∈L
λijt

]
yφjt+

∑

i∈L
λijt yijt + V λ

t+1(xt −
∑

i∈L
yijt aij ei)

}
(7)

subject to (4), (6) (8)

yφjt ∈ {0, 1} ∀ j ∈ J , (9)

where we scale the Lagrange multipliers by {pjt : j ∈ J , t ∈ T } for notational clarity. If we have
pjt = 0 for some itinerary j, then the decision variables {yijt : i ∈ L ∪ {φ}} are inconsequential and
scaling the Lagrange multipliers in this manner does not create a complication. We use the superscript
λ in the value functions to emphasize that the solution to the optimality equation in (7)-(9) depends
on the Lagrange multipliers. We note that constraints (9) would be redundant in problem (3)-(6), but
we add them to problem (7)-(9) to tighten the relaxation.

Letting yit = {yijt : j ∈ J }, we define the set

Yit(xit) =
{
yit ∈ {0, 1}|J | : aij yijt ≤ xit ∀ j ∈ J }

,

in which case constraints (4) and (6) can succinctly be written as yit ∈ Yit(xit) for all i ∈ L. The
following proposition shows that the optimality equation in (7)-(9) decomposes by the flight legs.

Proposition 1 If
{
ϑλ

it(xit) : xit ∈ C, t ∈ T }
is a solution to the optimality equation

ϑλ
it(xit) = max

yit∈Yit(xit)





∑

j∈J
pjt

{
λijt yijt + ϑλ

i,t+1(xit − aij yijt)
}



 (10)

for all i ∈ L, then we have

V λ
t (xt) =

τ∑

t′=t

∑

j∈J
pjt′

[
fj −

∑

i∈L
λijt′

]+ +
∑

i∈L
ϑλ

it(xit) (11)

5



for all xt ∈ C|L|, t ∈ T , where we let [x]+ = max{0, x}.

Proof We show the result by induction over the time periods. It is easy to show the result for the last
time period. Assuming that the result holds for time period t + 1, problem (7)-(9) can be written as

V λ
t (xt) = max

∑

j∈J
pjt

{[
fj −

∑

i∈L
λijt

]
yφjt+

∑

i∈L
λijt yijt +

∑

i∈L
ϑλ

i,t+1(xit − aij yijt)
}

+
τ∑

t′=t+1

∑

j∈J
pjt′

[
fj −

∑

i∈L
λijt′

]+

subject to yit ∈ Yit(xit) ∀ i ∈ L
yφjt ∈ {0, 1} ∀ j ∈ J .

We can drop the decision variables
{
yφjt : j ∈ J }

by letting yφjt = 1(fj −
∑

i∈L λijt ≥ 0) for all j ∈ J ,
where 1(·) is the indicator function. The result follows by noting that the objective function and the
feasible solution set of the problem above decomposes by the flight legs. 2

Therefore, we can efficiently solve the optimality equation in (7)-(9) by concentrating on one flight
leg at a time. The terms on the right side of (11) can be interpreted as the value functions obtained
from |L|+1 revenue management problems, each of which involving only one flight leg. In particular, if
we consider the revenue management problem that takes place over flight leg i without paying attention
to the other flight legs and assume that we generate a revenue of λijt whenever we accept a request for
itinerary j at time period t, then {ϑλ

it(xit) : xit ∈ C, t ∈ T } are the value functions associated with this
revenue management problem. Similarly, if we consider the revenue management problem that takes
place over the fictitious flight leg and assume that we generate a revenue of fj −

∑
i∈L λijt whenever

we accept a request for itinerary j at time period t, then since the capacity on the fictitious flight leg
is infinite, we accept an itinerary request whenever the revenue from the itinerary request is positive
and {∑τ

t′=t

∑
j∈J pjt′ [fj −

∑
i∈L λijt′ ]+ : t ∈ T } are the value functions associated with this revenue

management problem.

The following proposition shows that we obtain upper bounds on the value functions by solving the
optimality equation in (7)-(9).

Proposition 2 We have Vt(xt) ≤ V λ
t (xt) for all xt ∈ C|L|, t ∈ T .

Proof We show the result by induction over the time periods. It is easy to show the result for the last
time period. We assume that the result holds for time period t + 1 and let {ŷijt : i ∈ L ∪ {φ}, j ∈ J }
be an optimal solution to problem (3)-(6). We have

Vt(xt) =
∑

j∈J
pjt

{
fj ŷφjt + Vt+1(xt −

∑

i∈L
ŷijt aij ei)

}

=
∑

j∈J
pjt

{[
fj −

∑

i∈L
λijt

]
ŷφjt +

∑

i∈L
λijt ŷijt + Vt+1(xt −

∑

i∈L
ŷijt aij ei)

}

≤
∑

j∈J
pjt

{[
fj −

∑

i∈L
λijt

]
ŷφjt +

∑

i∈L
λijt ŷijt + V λ

t+1(xt −
∑

i∈L
ŷijt aij ei)

}
≤ V λ

t (xt),
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where the second equality follows from (5), the first inequality follows from the induction assumption,
and the second inequality follows from the fact that ŷφjt ∈ {0, 1} for all j ∈ J and ŷit = {ŷijt : j ∈
J } ∈ Yit(xit) for all i ∈ L. 2

Letting c1 = {ci1 : i ∈ L}, Proposition 2 implies that V1(c1) ≤ V λ
1 (c1). Noting that V1(c1) is the

maximum total expected revenue over the time periods {1, . . . , τ}, we can obtain a tight bound on this
quantity by solving

min
λ

{
V λ

1 (c1)
}

= min
λ





∑

t∈T

∑

j∈J
pjt

[
fj −

∑

i∈L
λijt

]+ +
∑

i∈L
ϑλ

i1(ci1)



 , (12)

where the equality follows from Proposition 1. The objective function of problem (12) is called the
dual function. In Section 4, we show that the dual function is convex and problem (12) can be solved
efficiently. However, before doing so, we take a quick detour to explain the structure of the policy
obtained by approximating the value functions in (2) by using functions of the form (11).

