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Abstract

Children learn words by listening to caregivers, and the quantity and quality of early language 

input predict later language development. Recent research suggests that word recognition 

efficiency may influence the relationship between input and vocabulary growth. We asked whether 

language input and lexical processing at 28–39 months predicted vocabulary size one year later in 

109 preschoolers. Input was measured using adult word counts from LENA recordings. We used 

the visual world paradigm and measured lexical processing as the rate of change in proportion of 

looks to target. Regression analysis showed that lexical processing did not constrain the effect of 

input on vocabulary size. We also found that input and processing were more reliable predictors of 

receptive than expressive vocabulary growth.

Introduction

Vocabulary size is a robust predictor of language development. By amassing a large 

vocabulary of words, children learn morphosyntactic regularities (Marchman & Bates, 1994) 

and develop the phonological representations that subserve future reading skills (Walley, 

Metsala, & Garlock, 2003). Early delays in word learning can predict subtle group 

differences in vocabulary, syntax, and verbal memory assessment scores in the school-age 

years (Rescorla, 2009), and preschool expressive vocabulary and sentence complexity 

predict literacy development (Scarborough, 2009). Studying individual differences in word 

learning and how these differences emerge can inform our understanding of how differences 

in language ability emerge as well.

What does it take to learn words? In an abstract sense, children are word-learning machines, 

converting language input from caregivers into linguistic knowledge and spoken words of 

their own. In this formulation of the problem, children learn words by discovering and 

extracting regularities from their environment. Consequently, we may consider two axes that 

constrain word learning: the teaching environment and the child’s ability to process and 

extract information.
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There is a well-established literature documenting how environmental factors influence 

language development (Hoff, 2006). In particular, the amount of early language input from 

caregivers predicts language development later on (e.g., Hart & Risley, 1995; Hoff, 2003; 

Huttenlocher, Haight, Bryk, Seltzer, & Lyons, 1991; Rowe, 2012). In a landmark study, Hart 

and Risley (1995) found that children from different socioeconomic backgrounds 

experienced very different language environments. Children from higher SES families, 

compared to children from lower SES families, heard more words (tokens) and more 

different words (types) and showed better language outcomes. The reported “30 million 

word gap” in cumulative language input between high-SES and low-SES families has 

become a public health issue and the target for high-profile interventions (Shankar, 2014).

Although greater language input predicts greater language outcomes, there is no reason to 

think all words are equally informative. Research on input “quality” has examined whether 

some features of language input are more important and more informative than others for 

shaping language outcomes. Hoff (2003) found that features of caregivers’ speech explained 

word-learning differences in two-year-olds from families with high school-educated mothers 

versus college-educated mothers. In particular, SES category explained little variance in 

vocabulary growth over and above caregiver mean-length of utterance, baseline vocabulary 

size, and child birth order. Hoff (2003) concluded that SES influences caregiver speech, but 

it is caregiver speech that drives language learning “by providing data to the child’s word-

learning mechanisms” (p. 1374). In this case, data from high-SES families included more 

word types and tokens and longer utterances.

A child’s environment predicts language outcomes. Large changes in environment, 

measured by socioeconomic differences, predict group differences in the quantity and make-

up of child-directed speech. But even within SES groups, families vary considerably in 

measures of child-directed speech (Weisleder & Fernald, 2013). There is also a quality-

versus-quantity dimension to language input—not all words or utterances are equally 

educational—but language quantity may provide a reasonable approximation of the amount 

of high-quality learning experiences available to a child.

We now consider the other axis for word learning: a child’s ability to process information. 

Speech perception, segmentation, and recognition skills measured in the first year predict 

vocabulary measures in the second and third years (see Cristia, Seidl, Junge, Soderstrom, & 

Hagoort, 2014 for a systematic review). For example, in a conditioned head-turn speech 

perception experiment with 6-month-olds, Tsao, Liu, and Kuhl (2004) found the number of 

trials needed to reach a criterion performance correlated with expressive vocabulary at 24 

months (r = −.48). In this case, children who needed fewer trials to learn a contrast 

developed larger vocabularies 18 months later. Kuhl et al. (2008) found that event-related 

potentials at 7.5 months predicted vocabulary growth such that children who were more 

sensitive to native phonetic contrasts had larger vocabularies at 18 and 24 months compared 

to children who were more sensitive to non-native contrasts. Finally, a meta-analysis of six 

speech segmentation studies by Junge and Cutler (2014) found a median correlation of .33, 

95% CI [.17, .48] between word segmentation measures and later language outcomes.
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Infants who are better at extracting the sounds and shapes of words in their ambient 

language have larger vocabularies in toddlerhood. The ability to process words (lexical 

processing or word recognition) also predicts future language outcomes. This kind of 

processing is commonly assessed by eyetracking tasks which measure how quickly and 

reliably a child fixates on an image after hearing its label. In this paradigm, short-term and 

long-term effects have been found between processing and later outcomes. Fernald and 

Marchman (2012) found that late-talking toddlers with faster lexical processing at 18 months 

were more likely to move into the normal range of vocabulary scores by 24 months. 

Marchman and Fernald (2008) found that accuracy and speed of lexical processing at age 

two predicted language and working memory scores at age eight. Lany (2017) found a 

relationship between speed of lexical processing and novel word learning in 18-month-olds 

and 30-month-olds. Children who were faster at recognizing familiar words were also more 

accurate at recognizing novel words in a word-learning task.

Both language environment and ability to process speech can shape language outcomes, but 

only a few longitudinal studies have considered how these two factors work together. 

Newman, Rowe, and Bernstein Ratner (2015) examined how language input and processing 

at 7 months predicted vocabulary at 24 months. They found that amount of time listening to 

novel (unfamiliarized) words predicted vocabulary size, as did type-token-ratio of caregiver 

speech such that more repetitive speech predicted larger vocabularies. These two predictors 

jointly predicted vocabulary size, but did not significantly interact and were weakly 

correlated. Therefore, they concluded the learning environment and the child’s processing 

ability supported language development independently.

In eyetracking studies with older children, however, mediating relationships have been found 

between input and lexical processing. Hurtado, Marchman, and Fernald (2008) found that 

maternal talk at 18 months predicted lexical processing speed and vocabulary size at 24 

months in 27 Spanish-learning children from predominantly low-SES families. Processing 

speed mediated the effect of input on vocabulary size, suggesting that maternal input 

provides practice for processing words and children who are more efficient at recognizing 

words learned more words. Vocabulary size, however, also mediated the effect of maternal 

speech on processing speed. Because processing and vocabulary size were measured at the 

same time, it is not clear which mediation path (or both, in some reciprocal effect) better 

explains the data. In short, these the measures are interrelated, with maternal input predicting 

future processing and vocabulary outcomes.

In a very similar study, Weisleder and Fernald (2013) studied 29 Spanish-learning children 

from low-SES families and found that processing and language input at 19 months of age 

predicted vocabulary size at 24 months. Lexical processing, however, mediated the effect of 

input on future vocabulary. The authors concluded that increased input affords more 

opportunities to practice recognizing words and that greater processing efficiency facilitated 

word learning. Another important question, however, is whether the beneficial effects of 

language input on later vocabulary size are constrained by the child’s ability to efficiently 

process that input.
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Although a body of research shows that processing measures in infancy and toddlerhood 

predict future vocabulary size, it is unclear whether this relationship holds in older children, 

even just beyond toddlerhood. Are children who are more efficient at processing language 

better word-learners more generally, or is this relationship observed only at the earliest 

stages of word learning? Children’s vocabularies rapidly develop from about 18 months on, 

with 30-month-olds producing five times as many words as 18-month-olds. Furthermore, 

some of the early variability in vocabulary size disappears by preschool age (e.g., Paul, 

1993; Rescorla, Mirak, & Singh, 2000). Failure for this trend to hold for preschool children 

would imply that processing is more critical for word learning at younger ages. Perhaps, 

preschool children have accumulated enough practice at recognizing familiar words that a 

processing advantage no longer translates into an advantage in learning words.