3 Bid Price Structure of the Greedy Policy

Letting λ∗ be an optimal solution to problem (12), our solution method approximates the value functions
{Vt(xt) : xt ∈ C|L|, t ∈ T } in (2) by {V λ∗

t (xt) : xt ∈ C|L|, t ∈ T }. Specifically, given the state variable
xt, if we have

fj + V λ∗
t+1(xt −

∑

i∈L
aij ei) ≥ V λ∗

t+1(xt) (13)

and aij ≤ xit for all i ∈ L, then we accept a request for itinerary j at time period t. It is easy to see that
this idea leads to bid prices that depend on the remaining leg capacities. Specifically, using Proposition
1, (13) can be written as

fj ≥
∑

i∈L

aij∑

r=1

{
ϑλ∗

i,t+1(xit + 1− r)− ϑλ∗
i,t+1(xit − r)

}
. (14)

In this case, we can view ϑλ∗
i,t+1(xit) − ϑλ∗

i,t+1(xit − 1) as the bid price for the xit-th unit of capacity on
flight leg i. Similar to the idea of bid prices described in the introduction, if there is enough capacity
and the revenue from an itinerary request exceeds the sum of the bid prices associated with the flight
legs that are in the requested itinerary, then we accept the itinerary request. However, we emphasize
that the bid price of a flight leg in (14) depends on the remaining leg capacity.

It is important to note that the separable structure of {V λ∗
t (xt) : xt ∈ C|L|, t ∈ T } plays a major

role in implementing the decision rule in (13) efficiently. In particular, if the separable structure did not
exist, then implementing the decision rule in (13) would require storing {V λ∗

t (xt) : xt ∈ C|L|, t ∈ T }.
This is equivalent to storing |C||L| |T | numbers. By using the separable structure, we can write (13) as
(14) and implementing the decision rule in (14) requires storing {ϑλ∗

it (xit) : xit ∈ C, i ∈ L, t ∈ T }. This
is equivalent to storing |C| |L| |T | numbers.
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4 Minimizing the Dual Function

In this section, we show that ϑλ
i1(ci1) is a convex function of λ and its subgradients can be computed

by solving the optimality equation in (10). This allows us to solve problem (12) by using standard
subgradient optimization.

We begin by introducing some new notation. We let {yλ
ijt(xit) : j ∈ J } be an optimal solution to

problem (10), where the superscript λ and the argument xit indicate that the optimal solution depends
on the Lagrange multipliers and the remaining leg capacity. In this case, (10) can be written as

ϑλ
it(xit) =

∑

j∈J
pjt

{
λijt yλ

ijt(xit) +
∑

xi,t+1∈C
1(xi,t+1 = xit − aij yλ

ijt(xit)) ϑλ
i,t+1(xi,t+1)

}
. (15)

To write the expression above in matrix notation, we let Y λ
it be the |C| × |J |-dimensional matrix whose

(xit, j)-th element is pjt yλ
ijt(xit) and Qλ

it be the |C|×|C|-dimensional matrix whose (xit, xi,t+1)-th element
is

∑
j∈J pjt 1(xi,t+1 = xit − aij yλ

ijt(xit)). Letting ϑλ
it be the vector {ϑλ

it(xit) : xit ∈ C} and λit be the
vector {λijt : j ∈ J }, (15) can be written in matrix notation as

ϑλ
it = Y λ

it λit + Qλ
it ϑλ

i,t+1.

We are now ready to show that ϑλ
i1(ci1) is a convex function of λ.

Proposition 3 For any two sets of Lagrange multipliers λ and λo, we have

ϑλo

it ≥ ϑλ
it + Y λ

it

[
λo

it − λit

]
+ Qλ

it Y λ
i,t+1

[
λo

i,t+1 − λi,t+1

]
+ . . . + Qλ

it Qλ
i,t+1 . . . Qλ

i,τ−1 Y λ
iτ

[
λo

iτ − λiτ

]

for all i ∈ L, t ∈ T .

Proof We show the result by induction over the time periods. It is easy to show the result for the
last time period. We assume that the result holds for time period t + 1. Since {yλ

ijt(xit) : j ∈ J } is an
optimal solution to problem (10), we have

ϑλ
it(xit) =

∑

j∈J
pjt

{
λijt yλ

ijt(xit) +
∑

xi,t+1∈C
1(xi,t+1 = xit − aij yλ

ijt(xit)) ϑλ
i,t+1(xi,t+1)

}

ϑλo

it (xit) ≥
∑

j∈J
pjt

{
λo

ijt yλ
ijt(xit) +

∑

xi,t+1∈C
1(xi,t+1 = xit − aij yλ

ijt(xit)) ϑλo

i,t+1(xi,t+1)
}

.

Subtracting the first expression from the second one, the resulting expression can be written in matrix
notation as

ϑλo

it − ϑλ
it ≥ Y λ

it

[
λo

it − λit

]
+ Qλ

it

[
ϑλo

i,t+1 − ϑλ
i,t+1

]
. (16)

The result follows by using the induction assumption that

ϑλo

i,t+1 ≥ ϑλ
i,t+1 + Y λ

i,t+1

[
λo

i,t+1 − λi,t+1

]
+ Qλ

i,t+1 Y λ
i,t+2

[
λo

i,t+2 − λi,t+2

]

+ . . . + Qλ
i,t+1 Qλ

i,t+2 . . . Qλ
i,τ−1 Y λ

iτ

[
λo

iτ − λiτ

]
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in (16) and noting that the matrix Qλ
it has positive elements. 2

Letting Πλ
it = Qλ

i1 Qλ
i2 . . . Qλ

i,t−1 Y λ
it with Πλ

i1 = Y λ
i1, we have

ϑλo

i1 ≥ ϑλ
i1 + Πλ

i1

[
λo

i1 − λi1

]
+ Πλ

i2

[
λo

i2 − λi2

]
+ . . . + Πλ

iτ

[
λo

iτ − λiτ

]

by Proposition 3. Letting αi1 be the |C|-dimensional unit vector with a 1 in the ci1-th element, we
obtain

ϑλo

i1 (ci1) = αi1 ϑλo

i1 ≥ αi1 ϑλ
i1 +

∑

t∈T
αi1 Πλ

it

[
λo

it − λit

]
= ϑλ

i1(ci1) +
∑

t∈T
αi1 Πλ

it

[
λo

it − λit

]
.

Therefore, ϑλ
i1(ci1) has a subgradient and Theorem 3.2.6 in Bazaraa, Sherali and Shetty (1993) implies

that ϑλ
i1(ci1) is a convex function of λ. The dual function, being a sum of convex functions of λ, is also

a convex function of λ and we can use standard subgradient optimization to solve problem (12).

5 Relationship with the Deterministic Linear Program

An alternative solution method for the network revenue management problem described in Section 1 is
to solve a deterministic linear program. Letting wj be the number of requests for itinerary j that we
plan to accept over the time periods {1, . . . , τ}, this linear program has the form

max
∑

j∈J
fj wj (17)

subject to
∑

j∈J
aij wj ≤ ci1 ∀ i ∈ L (18)

wj ≤
∑

t∈T
pjt ∀ j ∈ J (19)

wj ≥ 0 ∀ j ∈ J . (20)

Constraints (18) ensure that the numbers of itinerary requests that we plan to accept do not violate the
leg capacities, whereas constraints (19) ensure that we do not plan to accept more itinerary requests
than the expected numbers of itinerary requests.

There are two main uses of problem (17)-(20). First, this problem can be used to decide whether
we should accept or reject an itinerary request. In particular, letting {µ∗i : i ∈ L} be the optimal values
of the dual variables associated with constraints (18), the idea is to use µ∗i as the bid price associated
with flight leg i. If there is enough capacity and the revenue from an itinerary request exceeds the sum
of the bid prices associated with the flight legs that are in the requested itinerary, then we accept the
itinerary request. Specifically, if we have

fj ≥
∑

i∈L
aij µ∗i , (21)

and aij ≤ xit for all i ∈ L, then we accept a request for itinerary j at time period t. Letting Ṽt(xt) =∑
i∈L µ∗i xit for all i ∈ L, t ∈ T and noting that Ṽt+1(xt)− Ṽt+1(xt−

∑
i∈L aij ei) =

∑
i∈L aij µ∗i , it is easy

to see that (21) is equivalent to approximating the value functions {Vt(xt) : xt ∈ C|L|, t ∈ T } in (2) by
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{Ṽt(xt) : xt ∈ C|L|, t ∈ T }. This approach is simple to implement and the computational experiments
in Williamson (1992) indicate that it provides good solutions. Comparing (14) and (21), we emphasize
that the bid prices obtained by solving problem (12) depend on the remaining leg capacities, whereas
this is not the case for the bid prices obtained by solving problem (17)-(20).

Second, it is possible to show that the optimal objective value of problem (17)-(20) provides an
upper bound on the maximum total expected revenue over the time periods {1, . . . , τ}; see Bertsimas
and Popescu (2003). In other words, letting ζ∗ be the optimal objective value of problem (17)-(20), we
have V1(c1) ≤ ζ∗. This information can be useful when assessing the optimality gap of a suboptimal
policy such as the one in (14) or (21).

In the remainder of this section, we show that

V1(c1) ≤ min
λ

{
V λ

1 (c1)
}
≤ ζ∗. (22)

Therefore, we can obtain a tighter upper bound on V1(c1) by solving problem (12). Since the first
inequality above follows from Proposition 2, we concentrate only on the second inequality.

Using the decision variables {zij : i ∈ L ∪ {φ}, j ∈ J }, we write problem (17)-(20) as

max
∑

j∈J
fj zφj (23)

subject to
∑

j∈J
aij zij ≤ ci1 ∀ i ∈ L (24)

zφj ≤
∑

t∈T
pjt ∀ j ∈ J (25)

zij − zφj = 0 ∀ i ∈ L, j ∈ J (26)

zφj , zij ≥ 0 ∀ i ∈ L, j ∈ J . (27)

By duality theory, there exist Lagrange multipliers {βo
ij : i ∈ L, j ∈ J } such that the problem

max
∑

j∈J

[
fj −

∑

i∈L
βo

ij

]
zφj +

∑

i∈L

∑

j∈J
βo

ij zij

subject to (24), (25), (27)

has the same optimal objective value as problem (23)-(27). Noting the upper and lower bounds on the
decision variables {zφj : j ∈ J }, the problem above becomes

max
∑

t∈T

∑

j∈J
pjt

[
fj −

∑

i∈L
βo

ij

]++
∑

i∈L

∑

j∈J
βo

ij zij (28)

subject to
∑

j∈J
aij zij ≤ ci1 ∀ i ∈ L (29)

zij ≥ 0 ∀ i ∈ L, j ∈ J . (30)

Letting {µi : i ∈ L} be the dual variables associated with constraints (29), the dual of problem (28)-(30)
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can be written as

min
∑

t∈T

∑

j∈J
pjt

[
fj −

∑

i∈L
βo

ij

]++
∑

i∈L
ci1 µi (31)

subject to aij µi ≥ βo
ij ∀ i ∈ L, j ∈ J (32)

µi ≥ 0 ∀ i ∈ L. (33)

Therefore, problem (31)-(33) has the same optimal objective value as problem (17)-(20). We are now
ready to show that (22) holds.

Proposition 4 We have minλ

{
V λ

1 (c1)
} ≤ ζ∗.

Proof We let {µ∗i : i ∈ L} be an optimal solution to problem (31)-(33) and define the Lagrange
multipliers λo = {λo

ijt : i ∈ L, j ∈ J , t ∈ T } as λo
ijt = βo

ij for all i ∈ L, j ∈ J , t ∈ T . We begin by
using induction over the time periods to show that ϑλo

it (xit) ≤ µ∗i xit for all xit ∈ C, i ∈ L, t ∈ T . For
the last time period, we have

ϑλo

iτ (xiτ ) = max
yiτ∈Yiτ (xiτ )





∑

j∈J
pjτ βo

ij yijτ



 ≤ max

yiτ∈Yiτ (xiτ )





∑

j∈J
pjτ µ∗i aij yijτ



 ≤

∑

j∈J
pjτ µ∗i xiτ = µ∗i xiτ ,

where the first inequality follows from (32) and the second inequality follows from the fact that yiτ ∈
Yiτ (xiτ ). Therefore, the result holds for the last time period. Assuming that the result holds for time
period t + 1, we have

ϑλo

it (xit) = max
yit∈Yit(xit)





∑

j∈J
pjt

{
βo

ij yijt + ϑλo

i,t+1(xit − aij yijt)
}





≤ max
yit∈Yit(xit)





∑

j∈J
pjt

{
βo

ij yijt + µ∗i
[
xit − aij yijt

]}




= max
yit∈Yit(xit)





∑

j∈J
pjt

[
βo

ij − µ∗i aij

]
yijt



 + µ∗i xit ≤ µ∗i xit,

where the first inequality follows from the induction assumption and the second inequality follows from
(32). This establishes that ϑλo

it (xit) ≤ µ∗i xit for all xit ∈ C, i ∈ L, t ∈ T . In particular, we have
ϑλo

i1 (ci1) ≤ µ∗i ci1 for all i ∈ L, which implies that

min
λ

{
V λ

1 (c1)
}
≤ V λo

1 (c1) =
∑

t∈T

∑

j∈J
pjt

[
fj −

∑

i∈L
βo

ij

]+ +
∑

i∈L
ϑλo

i1 (ci1)

≤
∑

t∈T

∑

j∈J
pjt

[
fj −

∑

i∈L
βo

ij

]+ +
∑

i∈L
µ∗i ci1 = ζ∗,

where the first equality follows from Proposition 1 and the second equality follows by noting the objective
function of problem (31)-(33). 2
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6 Computational Experiments

In this section, we compare the performance of our solution method with the performances of several
benchmark strategies.