Additionally, it is not clear how environmental and child-level factors will interact in older 

children. Given the consistent positive relationship between language input measures and 

vocabulary, we would expect input quantity to predict vocabulary growth. In Newman et al. 

(2015), input repetitiveness and processing predicted vocabulary size independently, 

whereas in Weisleder and Fernald (2013) and Hurtado et al. (2008), the role of input worked 

indirectly, as mediated by lexical processing. In an older cohort, however, children might be 

fast enough at recognizing words such that input and processing independently predict word 

learning.

In this study, we examined the same kinds of variables as Weisleder and Fernald (2013): 

lexical processing, amount of language input, and vocabulary size at a future time. Our 

study, however, involved older children (28–39 months at Time 1), and we used tasks 

appropriate for older children. Specifically, we used direct measures of vocabulary at both 

time points, and we measured lexical processing using the more demanding four-image 

visual world paradigm rather than the two-image looking-while-listening paradigm. Because 

we have vocabulary measures at both time points, we can study how the environmental and 

child-level factors predict change in vocabulary, as opposed to future vocabulary size. 

Differences in word-learning trajectories emerge by 18 months (e.g., Frank, Braginsky, 

Yurovsky, & Marchman, 2016). Rowe, Raudenbush, and Goldin-Meadow (2012) found that 

the shape of a child’s vocabulary growth-curve from 14 to 46 months predicted vocabulary 

size at 54 months, so it is important to factor in a child’s prior vocabulary when studying 

how they accumulate new words.

Research Questions

We asked whether language input and lexical processing efficiency at age 2 ½–3 predicted 

vocabulary size one year later. At the heart of the matter is whether children who are more 

efficient at processing language are better word-learners. Processing measures in infancy and 

toddlerhood both predict future vocabulary size, and this study asks whether that effect still 

holds in this older cohort.

We also asked how input and processing interacted with each other. One possible interaction 

is a moderating relationship where processing efficiency constrains the effect of input on 

vocabulary growth. This outcome would imply that word recognition efficiency is a 

bottleneck for word learning, even at age 3. Alternatively, we might not observe any 
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relationships between language input and processing. In this case, processing does not 

constrain a child’s ability to learn from ambient speech, so that both support word learning 

independently.

Finally, we asked whether language input and processing predict differences in vocabulary 

growth. Specifically, we asked whether these measures are useful predictors of future 

vocabulary size when controlling for concurrent vocabulary size.

Methods and Measurements

Participants

We report all measurements and data exclusions following guidelines in Nosek et al. (2014). 

We examined data from the first two time points of a longitudinal study of preschoolers from 

English-speaking households. At Time 1 in the study, the children were 28–39 months old. 

During Time 1, we collected our measures of language input, lexical processing and 

vocabulary. At Time 2, we collected follow-up vocabulary measures when the children were 

39–52 months old.

A total of 172 children provided vocabulary, processing and input data at Time 1. We 

excluded 5 children with cochlear implants from the present analysis. We also excluded 16 

children identified by parents as late-talkers. Of the remaining children, 139 provided 

vocabulary measures at Time 2. As detailed below, we excluded 4 children for having 

inadequate home-language recordings and 26 children for having unreliable eyetracking 

data. A final total of 109 children were used in the vocabulary analyses. A small subset of 

the Time 1 vocabulary and eyetracking data (n = 14) was previously reported in Law, Mahr, 

Schneeberg, and Edwards (2016), which analyzed vocabulary size and concurrent lexical 

processing in a diverse group of participants. All children underwent a hearing screening at 

both time points, and they had normal speech, language, and cognitive development 

according to parent report.

Stimuli were presented in children’s home dialect, either Mainstream American English 

(MAE) or African American English (AAE). We made an initial guess about what the home 

dialect was likely to be based on a number of factors, including the recruitment source and 

the child’s address. For most children, the home dialect was MAE. If we thought the home 

dialect might be AAE, a native AAE speaker who was a fluent dialect-shifter was scheduled 

for the lab visit, and she confirmed the home dialect by listening to the caregiver interact 

with the child during the consent procedure at the beginning of the visit. AAE was the home 

dialect for 4 of the 109 participants.

Several other measurements were collected as part of the longitudinal study. They are not 

analyzed here because we limit attention to only the measures relevant for the analysis of 

input, processing, and vocabulary. Other unanalyzed Time 1 tasks were two picture-

prompted word-repetition tasks (Edwards & Beckman, 2008), an eyetracking task with 

mispronunciations of familiar words (Law & Edwards, 2015), a minimal pair discrimination 

task (based on Baylis, Munson, & Moller, 2008), a verbal fluency task (WJ-III Retrieval 

Fluency subtest, Woodcock, McGrew, & Mather, 2001), a shape stroop task (Carlson, 2005), 
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and an articulation test (GFTA-2, Goldman & Fristoe, 2000). Parents completed the 

MacArthur-Bates Communicative Development Inventory (Fenson et al., 2007), an 

inventory about executive function (BRIEF-P, Gioia, Espy, & Isquith, 2003), a survey about 

early literacy practices in the home (Senechal, 2006), and a demographic survey that 

included a multiple-choice question on maternal education level. A similar test battery was 

used at Time 2, with the addition of new tasks targeting phonological awareness (CTOPP-2, 

Wagner, Torgesen, Rashotte, & Pearson, 2013) and speech perception (SAILS task in 

Rvachew, 2006).

Vocabulary

At both time points, children received the Expressive Vocabulary Test, 2nd Edition (EVT-2, 

Williams, 2007) and its receptive counterpart, the Peabody Picture Vocabulary Test, 4th 

Edition (PPVT-4, L. M. Dunn & Dunn, 2007). In the expressive test, children were presented 

an image and had to name it. In the receptive test, children were presented four images and 

had to select a named image. For our analyses, we used growth scale values provided by 

each test; these values transform raw scores (words correct) into a scale that grows linearly 

with age.

Language input

Language input data was collected using a Language Environment Analysis (LENA) digital 

recorder, a small device worn by a child (Ford, Baer, Xu, Yapanel, & Gray, 2008). The 

device records all audible sounds for up to 16 hours. The recorder and instructions for using 

it were given to families. We instructed families to activate the recorder in the morning and 

record a typical day for the child. LENA software analyzed each recording to generate a 

summary of the child’s language environment (Ford et al., 2008). The measures included 1) 

hourly word-counts of adult language in the child’s environment, 2) hourly number of child-

adult and adult-child conversational turns, 3) hourly proportions of meaningful (nearby) 

speech, distant speech, noise, television/electronics, and silence, and 4) hourly number of 

child vocalizations.

We computed the averages of each of these hourly measurements, excluding data from hours 

recorded after midnight. We computed the duration of the remaining before-midnight data in 

seconds, computing the number of hours from the number of seconds. This adjustment 

corrects for hours where the recording started midway through an hour. The average hourly 

adult word count then was the total adult word count in the recording divided by the number 

of hours. Our procedure differed from that of Weisleder and Fernald (2013): That study only 

used the adult word counts from segments that coders had classified as child-directed.