6.1 Benchmark Strategies

We compare the performances of the following six benchmark strategies.

Lagrangian relaxation (LR) This is the solution method that we develop in this paper, but our
practical implementation refines the value function approximations five times over the decision horizon
by solving problem (12) at time periods {1+k τ/5 : k = 0, 1, . . . , 4}. Specifically, given the state variable
x1+k τ/5 at time period 1 + k τ/5, we solve the problem minλ

{
V λ

1+k τ/5(x1+k τ/5)
}

to obtain an optimal

solution λk∗ and use {V λk∗
t (xt) : xt ∈ C|L|, t ∈ T } as approximations to the value functions until we

solve problem (12) again.

We use standard subgradient optimization to solve the problem minλ

{
V λ

1+k τ/5(x1+k τ/5)
}
; see Wolsey

(1998). We initialize the step size parameter to
∑

j∈J fj/|J |, and double the step size parameter after
each iteration that results in a decrease in the objective function value and halve the step size parameter
after each iteration that results in an increase in the objective function value. Although it does not
guarantee convergence to an optimal solution, adjusting the step size parameter in this manner provides
good solutions and stable performance.

Deterministic linear program (DLP) This is the solution method described in Section 5. Similar
to LR, our practical implementation of DLP refines the bid prices by solving problem (17)-(20) five
times over the decision horizon. Specifically, given the state variable x1+k τ/5 at time period 1 + k τ/5,
we replace the right side of constraints (18) with {xi,1+k τ/5 : i ∈ L} and the right side of constraints
(19) with {∑τ

t=1+k τ/5 pjt : j ∈ J }, and solve problem (17)-(20). Letting {µ∗i : i ∈ L} be the optimal
values of the dual variables associated with constraints (18), we use {µ∗i : i ∈ L} as bid prices until we
solve problem (17)-(20) again; see Talluri and van Ryzin (2004).

Randomized linear program (RLP) For brevity of discussion, we describe RLP and the following
three solution methods under the assumption that the bid prices are computed only once at the beginning
of the decision horizon. We emphasize that our practical implementations of these solution methods
refine the bid prices five times over the decision horizon by using approaches similar to those that we
use for LR and DLP.

DLP uses only the expected numbers of itinerary requests and RLP tries to make up for this
shortcoming by using actual samples. In particular, we let Djt be the number of requests for itinerary j

at time period t so that we have P{Djt = 0} = 1−pjt and P{Djt = 1} = pjt. We generate S independent
samples of D = {Djt : j ∈ J , t ∈ T }, which we denote by D̂s = {D̂s

jt : j ∈ J , t ∈ T } for s = 1, . . . , S.
We replace the right side of constraints (19) with {∑t∈T D̂s

jt : j ∈ J } and solve problem (17)-(20).
Letting L1(c1, D̂

s) be the optimal objective value of this problem and {µs∗
i : i ∈ L} be the optimal

values of the dual variables associated with constraints (18), we use {∑S
s=1 µs∗

i /S : i ∈ L} as bid prices;

12



see Talluri and van Ryzin (1999). Furthermore, it is possible to show that V1(c1) ≤ E{L1(c1, D)}.
Therefore, RLP also provides an upper bound on the maximum total expected revenue over the time
periods {1, . . . , τ}, but computing the expectation E{L1(c1, D)} requires estimation through simulation.
We use S = 50 in our computational experiments.

Finite differences on deterministic linear program (DFD) The idea behind DFD is to try to
capture the total opportunity cost of the leg capacities consumed by an itinerary request more accurately.
In particular, we let L1(c1) be the optimal objective value of problem (17)-(20). We replace the right
side of constraints (18) with {ci1 − aij : i ∈ L} and solve problem (17)-(20) to obtain the optimal
objective value L−j1(c1). If we have fj ≥ L1(c1) − L−j1(c1) and aij ≤ xit for all i ∈ L, then we accept a
request for itinerary j at time period t; see Bertsimas and Popescu (2003).

Finite differences on randomized linear program (RFD) RFD is a natural extension of RLP and
DFD, but it did not appear in the literature previously. Similar to RLP, we generate S independent
samples of D = {Djt : j ∈ J , t ∈ T }, which we denote by D̂s = {D̂s

jt : j ∈ J , t ∈ T } for s = 1, . . . , S.
We replace the right side of constraints (19) with {∑t∈T D̂s

jt : j ∈ J } and solve problem (17)-(20) to
obtain the optimal objective value L1(c1, D̂

s). We then replace the right side of constraints (18) with
{ci1−aij : i ∈ L} and the right side of constraints (19) with {∑t∈T D̂s

jt : j ∈ J }, and solve problem (17)-
(20) to obtain the optimal objective value L−j1(c1, D̂

s). If we have fj ≥
∑S

s=1

[
L1(c1, D̂

s)−L−j1(c1, D̂
s)

]
/S

and aij ≤ xit for all i ∈ L, then we accept a request for itinerary j at time period t. We use S = 50 in
our computational experiments.

Linear value function approximations (LV) It is well-known that V1(c1) can be computed by
solving the linear program

min V1(c1)

subject to Vt(xt) ≥
∑

j∈J
pjt

{
fj ujt + Vt+1(xt − ujt

∑

i∈L
aij ei)

}
∀xt ∈ C|L|, ut ∈ U(xt), t ∈ T \ {τ}

Vτ (xτ ) ≥
∑

j∈J
pjτ fj ujτ ∀xτ ∈ C|L|, uτ ∈ U(xτ ),

where {Vt(xt) : xt ∈ C|L|, t ∈ T } are the decision variables. One approach to deal with the large number
of decision variables in the problem above is to approximate the value functions by linear functions of the
form V̄t(xt) = θt+

∑
i∈L vit xit. To decide what values to choose for {θt : t ∈ T } and {vit : i ∈ L, t ∈ T },

we replace Vt(xt) with θt +
∑

i∈L vit xit to obtain the linear program

min θ1 +
∑

i∈L
vi1 ci1

subject to θt +
∑

i∈L
vit xit ≥

∑

j∈J
pjt

{
fj ujt + θt+1 +

∑

i∈L
vi,t+1

[
xit − aij ujt

]}

∀xt ∈ C|L|, ut ∈ U(xt), t ∈ T \ {τ}
θτ +

∑

i∈L
viτ xiτ ≥

∑

j∈J
pjτ fj ujτ ∀xτ ∈ C|L|, uτ ∈ U(xτ ),

where {θt : t ∈ T } and {vit : i ∈ L, t ∈ T } are the decision variables. The number of decision
variables in the problem above is manageable and we can deal with the large number of constraints by

13



Figure 1: Structure of the network for the case where N = 6.

using constraint generation. Letting {θ∗t : t ∈ T } and {v∗it : i ∈ L, t ∈ T } be an optimal solution to
the problem above and V̄ ∗

t (xt) = θ∗t +
∑

i∈L v∗it xit, we approximate the value functions {Vt(xt) : xt ∈
C|L|, t ∈ T } in (2) by {V̄ ∗

t (xt) : xt ∈ C|L|, t ∈ T }; see Adelman (2007). Furthermore, it is possible to
show that V1(c1) ≤ θ∗1 +

∑
i∈L v∗i1 ci1. Therefore, LV also provides an upper bound on the maximum

total expected revenue over the time periods {1, . . . , τ}.

6.2 Experimental Setup

We consider an airline network that serves N spokes out of a single hub. This is a key network structure
that frequently arises in practice. Associated with each spoke, there are two flight legs, one of which is
to the hub and the other one is from the hub. There is a high-fare and a low-fare itinerary that connects
each origin-destination pair. Consequently, we have 2N flight legs and 2N(N + 1) itineraries, 4N of
which involve one flight leg and 2N(N−1) of which involve two flight legs. The revenue associated with
each high-fare itinerary is κ times higher than the revenue associated with the corresponding low-fare
itinerary. The probability of a request for each high-fare itinerary increases over time, whereas the
probability of a request for each low-fare itinerary decreases over time. Since

∑
t∈T

∑
j∈J pjt aij is the

total expected demand for the capacity on flight leg i, we measure the tightness of the leg capacities by

α =

∑
t∈T

∑
i∈L

∑
j∈J pjt aij∑

i∈L ci1
.

Figure 1 shows the structure of the network for the case where N = 6.

We vary τ , N , α and κ to obtain different test problems and label our test problems by (τ, N, α, κ) ∈
{200, 600} × {4, 5, 6, 8} × {1.0, 1.2, 1.6} × {4, 8}. To give a better feel for our experimental setup, Table
1 shows the average capacities per flight leg in our test problems. In this table, we note that two test
problems that only differ in κ take place over the same network and use the same leg capacities. The
online supplement provides the complete data for our test problems.

6.3 Computational Results

As mentioned in Sections 2, 5 and 6.1, LR, DLP, RLP and LV provide upper bounds on the maximum
total expected revenue over the time periods {1, . . . , τ}. Tables 2 and 3 respectively show the upper
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Problem Avg. cap. Problem Avg. cap
(τ, N, α, κ) per leg (τ, N, α, κ) per leg

(200, 4, 1.0, 4 or 8) 41 (600, 4, 1.0, 4 or 8) 61
(200, 4, 1.2, 4 or 8) 34 (600, 4, 1.2, 4 or 8) 51
(200, 4, 1.6, 4 or 8) 25 (600, 4, 1.6, 4 or 8) 38
(200, 5, 1.0, 4 or 8) 34 (600, 5, 1.0, 4 or 8) 51
(200, 5, 1.2, 4 or 8) 28 (600, 5, 1.2, 4 or 8) 42
(200, 5, 1.6, 4 or 8) 21 (600, 5, 1.6, 4 or 8) 32
(200, 6, 1.0, 4 or 8) 28 (600, 6, 1.0, 4 or 8) 34
(200, 6, 1.2, 4 or 8) 23 (600, 6, 1.2, 4 or 8) 28
(200, 6, 1.6, 4 or 8) 18 (600, 6, 1.6, 4 or 8) 21
(200, 8, 1.0, 4 or 8) 22 (600, 8, 1.0, 4 or 8) 27
(200, 8, 1.2, 4 or 8) 19 (600, 8, 1.2, 4 or 8) 22
(200, 8, 1.6, 4 or 8) 14 (600, 8, 1.6, 4 or 8) 17

Table 1: Average capacities per flight leg.

bounds obtained by different solution methods for the test problems with 200 and 600 time periods. The
second, third, fourth and fifth columns in these tables respectively show the upper bounds obtained
by LR, DLP, RLP and LV. Since it is not possible to compute the upper bound obtained by RLP
explicitly, we provide a 95% confidence interval for E{L1(c1, D)} by using 10,000 samples. The sixth,
seventh and eighth columns show the percent gaps between the upper bounds obtained by LR and the
other three solution methods. The ninth column shows the CPU seconds required to solve problem (12)
on a Pentium IV Desktop PC with 2.4 GHz CPU and 1 GB RAM running Windows XP. The tenth
column shows the number of subgradient optimization iterations required to solve problem (12).

The results indicate that LR consistently provides the tightest upper bounds. On the average, the
upper bounds obtained by LR are respectively 5.2%, 3.6% and 4.2% tighter than those obtained by DLP,
RLP and LV. For the test problems with α = 1.0, the upper bounds obtained by RLP are noticeably
tighter than those obtained by LV, whereas for the test problems with α = 1.6, the upper bounds
obtained by LV are noticeably tighter than those obtained by RLP. Therefore, the tightness of the leg
capacities seems to be an important factor affecting the quality of the upper bounds obtained by RLP
and LV. It is not surprising that DLP consistently provides the loosest upper bounds. In particular,
Proposition 4 in this paper, Section 4.1 in Talluri and van Ryzin (1998) and Theorem 1 in Adelman
(2007) respectively show that the upper bounds obtained by LR, RLP and LV are provably tighter than
the upper bound obtained by DLP.

Tables 4 and 5 respectively show the performances of the bid prices obtained by different solution
methods for the test problems with 200 and 600 time periods. The second, third, fourth, fifth, sixth and
seventh columns in these tables respectively show the total expected revenues obtained by LR, DLP,
RLP, DFD, RFD and LV. We estimate these total expected revenues by simulating the performances
of different solution methods under 100 demand trajectories. We use common random numbers when
simulating the performances of different solution methods. The eighth, ninth, tenth, eleventh and
twelfth columns show the percent gaps between the total expected revenues obtained by LR and the
other five solution methods.