We excluded recordings that might provide unreliable information. We excluded 3 

recordings with less than 10 hours of data recorded before midnight, because such 

recordings undersampled the child’s day. LENA software documentation also recommends 

that recordings be at least 10 hours in duration (LENA Foundation, 2015). We excluded 1 

recording from a child who did not wear the device.
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Lexical processing

Eyetracking procedure—To measure lexical processing, we used the visual world 

paradigm, an experimental procedure that has been used with children and adults (e.g., 

Allopenna, Magnuson, & Tanenhaus, 1998; Huang & Snedeker, 2011; Law et al., 2016; 

McMurray, Samelson, Lee, & Tomblin, 2010). In this paradigm, images of objects are 

presented onscreen followed by a prompt to view one of the images. An eyetracker records 

the participant’s gaze location over time. By examining how gaze changes in response to 

speech, we study the time course of word recognition. This particular experiment was 

described and analyzed in detail in Law et al. (2016).

In this experiment, four photographs of familiar objects appeared on a computer display. 

During a trial, a spoken prompt directed the child to view one of the images (e.g., find the 

fly). One image was the target (e.g., fly). The other distractor images contained a 

semantically related word (bee), a phonologically related word (flag), and an unrelated word 

(pen). Target words were presented in carrier frames (see the or find the). Children heard 

stimuli that matched their home dialect, either MAE or AAE. We recorded the stimuli from 

two young adult female speakers, one a native speaker of MAE and the other a native 

speaker of AAE. As noted above, 105 children came from families where MAE was spoken 

at home and received stimuli recorded in MAE; 4 children came from families where AAE 

was spoken at home and received stimuli recorded in AAE. In a cross-sectional study (Law 

et al., 2016) with an equal number of AAE- and MAE-speaking children (n = 30 per group), 

we did not observe differences between two dialect versions after controlling for child-level 

variables. Therefore, we combined data from both dialect versions in the analysis below.

Children saw 24 unique trials (each with different target words) in an experimental block. 

Each word served as the target word once per block. Two blocks of the experiment (each 

with different trial orderings and images) were administered. A Tobii T60XL eyetracker 

recorded the location of a child’s gaze on the screen at rate of 60 Hz.

Presentation of carrier/target was gaze-contingent. After 2 s of familiarization time with the 

images in silence, the experiment paused to verify that the child’s gaze was being tracked. 

After 300 ms of continuous gaze tracking, the trial advanced. Otherwise, if the gaze could 

not be verified after 10 s, the trial advanced. This step ensured that for nearly every trial, the 

gaze was being tracked before playing the carrier phrase, or in other words, that the child 

was ready to hear the carrier stimuli. An attention-getter or motivator phrase (e.g., check it 

out!) played 1 s after the end of the target word. Every six or seven trials, an animation 

played onscreen and the experiment briefly paused to allow examiners to reposition or coach 

the child to pay attention.

Data screening—We began with data from 151 children with Time 1 vocabulary scores, 

eyetracking data and home-language recordings. Data from 18 children had to be excluded 

because of a timing error in the experiment protocol that caused the reinforcer phrase to play 

too early after the target word. Before data screening, we performed deblinking by 

interpolating short windows of missing data (up to 150 ms) if the child fixated on the same 

image before and after a missing data window. We examined data quality in the 2-s window 

following the onset of the target. A trial was considered unreliable if at least 50% of the 
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eyetracking data during the 2-s window was missing (offscreen). If at least 50% of trials in a 

block were unreliable, that block was excluded. We excluded 28 such blocks; 11 children 

had all their eyetracking trials excluded in this way. After block-level screening, we 

excluded an additional 712 unreliable trials. After screening, 4712 reliable trials remained 

from 122 children. Finally, we downsampled our data into 50-ms bins, reducing the 

eyetracking sampling rate from 60 Hz to 20 Hz. This procedure smoothed out high-

frequency noise by pooling together data from adjacent frames.

Growth curve analysis—A common measure in eyetracking studies of word recognition 

is an accuracy growth curve (Mirman, 2014). We compute this growth curve by aggregating 

the number of looks to each image over trials and calculating the proportion of looks to the 

target image at each time sample. (We ignored offscreen looks or looks between the images 

when computing this proportion.) The growth curve measures how the probability of 

fixating on the target changes over time. Figure 1 depicts each participant’s raw accuracy 

growth curve and the overall mean of the growth curves. On average, a child had a 25% 

chance of viewing the target image at the onset of the target word and the chance of looking 

to the image increased as the word unfolded and eventually plateaued after the word ended.

We used a mixed-effects logistic regression model to estimate the probability of fixating on 

the target image over time for each participant. We fit the model using the lme4 package 

(vers. 1.1.15; D. Bates, Mächler, Bolker, & Walker, 2015) in the R programming language 

(vers. 3.4.3). Although our vocabulary analyses use data from 109 participants, we used 

eyetracking data from 122 typically developing participants to fit the growth curve model so 

the data from the 13 additional participants would strengthen the model. See the 

Supplemental Appendix for detailed model results.

We modeled time using a cubic orthogonal polynomial. That is, our predictors were a 

constant term, (linear) time1, (quadratic) time2 and (cubic) time3, and the time terms were 

scaled and centered so they were orthogonal and therefore uncorrelated. Because we used 

transformations of time, the constant did not estimate the predicted value at time = 0, but 

instead it estimated the area under the curve: the average log-odds of fixating on the target 

over the whole window.

The fixed effects of this model estimated an accuracy growth curve for an average 

participant. Of interest were the constant and linear-time terms. Because the constant term 

corresponded to the area under the growth curve, the model estimated an average probability 

of −0.297 logits (.43 proportion units) over all time samples. The linear time term captured 

the overall steepness of the growth curve. Ignoring the quadratic and cubic features of the 

growth curve, the linear term estimated an increase of 0.05 logits per 50 ms. At 0 logits (.5 

proportion units), where the logistic function is steepest, an increase of 0.05 logits 

corresponds to an increase of .012 proportion units. At chance performance (.25 proportion 

units), this effect corresponds to an increase of .009 proportion units.

We allowed the constant and time terms to vary randomly within participants. These random 

effects quantified how an individual child’s growth curve differed from the group average, so 

they provided measures of individual differences in lexical processing. Specifically, the 
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constant terms provided a measure of overall accuracy, and the linear-time terms provided a 

measure of processing efficiency.

To visualize model-derived lexical processing measures, we divided the 109 children in the 

main analysis into thirds based on their linear-time coefficients. The faceted plot in Figure 2 

shows growth curves for children with low, middle, and high linear trends, and the curves 

become steeper as the linear trend increases. For example, in the interval from 500 to 1,500 

ms, each group’s average proportion of looks to the familiar image increased by .17, .32 

and .44. For children with higher slopes, the probability of fixating on the named image 

increases more quickly over time, so these children demonstrate more efficient lexical 

processing.

We can also quantify the lexical processing efficiency of each group by calculating the 

average linear-time parameter in each group and determining how much the probability 

increases when the average linear-time estimate is added to 0 logits. The predicted increase 

was .007 proportion units per 50 ms for children in the bottom group, .013 for children in 

the middle group, and .018 for children in the top group. By this measure, the children in the 

fastest group were more than twice as fast as the children in the bottom group.