The results indicate that LR consistently provides the highest total expected revenues. The perfor-
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Problem LR DLP RLP LV (θ∗1+ LR vs. LR vs. LR vs. No.

(τ, N, α, κ) (V λ∗
1 (c1)) (ζ∗) (E{L1(c1, D)}) P

v∗i1 ci1) DLP RLP LV CPU iter.

(200, 4, 1.0, 4) 20,439 21,531 20, 904∓ 19 21,348 5.3 2.3 4.4 103 855
(200, 4, 1.0, 8) 33,305 34,571 33, 947∓ 41 34,384 3.8 1.9 3.2 104 862
(200, 4, 1.2, 4) 18,938 19,882 19, 672∓ 18 19,663 5.0 3.9 3.8 106 1,066
(200, 4, 1.2, 8) 31,737 32,922 32, 715∓ 40 32,696 3.7 3.1 3.0 177 1,773
(200, 4, 1.6, 4) 16,600 17,530 17, 452∓ 17 17,303 5.6 5.1 4.2 93 1,269
(200, 4, 1.6, 8) 29,413 30,570 30, 494∓ 40 30,335 3.9 3.7 3.1 82 1,134

(200, 5, 1.0, 4) 21,298 22,144 21, 677∓ 22 22,016 4.0 1.8 3.4 161 1,051
(200, 5, 1.0, 8) 34,393 35,387 34, 903∓ 45 35,258 2.9 1.5 2.5 244 1,650
(200, 5, 1.2, 4) 20,184 21,263 20, 778∓ 21 21,108 5.3 2.9 4.6 78 626
(200, 5, 1.2, 8) 33,165 34,495 33, 989∓ 45 34,329 4.0 2.5 3.5 159 1,265
(200, 5, 1.6, 4) 17,704 18,870 18, 674∓ 19 18,565 6.6 5.5 4.9 46 525
(200, 5, 1.6, 8) 30,594 32,081 31, 875∓ 43 31,758 4.9 4.2 3.8 82 932

(200, 6, 1.0, 4) 21,128 22,300 21, 648∓ 20 22,116 5.5 2.5 4.7 231 1,353
(200, 6, 1.0, 8) 34,178 35,544 34, 890∓ 43 35,353 4.0 2.1 3.4 67 410
(200, 6, 1.2, 4) 19,649 20,932 20, 555∓ 19 20,649 6.5 4.6 5.1 106 778
(200, 6, 1.2, 8) 32,566 34,172 33, 792∓ 42 33,869 4.9 3.8 4.0 190 1,390
(200, 6, 1.6, 4) 17,304 18,592 18, 446∓ 18 18,565 7.4 6.6 7.3 107 1,021
(200, 6, 1.6, 8) 30,170 31,824 31, 679∓ 41 31,436 5.5 5.0 4.2 260 2,459

(200, 8, 1.0, 4) 18,975 20,052 19, 321∓ 19 19,870 5.7 1.8 4.7 45 200
(200, 8, 1.0, 8) 30,490 31,835 31, 086∓ 40 31,641 4.4 2.0 3.8 196 871
(200, 8, 1.2, 4) 17,472 18,952 18, 378∓ 18 18,598 8.5 5.2 6.4 245 1,300
(200, 8, 1.2, 8) 28,908 30,727 30, 142∓ 40 30,353 6.3 4.3 5.0 291 1,407
(200, 8, 1.6, 4) 15,295 16,833 16, 495∓ 17 16,378 10.1 7.8 7.1 205 1,370
(200, 8, 1.6, 8) 26,661 28,608 28, 255∓ 39 28,118 7.3 6.0 5.5 135 920

Table 2: Upper bounds on the maximum total expected revenue for the test problems with 200 time
periods.

mance gaps between LR and the other five solution methods are statistically significant at 95% level
for all of the test problems. For a majority of the test problems, RLP and RFD compete for the second
and third places, and LV, DFD and DLP have respectively the fourth, fifth and sixth places. On the
average, the total expected revenues obtained by LR are respectively 8.9%, 3.7%, 5.5%, 3.5% and 4.6%
higher than those obtained by DLP, RLP, DFD, RFD and LV. It is especially surprising that the total
expected revenues obtained by RLP and RFD can be noticeably higher than those obtained by LV. In
particular, RLP and RFD use a simple randomization scheme on the deterministic linear program. The
bid prices obtained by these two solution methods depend on the probability distributions of the total
numbers of itinerary requests, but not on the order in which the itinerary requests arrive. On the other
hand, the bid prices obtained by LV depend both on the probability distributions of the total numbers
of itinerary requests and on the order in which the itinerary requests arrive.

To illustrate how different problem parameters affect the performance gaps, the five data series in
Figure 2 plot the performance gaps between LR and the other five solution methods for all of the test
problems. In this figure, blocks of six consecutive test problems in the horizontal axis share the same
problem parameters other than the tightness of the leg capacities and the revenue difference between
the high-fare and low-fare itineraries. The “triangular” patterns of especially the first, third and fifth
data series indicate that the performance gaps between LR and DLP, LR and DFD, and LR and LV
grow as the leg capacities get tighter and the revenue differences between the high-fare and low-fare
itineraries get larger. For test problems with tight leg capacities and large revenue differences between
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Problem LR DLP RLP LV (θ∗1+ LR vs. LR vs. LR vs. No.

(τ, N, α, κ) (V λ∗
1 (c1)) (ζ∗) (E{L1(c1, D)}) P

v∗i1 ci1) DLP RLP LV CPU iter.

(600, 4, 1.0, 4) 30,995 32,409 31, 579∓ 34 32,213 4.6 1.9 3.9 731 1,198
(600, 4, 1.0, 8) 50,444 52,086 51, 255∓ 71 51,876 3.3 1.6 2.8 844 1,371
(600, 4, 1.2, 4) 28,668 29,852 29, 642∓ 30 29,618 4.1 3.4 3.3 333 693
(600, 4, 1.2, 8) 48,054 49,529 49, 317∓ 68 49,279 3.1 2.6 2.6 985 2,012
(600, 4, 1.6, 4) 25,148 26,324 26, 253∓ 29 26,082 4.7 4.4 3.7 1,301 3,820
(600, 4, 1.6, 8) 44,555 46,001 45, 928∓ 66 45,742 3.2 3.1 2.7 494 1,459

(600, 5, 1.0, 4) 32,254 33,299 32, 723∓ 38 33,153 3.2 1.5 2.8 1,431 2,026
(600, 5, 1.0, 8) 52,071 53,285 52, 685∓ 76 53,134 2.3 1.2 2.0 1,211 1,681
(600, 5, 1.2, 4) 30,604 31,943 31, 404∓ 34 31,773 4.4 2.6 3.8 2,430 4,077
(600, 5, 1.2, 8) 50,282 51,904 51, 340∓ 73 51,717 3.2 2.1 2.9 669 1,160
(600, 5, 1.6, 4) 26,936 28,343 28, 183∓ 30 28,022 5.2 4.6 4.0 462 1,116
(600, 5, 1.6, 8) 46,497 48,283 48, 105∓ 70 47,939 3.8 3.5 3.1 297 718

(600, 6, 1.0, 4) 25,541 26,873 26, 130∓ 34 26,722 5.2 2.3 4.6 1,006 1,605
(600, 6, 1.0, 8) 41,412 42,865 42, 113∓ 69 42,703 3.5 1.7 3.1 1,031 1,638
(600, 6, 1.2, 4) 23,687 25,184 24, 756∓ 30 24,878 6.3 4.5 5.0 745 1,476
(600, 6, 1.2, 8) 39,307 41,166 40, 732∓ 66 40,834 4.7 3.6 3.9 812 1,623
(600, 6, 1.6, 4) 20,817 22,274 22, 132∓ 28 21,893 7.0 6.3 5.2 463 1,210
(600, 6, 1.6, 8) 36,391 38,252 38, 103∓ 64 37,842 5.1 4.7 4.0 1,231 3,179

(600, 8, 1.0, 4) 22,960 24,167 23, 375∓ 31 23,998 5.3 1.8 4.5 11 20
(600, 8, 1.0, 8) 36,933 38,395 37, 595∓ 64 38,217 4.0 1.8 3.5 10 20
(600, 8, 1.2, 4) 21,102 22,755 22, 150∓ 28 22,382 7.8 5.0 6.1 1,076 1,573
(600, 8, 1.2, 8) 34,931 36,976 36, 368∓ 62 36,580 5.9 4.1 4.7 857 1,232
(600, 8, 1.6, 4) 18,500 20,228 19, 890∓ 26 19,761 9.3 7.5 6.8 974 1,816
(600, 8, 1.6, 8) 32,247 34,449 34, 105∓ 59 33,942 6.8 5.8 5.3 717 1,347

Table 3: Upper bounds on the maximum total expected revenue for the test problems with 600 time
periods.

the high-fare and low-fare itineraries, the cost of making an “incorrect” decision is quite high. For
these test problems, LR provides especially good performance when compared with the other solution
methods.

The performances of DLP and DFD can be sensitive to the number of times that we refine the bid
prices; see Talluri and van Ryzin (2004). Tables 6 and 7 respectively show the performances of DLP
and DFD for the test problems with 200 and 600 time periods when we refine the bid prices 20 times
over the decision horizon. For comparison purpose, the second column in these tables shows the total
expected revenues obtained by LR when we refine the value function approximations five times over the
decision horizon. The third and fourth columns respectively show the total expected revenues obtained
by DLP and DFD when we refine the bid prices 20 times over the decision horizon. The fifth and sixth
columns show the percent gaps between the total expected revenues obtained by LR and the other two
solution methods. Comparing the total expected revenues obtained by DLP and DFD in Tables 6 and
7 with those in Tables 4 and 5, we note that the performances of DLP and DFD improve noticeably
when we refine the bid prices more frequently. Nevertheless, the total expected revenues obtained by
LR are still significantly higher than those obtained by DLP and DFD.

To give a feel for how the computational effort for LR scales with problem size, Figure 3 shows the
CPU seconds required for one subgradient optimization iteration as a function of the average capacity
per flight leg. In this figure, we consider test problems with τ = 600 and N = 8. The results indicate
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Problem LR vs. LR vs. LR vs. LR vs. LR vs.
(τ, N, α, κ) LR DLP RLP DFD RFD LV DLP RLP DFD RFD LV

(200, 4, 1.0, 4) 20,018 19,367 19,634 19,573 19,576 19,572 3.3 1.9 2.2 2.2 2.2
(200, 4, 1.0, 8) 32,626 30,713 31,671 31,316 31,764 31,523 5.9 2.9 4.0 2.6 3.4
(200, 4, 1.2, 4) 18,374 17,082 17,643 17,631 17,742 17,829 7.0 4.0 4.0 3.4 3.0
(200, 4, 1.2, 8) 30,852 27,238 29,413 29,028 29,796 29,453 11.7 4.7 5.9 3.4 4.5
(200, 4, 1.6, 4) 15,981 14,251 15,444 15,101 15,413 15,148 10.8 3.4 5.5 3.6 5.2
(200, 4, 1.6, 8) 28,381 23,573 27,204 25,912 27,414 26,160 16.9 4.1 8.7 3.4 7.8

(200, 5, 1.0, 4) 21,181 20,143 20,708 20,457 20,679 20,742 4.9 2.2 3.4 2.4 2.1
(200, 5, 1.0, 8) 34,271 31,881 33,368 32,575 33,463 33,083 7.0 2.6 4.9 2.4 3.5
(200, 5, 1.2, 4) 19,818 18,619 19,253 19,127 19,292 19,315 6.1 2.9 3.5 2.7 2.5
(200, 5, 1.2, 8) 32,766 29,567 31,551 30,849 31,766 31,398 9.8 3.7 5.8 3.1 4.2
(200, 5, 1.6, 4) 17,318 15,432 16,592 16,420 16,708 16,561 10.9 4.2 5.2 3.5 4.4
(200, 5, 1.6, 8) 30,107 24,998 28,628 26,890 29,150 28,541 17.0 4.9 10.7 3.2 5.2

(200, 6, 1.0, 4) 20,709 19,789 20,195 20,015 20,195 20,167 4.4 2.5 3.3 2.5 2.6
(200, 6, 1.0, 8) 33,466 31,084 32,421 31,821 32,565 32,253 7.1 3.1 4.9 2.7 3.6
(200, 6, 1.2, 4) 19,133 18,063 18,451 18,414 18,501 18,578 5.6 3.6 3.8 3.3 2.9
(200, 6, 1.2, 8) 31,808 28,662 30,386 29,862 30,616 30,373 9.9 4.5 6.1 3.7 4.5
(200, 6, 1.6, 4) 16,769 15,250 16,045 15,896 16,115 16,082 9.1 4.3 5.2 3.9 4.1
(200, 6, 1.6, 8) 29,320 24,920 27,792 27,067 28,275 27,386 15.0 5.2 7.7 3.6 6.6