Accuracy was related to processing efficiency. The by-child constant and linear time random 

effects were moderately correlated, r = .31; the children with steeper growth curves looked 

more to the target overall. The groups visualized had average looking proportions of .4, .45, 

and .45. Peak accuracy was also related to processing efficiency. We computed an asymptote 

for each child’s growth curve as the median value from 1,500 to 2,000 ms, and the average 

asymptote for each group was .51, .63, and .71. These asymptotes were highly correlated 

with by-child constant effects, r = .79, and linear time effects, r = .80.

Analyses

Descriptive statistics

Table 1 presents summary statistics. The EVT-2 and PPVT-4 standard scores describe a 

child’s ability relative to their age using an IQ-like scale (mean = 100, SD = 15). The 

children in this cohort had vocabulary scores approximately 1 SD greater than test-norm 

averages. Receptive and expressive vocabulary growth scale scores were highly correlated at 

both time points, rT1 = .79, rT2 = .78. Table 2 presents correlations for Time 1 measures. 

Most (92) of the children came from high maternal-education families (i.e., college or 

graduate degrees). Of the remaining children, 11 came from middle maternal-education 

families (at least two years of college, associate’s degree, or trade school degree), and 6 

from low maternal-education families (high school diploma or less, or less than two years of 

college).

Regression analyses

We used a Bayesian, estimation-based analytical approach: The aim is to estimate the 

magnitude and direction of effects as well as the uncertainty about those effects. In Bayesian 

models, we update our prior information based on the likelihood of the data—in other 

words, how well the data “fit” that prior information. The updated prior information 
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constitutes the posterior distribution. Each sample from the posterior distribution represented 

a plausible set of parameters that is consistent with the observed data. We used this 

technique so that we could provide 95% uncertainty intervals for the parameter estimates. 

These intervals have an intuitive interpretation: We can be 95% certain the “true” value of a 

parameter, for the given model and data, is contained within its 95% uncertainty interval. 

This feature differs from frequentist confidence intervals which do not contain any 

distributional information about a given statistical effect (Kruschke & Liddell, 2017). 

Because the posterior contains plausible parameter values, we can measure our uncertainty 

about an effect’s magnitude and direction. For example, if an interval spanned a large 

positive range, e.g., [3, 24] for some IQ-like standard scores, we would conclude that the 

effect is positive but that the size of the effect was very uncertain.

We fit Bayesian linear regression models using Stan (Carpenter et al., 2017) via the 

RStanARM package (vers. 2.17.3) in R. All predictors and outcome measures were scaled to 

have a mean of 0 and standard deviation of 1. We used weakly informative normal 

distributions as the priors of regression parameters: Intercept ~ Normal(μ = 0 [mean], σ = 5 

[SD]) and Other Effects ~ Normal(μ = 0, σ = 1). This prior information implies that before 

seeing the data, we consider negative and positive effects to be equally plausible (μ = 0), and 

we expect 95% of plausible effects to fall between ±1.96. We call this distribution “weakly 

informative” because of disciplinary expectations. In child language research, an effect 

where a 1-SD change in x predicts a 1-SD change in y represents a profound effect. Because 

our prior information generously includes such effects, they are “weakly informative”.

Hamiltonian Monte Carlo sampling was performed on four chains each with 1,000 warm-up 

draws and 1,000 sampling draws, yielding 4,000 total draws from the posterior distribution. 

For all parameters reported, we used the median value of the parameter’s posterior 

distribution as its “point” estimate. These median parameters values were used to calculate 

R2 statistics as the conventional, unadjusted ratio of explained variance over total variance: 

R2 = Var(ŷ [fitted]) / Var(y [observed]).

In all analyses, we used standardized average hourly adult word count as our measure of 

language input, and standardized linear-time coefficients (growth curve slopes) as our 

measure of processing efficiency. There was a small positive association between language 

input and lexical processing efficiency at Time 1, R2 = .055, such that a 1-SD increase in 

input (an additional 468 words per hour) predicted a 0.24-SD increase in lexical processing 

efficiency, 95% Uncertainty Interval [0.06, 0.42]. Raw data and scripts to reproduce all 

analyses are available at https://github.com/tjmahr/mahr-edwards-2017.

Expressive vocabulary—There was a modest effect of input on expected expressive 

vocabulary at Time 2, R2 = .074. A 1-SD increase in input predicted an increase of 

vocabulary of 0.27-SD units, 95% Uncertainty Interval [0.08, 0.45]. There was a strong 

effect of lexical processing, R2 = .238. A 1-SD increase in processing efficiency predicted an 

increase in vocabulary of 0.49-SD units, UI [0.32, 0.66]. Estimates from each of these 

models are presented in Figure 3.
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We also regressed expressive vocabulary onto input and processing, R2 = .264. We observed 

a reliable effect of processing: For a child with an average amount of language input, a 1-SD 

increase in processing predicted an increase in vocabulary of 0.45 SD-units, UI [0.27, 0.61]. 

For a child with average processing efficiency, however, a 1-SD increase in input predicted a 

0.17-SD increase in vocabulary size, UI [0.00, 0.34]. Lexical processing was a stronger 

predictor of vocabulary size than home language input, but there was also a modest, positive 

association between adult word counts and future expressive vocabulary size. There was not 

a credible Processing × Input interaction effect. That is, both positive and negative 

interaction effects were plausible, UI [−0.20, 0.13].

Receptive Vocabulary—There was a moderate effect of average hourly adult word count 

on receptive vocabulary size, R2 = .107. A 1-SD increase in input (468 words per hour) 

predicted an increase of 0.33 SD units, 95% Uncertainty Interval [0.15, 0.50]. There was a 

strong effect of lexical processing efficiency, R2 = .292. A 1-SD increase in processing 

efficiency predicted an increase in vocabulary of 0.54 SD units, UI [0.37, 0.70]. Estimates 

from each model are depicted in Figure 4.

We also regressed vocabulary onto input and processing efficiency. Both predictors were 

associated with vocabulary size, R2 = .334. There was a strong effect of processing, βproc = 

0.49 SD units, UI [0.32, 0.66], whereas there was a modest effect of input, βinput = 0.21, UI 

[0.05, 0.37]. Because both input and processing showed positive effects, we also tested 

whether processing moderated the effect of input. There was not a credible Processing × 

Input interaction effect, UI [−0.15, 0.18]. These results indicate that lexical processing was a 

more robust predictor of future receptive vocabulary than average hourly adult word count, 

and also that adult word count had a positive effect on vocabulary over and above lexical 

processing ability.

Vocabulary Growth

We showed above that lexical processing efficiency and language exposure predicted 

vocabulary size one year later. These analyses are not adequate models of vocabulary growth 

because they do not account for vocabulary size at Time 1. If we think of home language 

input as a treatment variable—as language enrichment interventions do—then the analyses 

above ignored the pretreatment outcome levels.

The following analyses included Time 1 vocabulary size as a covariate so that we could 

model the effects of input and lexical processing. For each analysis, we started with a 

reference model in which we regressed vocabulary scores at Time 2 onto Time 1 vocabulary 

scores. We then added other predictors to see whether they had a credible effect over and 

above Time 1 vocabulary. These models allow us to examine the “value-added” properties of 

language exposure and lexical processing efficiency. The best performing model for each 

vocabulary type are described in detail in the Supplemental Appendix.

Expressive Vocabulary—As expected, there was a strong relationship between Time 1 

and Time 2 expressive vocabularies, R2 = .632. A 1-SD increase vocabulary scores at Time 1 

predicted a 0.79-SD increase at Time 2, 95% Uncertainty Interval [0.68, 0.91]. There was 

not a credible effect of adult word count, UI [−0.12, 0.13]. There was no longer a 95% 
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credible effect of processing, UI [−0.04, 0.24]. The posterior distribution of the processing 

effect was mostly positive, P(0 < βProcessing) = .924. If we stipulate that values between [0, 

0.05] are so small that they are practically equivalent to 0, then 76.3% of posterior samples 

showed a non-null positive effect. Therefore, the data suggests a positive effect of lexical 

processing on expressive vocabulary growth. There was not a credible interaction between 

input and lexical processing efficiency, UI [−0.08, 0.15].

We compared these models and ones reported earlier using the Widely Applicable 

Information Criterion (WAIC; Table 3) computed via the loo R package (vers. 1.1.0; Vehtari, 

Gelman, & Gabry, 2017). Like other information criteria metrics (e.g., AIC or BIC), the 

WAIC estimates a model’s predictive accuracy for out-of-sample data, and when comparing 

two models, the one with the lower WAIC is preferred. Because each observation 

independently contributes to the overall WAIC value, the WAIC is accompanied by a 

standard error (Vehtari et al., 2017) which helps quantify the uncertainty around WAIC point 

values. We also computed Akaike weights for WAIC values; these values provide a relative 

weighting or conditional probability estimate for each model (Wagenmakers & Farrell, 

2004).

The models that do not include Time 1 vocabulary should be given no weight. Of the other 

models, we prefer the models without language input over those that include this predictor. 

Finally, we assign relatively equal weight to the model with just Time 1 vocabulary and the 

model with both lexical processing and Time 1 vocabulary. We would expect these models 

to perform the best on new data. Model comparison therefore provided little confirmatory 

support for a positive effect of lexical processing over and above Time 1 vocabulary.

Receptive Vocabulary—There was a strong relationship between Time 1 and Time 2 

receptive vocabulary, R2 = .584. A 1-SD increase in vocabulary at Time 1 predicted a 0.76-

SD increase at Time 2, 95% Uncertainty Interval [0.64, 0.88]. There was a positive effect of 

adult word count over and above Time 1 vocabulary such that a 1-SD increase in input 

predicted a 0.15-SD increase in expected vocabulary, UI [0.03, 0.27], R2 = .606. Similarly, a 

1-SD increase in processing efficiency predicted an increase in receptive vocabulary of 0.23 

SD units, UI [0.10, 0.37], R2 = .626.

We also regressed receptive vocabulary onto all three predictors, R2 = .640. There was a 

small effect of input over and above Time 1 vocabulary and lexical processing, βInput = 0.12, 

UI [0.00, 0.24]. There was a moderate effect of processing, βProcessing = 0.21, UI [0.08, 

0.35]. We did not observe a credible interaction of input and lexical processing, UI [−0.07, 

0.16].

We compared the models using the WAIC (Table 4). We would expect the models with Time 

1 vocabulary, lexical processing and language input as predictors to have to the best 

predictive accuracy on out-of-sample data. The most important variables for reducing WAIC 

were Time 1 vocabulary, followed by lexical processing, and lastly language input.

Receptive-Expressive Differences—Once we took Time 1 vocabulary into account, we 

observed different predictive effects of adult word count and lexical processing for 
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expressive versus receptive vocabulary. For expressive vocabulary, input no longer had a 

credible effect, and lexical processing probably had a small positive effect but evidence for 

this effect is limited. In contrast, both predictors independently showed positive effects on 

receptive vocabulary, although the processing effect was larger than the input effect.

Based on these analyses alone, however, it would be invalid to claim receptive vocabulary 

was more sensitive to child-level factors than expressive vocabulary (Gelman & Stern, 

2006). To evaluate these differences between receptive and expressive vocabulary, we have 

to estimate them. To compare both vocabulary outcomes simultaneously, we fit a 

multivariate regression model using Stan tools from the brms R package (vers. 2.1.0; 

Bürkner, 2017). As above, all variables were standardized to have mean 0 and standard 

deviation 1. We regressed Time 2 vocabulary onto Time 1 vocabulary, language input, 

lexical processing and the input-processing interaction for each vocabulary type as in 

preceding analyses. But to join the two outcomes, we also modeled the correlation between 

the residual error terms σRec and σExp. The error terms were moderately correlated, ρ = .32, 

UI [.13, .50].

The multivariate model maintained the results of the univariate models (see Figure 5): 

Strong effects of Time 1 vocabulary, reliable effects of input and processing on receptive 

vocabulary, and a suggestive effect of processing on expressive vocabulary. For each 

posterior sample, we computed the difference between receptive and expressive vocabulary 

coefficients (e.g., βInput[Diff] = βInput[Rec] − βInput[Exp]), yielding a distribution of effect 

differences. Input had a stronger effect on receptive vocabulary that expressive vocabulary, 

βInput[Diff] = 0.12, P(0 < βInput[Diff]) = .954. A similar difference was observed for lexical 

processing, βProcessing[Diff] = 0.11, although it was slightly less probable the receptive effect 

was greater than the expressive effect, P(0 < βProcessing[Diff]) = .922. Lexical processing 

probably had a stronger effect on receptive than expressive vocabulary.

Discussion

We asked how lexical processing efficiency and home language input predicted vocabulary 

size one year later in a large sample of preschoolers. We measured lexical processing using 

an eyetracking experiment and model-derived estimates of how quickly on average a child’s 

gaze shifted to a named image. We measured language input using the average number of 

adult words per hour from LENA recordings, and we measured expressive and receptive 

vocabulary directly using standardized tests. We first tested how language input and lexical 

processing at age 3 predicted vocabulary size at age 4 without controlling for age-3 

vocabulary levels. In these baseline analyses, both measures reliably and independently 

predicted vocabulary size. The processing effect was 2–2.5 times larger in magnitude than 

the input effect. Lexical processing and language input were weakly correlated, r = .24, and 

there were no credible interaction Processing × Input effects. These baseline analyses 

support the conclusions that lexical processing efficiency was a more important predictor of 

future vocabulary than language input and that word recognition efficiency did not constrain 

the beneficial effects of language exposure on future vocabulary size.
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We next examined how input and lexical processing related to vocabulary growth, by 

controlling for age-3 vocabulary. The best predictors of Time 2 expressive vocabulary were 

Time 1 expressive vocabulary followed by lexical processing. The processing effect was less 

certain and smaller in magnitude compared to the robust effects observed in models of 

receptive vocabulary or in the baseline models that did not control for Time 1 vocabulary. 

Comparison of the expressive vocabulary models indicated that one should assign 

approximately equal weight to a model with both lexical processing and Time 1 vocabulary 

and a model with only Time 1 vocabulary. In contrast, the best predictors of Time 2 

receptive vocabulary were Time 1 receptive vocabulary, followed by lexical processing and 

adult word count. Both processing and input provided additional predictive information over 

and above Time 1 vocabulary, and lexical processing had a larger effect than hourly adult 

word count. Finally, we estimated the differences in the effects on receptive versus 

expressive vocabulary, and the input effect was larger for receptive vocabulary while the 

processing effect was probably larger for receptive vocabulary.

The difference in results for expressive versus receptive vocabulary was unexpected, given 

the reliable correlation between the two measures, r = .81 at ages 2–5 (L. M. Dunn & Dunn, 

2007, p. 60). Child who heard more words from their caregivers could understand more 

words one year later, but they could not necessarily produce more words. Why would 

language exposure be more related to receptive than expressive vocabulary? The differences 

for expressive and receptive vocabulary may simply reflect differences in the tests used to 

measure them. Across the entire course of the PPVT-4, the prompt remains the same (show 

me X). But over the course of the EVT-2, the prompts change from what is this to include 

prompts that demand metalinguistic knowledge (e.g., tell me another word for X). Thus, it 

may be the case that the PPVT-4 measures only receptive vocabulary, while the EVT-2 

measures both expressive vocabulary and metalinguistic ability. Lexical processing 

efficiency and language input may be less related to metalinguistic ability than they are to 

vocabulary size.