(200, 8, 1.0, 4) 18,217 17,245 17,650 17,536 17,703 17,583 5.3 3.1 3.7 2.8 3.5
(200, 8, 1.0, 8) 29,453 26,973 28,288 27,919 28,573 27,873 8.4 4.0 5.2 3.0 5.4
(200, 8, 1.2, 4) 16,941 15,615 16,036 16,132 16,291 16,092 7.8 5.3 4.8 3.8 5.0
(200, 8, 1.2, 8) 28,130 24,564 26,399 26,092 26,972 26,021 12.7 6.2 7.2 4.1 7.5
(200, 8, 1.6, 4) 14,720 13,335 13,919 13,970 14,131 13,732 9.4 5.4 5.1 4.0 6.7
(200, 8, 1.6, 8) 25,701 21,584 24,173 23,709 24,756 23,249 16.0 5.9 7.8 3.7 9.5

Table 4: Total expected revenues for the test problems with 200 time periods.

that the CPU seconds required for one subgradient optimization iteration scale slightly worse than
linearly with the average capacity per flight leg.

7 Conclusions

In this paper, we developed a new method to compute bid prices in network revenue management
problems. The novel aspect of our method is that it generates bid prices that depend on how much time
is left until the time of departure and how much capacity is left on the flight legs. Our method naturally
decomposes the network revenue management problem by the flight legs and allows us to compute bid
prices by concentrating on one flight leg at a time. When compared with the linear programming-based
methods for computing bid prices, our method requires more computational power, but it noticeably
improves the upper bounds on the maximum total expected revenues and provides bid prices that obtain
significantly higher total expected revenues.
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Figure 2: Performance gaps between LR and the other five solution methods.
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Figure 3: CPU seconds required for one subgradient optimization iteration as a function of the average
capacity per flight leg.
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Problem LR vs. LR vs.
(τ, N, α, κ) LR DLP DFD DLP DFD

(200, 4, 1.0, 4) 20,018 19,691 19,772 1.6 1.2
(200, 4, 1.0, 8) 32,626 31,453 31,823 3.6 2.5
(200, 4, 1.2, 4) 18,374 17,661 18,027 3.9 1.9
(200, 4, 1.2, 8) 30,852 28,566 29,583 7.4 4.1
(200, 4, 1.6, 4) 15,981 15,110 15,559 5.5 2.6
(200, 4, 1.6, 8) 28,381 25,581 26,901 9.9 5.2

(200, 5, 1.0, 4) 21,181 20,503 20,708 3.2 2.2
(200, 5, 1.0, 8) 34,271 32,597 33,134 4.9 3.3
(200, 5, 1.2, 4) 19,818 18,988 19,406 4.2 2.1
(200, 5, 1.2, 8) 32,766 30,417 31,396 7.2 4.2
(200, 5, 1.6, 4) 17,318 16,301 16,838 5.9 2.8
(200, 5, 1.6, 8) 30,107 26,997 28,236 10.3 6.2

(200, 6, 1.0, 4) 20,709 20,152 20,285 2.7 2.0
(200, 6, 1.0, 8) 33,466 31,886 32,315 4.7 3.4
(200, 6, 1.2, 4) 19,133 18,449 18,716 3.6 2.2
(200, 6, 1.2, 8) 31,808 29,542 30,470 7.1 4.2
(200, 6, 1.6, 4) 16,769 15,828 16,243 5.6 3.1
(200, 6, 1.6, 8) 29,320 26,305 27,755 10.3 5.3

(200, 8, 1.0, 4) 18,217 17,599 17,861 3.4 2.0
(200, 8, 1.0, 8) 29,453 27,731 28,390 5.8 3.6
(200, 8, 1.2, 4) 16,941 16,114 16,432 4.9 3.0
(200, 8, 1.2, 8) 28,130 25,625 26,684 8.9 5.1
(200, 8, 1.6, 4) 14,720 13,830 14,265 6.0 3.1
(200, 8, 1.6, 8) 25,701 22,780 24,178 11.4 5.9

Table 6: Total expected revenues obtained by DLP and DFD for the test problems with 200 time periods
when we refine the bid prices 20 times over the decision horizon.
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Problem LR vs. LR vs.
(τ, N, α, κ) LR DLP DFD DLP DFD

(600, 4, 1.0, 4) 30,640 30,131 30,258 1.7 1.2
(600, 4, 1.0, 8) 49,862 48,239 48,698 3.3 2.3
(600, 4, 1.2, 4) 28,145 27,254 27,506 3.2 2.3
(600, 4, 1.2, 8) 47,162 44,340 45,504 6.0 3.5
(600, 4, 1.6, 4) 24,540 23,394 23,758 4.7 3.2
(600, 4, 1.6, 8) 43,547 39,862 40,963 8.5 5.9

(600, 5, 1.0, 4) 32,112 31,078 31,328 3.2 2.4
(600, 5, 1.0, 8) 51,875 49,459 50,075 4.7 3.5
(600, 5, 1.2, 4) 30,308 29,100 29,425 4.0 2.9
(600, 5, 1.2, 8) 49,899 46,788 47,668 6.2 4.5
(600, 5, 1.6, 4) 26,605 25,073 25,560 5.8 3.9
(600, 5, 1.6, 8) 46,070 41,711 43,145 9.5 6.3

(600, 6, 1.0, 4) 25,310 24,644 24,880 2.6 1.7
(600, 6, 1.0, 8) 40,849 39,061 39,570 4.4 3.1
(600, 6, 1.2, 4) 23,306 22,356 22,814 4.1 2.1
(600, 6, 1.2, 8) 38,704 35,790 36,841 7.5 4.8
(600, 6, 1.6, 4) 20,273 19,150 19,704 5.5 2.8
(600, 6, 1.6, 8) 35,631 31,884 33,295 10.5 6.6

(600, 8, 1.0, 4) 22,269 21,621 21,907 2.9 1.6
(600, 8, 1.0, 8) 36,046 34,075 34,877 5.5 3.2
(600, 8, 1.2, 4) 20,643 19,601 20,140 5.0 2.4
(600, 8, 1.2, 8) 34,277 31,347 32,650 8.5 4.7
(600, 8, 1.6, 4) 17,930 16,939 17,423 5.5 2.8
(600, 8, 1.6, 8) 31,317 28,086 29,572 10.3 5.6

Table 7: Total expected revenues obtained by DLP and DFD for the test problems with 600 time periods
when we refine the bid prices 20 times over the decision horizon.
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