Alternatively, the different results for expressive and receptive vocabulary may reflect the 

fact that recognition is easier than production. Being able to name an object—to activate the 

word’s semantic representation and its phonological representation then carry out a motor 

plan—demonstrates a greater sign of mastery than being able to associate the word to an 

appropriate referent. The children who heard more words had more experience and exposure 

to words, giving them a broad base of shallow knowledge for word recognition. This 

interpretation would suggest that measures of input diversity (input types) would be even 

more predictive of future receptive vocabulary than simple quantity. Support for this 

interpretation also comes from Edwards et al. (2014). Using structural equation modeling, 

they found a direct relation between SES and receptive vocabulary, but only an indirect 

relation between SES and expressive vocabulary; the relation between SES and expressive 

vocabulary was mediated by receptive vocabulary.

A similar line of reasoning applies to the processing effect. We measured processing as 

response speed during a listening task, not a naming task. It captures a child’s ability to 

activate a word’s semantic representation in a timely manner. These demands are more 

clearly related to our receptive vocabulary task, whereas the expressive vocabulary task 

Mahr and Edwards Page 14

Dev Sci. Author manuscript; available in PMC 2019 November 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



additionally required the child to talk. Nevertheless, we concluded that faster processing 

probably predicted larger expressive vocabularies. Approximately, 75% of the posterior 

samples indicated a positive, non-null effect. Naming an object still requires activation of a 

word’s lexical representations, so it makes sense that the lexical processing efficiency would 

still matter for expressive vocabulary.

Throughout our analysis, we never observed a credible interaction effect between lexical 

processing and language input. Word recognition efficiency did not constrain the beneficial 

effects of language exposure on future receptive vocabulary size. One interpretation of these 

findings is that these children were fast enough at recognizing words that processing did not 

impose more of a bottleneck on vocabulary growth. Developmentally, that bottleneck may 

be observed in younger children than those in this sample. The youngest children in this 

study were 28 months, an age at which the average child produces about 500 words and 

recognizes at least 3 times that amount. In contrast, at 18 months the average child produces 

only about 50 words and recognizes about 250 (Frank et al., 2016). After about 18 months, 

children’s vocabularies start increasing rapidly. At this point, it may be the case that 

processing efficiency no longer interacts with the quantity of language input. More research 

on children from 18 to 30 months is needed to evaluate this claim and to determine the time 

course of the relation among processing efficiency, language input, and vocabulary growth.

Our study elaborated on the work of Weisleder and Fernald (2013), but differed in important 

ways. Notably, our sample included children who were older in age, and we tested these 

children’s vocabularies directly. Additionally, we used LENA’s automated measures of adult 

word count, whereas that study used LENA word counts from just the segments of 

recordings that listeners had classified as child-directed. Limitations of our study include its 

observational design and the relatively homogeneous demographics of the families. This 

study was observational, so the analyses here describe statistical relationships. We did not 

manipulate language input, so we cannot establish causal links between language input and 

other measures. Moreover, most (92/109) children came from high maternal-education 

families (i.e., college or graduate degrees), whereas Weisleder and Fernald (2013) recruited 

29 children from low-SES families. The combined SES and age differences make it difficult 

to compare these two studies directly. Although most of the participants in our study were 

demographically homogeneous, they varied in language input, vocabulary size, and 

processing efficiency, so they provided an informative test of how processing and input 

predict word learning. We found input and processing had positive effects on receptive 

vocabulary growth, but had little influence on expressive vocabulary growth.

Once we controlled for Time 1 vocabulary size, the effects of lexical processing and 

language input became less robust and less certain, especially for expressive vocabulary. It is 

essential that studies about changes in vocabulary size obtain a baseline vocabulary 

measurement. Our results were different when we measured predictors of vocabulary size as 

compared to predictors of vocabulary growth. This is not surprising, given that individual 

differences in vocabulary size are observed at 12 months or even earlier and increase with 

age. Unlike previous studies, this study measured both receptive and expressive vocabulary

—if only one of these measures had been used as the sole measure of vocabulary 

knowledge, we would have drawn different conclusions.
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Our findings have important implications for interventions aimed at increasing children’s 

vocabulary. First and foremost, these interventions must start early. At Time 1, children in 

this study were only 28 to 39 months of age. Still, for both receptive and expressive 

vocabulary, vocabulary size at this young age was by far the strongest predictor of 

vocabulary size one year later. Based on our results, increasing the quantity of linguistic 

input for 3-year-olds is not going to be an effective intervention strategy. Other research has 

suggested that children attend to different features of their ambient language as their 

language abilities develop (cf. review in Lidz & Gagliardi, 2015; Rowe, 2012). For children 

of this age, sheer quantity of language input may not be as relevant or predictive as 

complexity or other features of the child-directed speech. The lack of evidence for quantity 

effects does not imply that quality is any more important or predictive of vocabulary growth 

at this age, but it suggests that measures like adult word count provide only a first 

approximation about the number of informative examples and learning opportunities 

available to the child. Language stimulation benchmarks and goals for children of this age, 

we would conclude, are better framed as time spent on activities, such as shared-book 

reading, or discussing events outside of the here and now (Rowe, 2012), rather than focusing 

simply on increasing language input.

These findings add to our understanding for vocabulary development. They suggest that the 

early relations among processing efficiency, input, and vocabulary size may decrease as all 

children become more efficient language processors in their third year of life. While 

differences in processing efficiency continue to exist, they may not create the bottleneck on 

vocabulary growth that is observed for children from 18 to 24 months. They also add to the 

very large literature supporting early intervention—children say their first words at about 12 

to 14 months of age, but differences in vocabulary size even as early as 28 months are highly 

predictive of vocabulary growth one year later and are far more important than language 

input or processing efficiency.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by NIDCD R01 DC002932 to Jan Edwards, Mary E. Beckman, and Benjamin Munson; 

NICHD T32 HD049899 to Maryellen MacDonald; NIDCD T32 DC05359-10 to Susan Ellis Weismer; NIDCD 

Grant R01 DC012513 to Susan Ellis Weismer, Jan Edwards, and Jenny R. Saffran; and NICHD P30 HD003352 to 

the Waisman Center. We thank all the children who participated in this study and their families. We also 

acknowledge Mary E. Beckman, David Kaplan, Benjamin Munson, Franzo Law II, Alissa Schneeberg, Nancy 

Wermuth, and other members of the Learning To Talk labs at the University of Wisconsin–Madison and the 

University of Minnesota for their contributions to this research program.

References

Allopenna PD, Magnuson JS, Tanenhaus MK. 1998; Tracking the time course of spoken word 

recognition using eye movements: Evidence for continuous mapping models. Journal of Memory 

and Language. 38(4):419–439. DOI: 10.1006/jmla.1997.2558

Bates D, Mächler M, Bolker B, Walker S. 2015; Fitting linear mixed-effects models using lme4. 

Journal of Statistical Software. 67(1):1–48. DOI: 10.18637/jss.v067.i01

Mahr and Edwards Page 16

Dev Sci. Author manuscript; available in PMC 2019 November 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Baylis AL, Munson B, Moller KT. 2008; Factors affecting articulation skills in children with 

velocardiofacial syndrome and children with cleft palate or velopharyngeal dysfunction: A 

preliminary report. The Cleft Palate-Craniofacial Journal. 45(2):193–207. DOI: 10.1597/06-012.1 

[PubMed: 18333642] 

Bürkner PC. 2017; brms: An R package for Bayesian multilevel models using Stan. Journal of 

Statistical Software. 80(1):1–28. DOI: 10.18637/jss.v080.i01

Carlson SM. 2005; Developmentally sensitive measures of executive function in preschool children. 

Developmental Neuropsychology. 28(2):595–616. DOI: 10.1207/s15326942dn2802_3 [PubMed: 

16144429] 

Carpenter B, Gelman A, Hoffman M, Lee D, Goodrich B, Betancourt M, Riddell Allen. 2017; Stan: A 

probabilistic programming language. Journal of Statistical Software. 76(1):1–32. DOI: 10.18637/

jss.v076.i01

Cristia A, Seidl A, Junge C, Soderstrom M, Hagoort P. 2014; Predicting individual variation in 

language from infant speech perception measures. Child Development. 85(4):1330–1345. DOI: 

10.1111/cdev.12193 [PubMed: 24320112] 

Dunn, LM, Dunn, DM. Peabody Picture Vocabulary Test. Fourth. San Antonio, TX: Pearson 

Education; 2007. 

Edwards JR, Beckman ME. 2008; Some cross-linguistic evidence for modulation of implicational 

universals by language-specific frequency effects in phonological development. Language Learning 

and Development. 4(2):122–156. DOI: 10.1080/15475440801922115 [PubMed: 19890438] 

Edwards JR, Gross M, Chen J, MacDonald MC, Kaplan D, Brown M, Seidenberg MS. 2014; Dialect 

awareness and lexical comprehension of mainstream American English in African American 

English-speaking children. Journal of Speech, Language, and Hearing Research. 57(5):1883–1895. 

DOI: 10.1044/2014_JSLHR-L-13-0228

Fenson, L, Marchman, VA, Thal, DJ, Dale, PS, Reznick, JS, Bates, E. MacArthur-Bates 

Communicative Development Inventories: User’s guide and technical manual. 2nd. Baltimore, 

MD: Brookes; 2007. 

Fernald A, Marchman VA. 2012; Individual differences in lexical processing at 18 months predict 

vocabulary growth in typically developing and late-talking toddlers. Child Development. 83(1):

203–222. DOI: 10.1111/j.1467-8624.2011.01692.x [PubMed: 22172209] 

Ford, M, Baer, CT, Xu, D, Yapanel, U, Gray, S. The LENA™ language environment analysis system: 

Audio specifications of the DLP-0121 (Technical report LTR-032). Boulder, CO: LENA 

Foundation; 2008. Retrieved from http://www.lenafoundation.org/customer-resources/technical-

reports/

Frank MC, Braginsky M, Yurovsky D, Marchman VA. 2016; Wordbank: An open repository for 

developmental vocabulary data. Journal of Child Language. doi: 10.1017/S0305000916000209

Gelman A, Stern H. 2006; The difference between “significant” and “not significant” is not itself 

statistically significant. The American Statistician. 60(4):328–331. DOI: 

10.1198/000313006X152649

Gioia, GA, Espy, KA, Isquith, PK. Behavior Rating Inventory of Executive Function - Preschool 

Version. Odessa, FL: Psychological Assessment Resources; 2003. 

Goldman, R, Fristoe, M. Goldman-Fristoe Test of Articulation. Second. Minneapolis, MN: Pearson; 

2000. 

Hart, B, Risley, TR. Meaningful differences in the everyday experience of young American children. 

Baltimore: P.H Brookes; 1995. 

Hoff E. 2003; The specificity of environmental influence: Socioeconomic status affects early 

vocabulary development via maternal speech. Child Development. 74(5):1368–1378. DOI: 

10.1111/1467-8624.00612 [PubMed: 14552403] 

Hoff E. 2006; How social contexts support and shape language development. Developmental Review. 

26(1):55–88. DOI: 10.1016/j.dr.2005.11.002

Huang YT, Snedeker J. 2011; Cascading activation across levels of representation in children’s lexical 

processing. Journal of Child Language. 38(03):644–661. DOI: 10.1017/S0305000910000206 

[PubMed: 20738890] 

Mahr and Edwards Page 17

Dev Sci. Author manuscript; available in PMC 2019 November 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t

http://www.lenafoundation.org/customer-resources/technical-reports/
http://www.lenafoundation.org/customer-resources/technical-reports/


Hurtado N, Marchman VA, Fernald A. 2008; Does input influence uptake? Links between maternal 

talk, processing speed and vocabulary size in Spanish-learning children. Developmental Science. 

11(6):F31–9. DOI: 10.1111/j.1467-7687.2008.00768.x [PubMed: 19046145] 

Huttenlocher J, Haight W, Bryk A, Seltzer M, Lyons T. 1991; Early vocabulary growth: Relation to 

language input and gender. Developmental Psychology. 27(2):236–248. DOI: 

10.1037/0012-1649.27.2.236

Junge C, Cutler A. 2014; Early word recognition and later language skills. Brain Sciences. 4(4):532–

559. DOI: 10.3390/brainsci4040532 [PubMed: 25347057] 

Kruschke JK, Liddell TM. 2017; The Bayesian New Statistics: Hypothesis testing, estimation, meta-

analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin & Review. :1–29. 

DOI: 10.3758/s13423-016-1221-4 [PubMed: 27368622] 

Kuhl PK, Conboy BT, Coffey-Corina S, Padden D, Rivera-Gaxiola M, Nelson T. 2008; Phonetic 

learning as a pathway to language: New data and native language magnet theory expanded (NLM-

e). Philosophical Transactions of the Royal Society B: Biological Sciences. 363(1493):979–1000. 

DOI: 10.1098/rstb.2007.2154

Lany J. 2017; Lexical-processing efficiency leverages novel word learning in infants and toddlers. 

Developmental Science. :e12569.doi: 10.1111/desc.12569 [PubMed: 28597549] 

Law F II, Edwards JR. 2015; Effects of vocabulary size on online lexical processing by preschoolers. 

Language Learning and Development. 11(4):331–355. DOI: 10.1080/15475441.2014.961066 

[PubMed: 26508903] 

Law F II, Mahr T, Schneeberg A, Edwards JR. 2016; Vocabulary size and auditory word recognition in 

preschool children. Applied Psycholinguistics. doi: 10.1017/S0142716416000126

LENA Foundation. LENA Pro user guide. 2015. Retrieved from https://shop.lena.org/pages/download-

center

Lidz J, Gagliardi A. 2015; How nature meets nurture: Universal grammar and statistical learning. 

Annual Review of Linguistics. 1(1):333–353. DOI: 10.1146/annurev-linguist-030514-125236

Marchman VA, Bates E. 1994; Continuity in lexical and morphological development: A test of the 

critical mass hypothesis. Journal of Child Language. 21(02):339–366. DOI: 10.1017/

S0305000900009302 [PubMed: 7929685] 

Marchman VA, Fernald A. 2008; Speed of word recognition and vocabulary knowledge in infancy 

predict cognitive and language outcomes in later childhood. Developmental Science. 11(3):F9–16. 

DOI: 10.1111/j.1467-7687.2008.00671.x [PubMed: 18466367] 

McMurray B, Samelson VM, Lee SH, Tomblin JB. 2010; Individual differences in online spoken word 

recognition: Implications for SLI. Cognitive Psychology. 60(1):1–39. DOI: 10.1016/j.cogpsych.

2009.06.003 [PubMed: 19836014] 

Mirman, D. Growth curve analysis and visualization using R. Boca Raton, FL: Chapman & Hall/CRC; 

2014. 

Newman RS, Rowe ML, Bernstein Ratner N. 2015; Input and uptake at 7 months predicts toddler 

vocabulary: The role of child-directed speech and infant processing skills in language 

development. Journal of Child Language. :1–16. DOI: 10.1017/S0305000915000446

Nosek, BA; Simonsohn, U; Moore, DA; Nelson, LD; Simmons, JP; Sallans, A; LeBel, EP. Standard 

reviewer statement for disclosure of sample, conditions, measures, and exclusions. Open Science 

Framework. 2014. Feb, Retrieved from https://osf.io/hadz3

Paul R. 1993; Patterns of development in late talkers: Preschool years. Journal of Childhood 

Communication Disorders. 15(1):7–14. DOI: 10.1177/152574019301500103

Rescorla L. 2009; Age 17 language and reading outcomes in late-talking toddlers: Support for a 

dimensional perspective on language delay. Journal of Speech, Language, and Hearing Research. 

52:16–30. DOI: 10.1044/1092-4388(2008/07-0171)

Rescorla L, Mirak J, Singh L. 2000; Vocabulary growth in late talkers: Lexical development from 2;0 

to 3;0. Journal of Child Language. 27(2):293–311. [PubMed: 10967889] 

Rowe ML. 2012; A longitudinal investigation of the role of quantity and quality of child-directed 

speech in vocabulary development. Child Development. 83(5):1762–1774. DOI: 10.1111/j.

1467-8624.2012.01805.x [PubMed: 22716950] 

Mahr and Edwards Page 18

Dev Sci. Author manuscript; available in PMC 2019 November 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t

https://shop.lena.org/pages/download-center
https://shop.lena.org/pages/download-center
https://osf.io/hadz3


Rowe ML, Raudenbush SW, Goldin-Meadow S. 2012; The pace of vocabulary growth helps predict 

later vocabulary skill. Child Development. 83(2):508–525. DOI: 10.1111/j.

1467-8624.2011.01710.x [PubMed: 22235920] 

Rvachew S. 2006; Longitudinal predictors of implicit phonological awareness skills. American Journal 

of Speech-Language Pathology. 15(2):165–176. DOI: 10.1044/1058-0360(2006/016) [PubMed: 

16782688] 

Scarborough, HS. Connecting early language and literacy to later reading (dis)abilities: Evidence, 

theory, and practice. In: Fletcher-Campbell, F, Soler, J, Reid, G, editorsApproaching difficulties in 

literacy development: Assessment, pedagogy, and programmes. London: SAGE; 2009. 23–39. 

Senechal M. 2006; Testing the home literacy model: Parent involvement in kindergarten is 

differentially related to grade 4 reading comprehension, fluency, spelling, and reading for pleasure. 

Scientific Studies of Reading. 10(1):59–87. DOI: 10.1207/s1532799xssr1001_4

Shankar, M. Empowering our children by bridging the word gap. Blog. 2014. Jun, Retrieved from 

https://www.whitehouse.gov/blog/2014/06/25/empowering-our-children-bridging-word-gap

Tsao FM, Liu HM, Kuhl PK. 2004; Speech perception in infancy predicts language development in the 

second year of life: A longitudinal study. Child Development. 75(4):1067–1084. DOI: 10.1111/j.

1467-8624.2004.00726.x [PubMed: 15260865] 

Vehtari A, Gelman A, Gabry J. 2017; Practical Bayesian model evaluation using leave-one-out cross-

validation and WAIC. Statistics and Computing. 27(5):1413–1432. DOI: 10.1007/

s11222-016-9696-4

Wagenmakers EJ, Farrell S. 2004; AIC model selection using Akaike weights. Psychonomic Bulletin 

& Review. 11(1):192–196. DOI: 10.3758/BF03206482 [PubMed: 15117008] 

Wagner, R, Torgesen, J, Rashotte, C, Pearson, NA. Comprehensive Test of Phonological Processing. 

Second. Austin, TX: PRO-ED; 2013. 

Walley AC, Metsala JL, Garlock VM. 2003; Spoken vocabulary growth: Its role in the development of 

phoneme awareness and early reading ability. Reading and Writing. 16(1):5–20. DOI: 10.1023/A:

1021789804977

Weisleder A, Fernald A. 2013; Talking to children matters: Early language experience strengthens 

processing and builds vocabulary. Psychological Science. 24(11):2143–52. DOI: 

10.1177/0956797613488145 [PubMed: 24022649] 

Williams, KT. Expressive Vocabulary Test. Second. San Antonio, TX: Pearson Education; 2007. 

Woodcock, RW, McGrew, KS, Mather, N. Woodcock-Johnson III. Itasca, IL: Riverside Publishing; 

2001. 

Mahr and Edwards Page 19

Dev Sci. Author manuscript; available in PMC 2019 November 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t

https://www.whitehouse.gov/blog/2014/06/25/empowering-our-children-bridging-word-gap


Research highlights

• We examine how home language input and word recognition efficiency at 28–

39 months predict vocabulary size one year later.

• Word recognition efficiency does not constrain the effect of home language 

input on word learning at this age.

• Receptive vocabulary is more sensitive to variability in language input and 

lexical processing than expressive vocabulary.
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Figure 1. 

Spaghetti plot of raw individual accuracy growth curves for 109 participants. Each light line 

represents the observed proportion of looks to the target image over time for one participant. 

The darker line represents the average of the growth curves.
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Figure 2. 

Model-fitted accuracy growth curves for participants grouped by linear-time coefficients. 

Participants were divided into tertiles. Light lines represent model-estimated growth curves 

for individual children and dark lines represent the average of growth curves within each 

facet.
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Figure 3. 

Regression models for expressive vocabulary. The heavy line in each plot represents the 

median of the posterior distribution of the model. Light lines represent 500 random draws 

from the posterior. The lines are included to depict uncertainty of the modeled relationship.
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Figure 4. 

Regression models for receptive vocabulary. The heavy line in each plot represents the 

median of the posterior distribution of the model. Light lines represent 500 random draws 

from the posterior. The lines are included to depict uncertainty of the modeled relationship.
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Figure 5. 

Posterior median and 95% and 90% uncertainty intervals for the vocabulary effects and 

effect differences.
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Table 1

Summary statistics for Time 1 and Time 2 (N = 109).

Time Measure Mean SD Range

1 Age (months) 32.9 3.4 28–39

Hourly Adult Word Count 1207.0 467.6 112–2531

Exp. Vocab. (EVT-2 GSVs) 118.9 11.6 81–148

Exp. Vocab. (EVT-2 Standard) 118.4 14.2 81–160

Rec. Vocab. (PPVT-4 GSVs) 109.2 16.6 70–151

Rec. Vocab. (PPVT-4 Standard) 116.0 15.6 84–153

2 Age (months) 45.1 3.5 39–52

Exp. Vocab. (EVT-2 GSVs) 136.4 11.4 105–158

Exp. Vocab. (EVT-2 Standard) 119.8 14.6 80–155

Rec. Vocab. (PPVT-4 GSVs) 131.4 14.3 93–160

Rec. Vocab. (PPVT-4 Standard) 121.8 13.9 90–151
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Table 2

Correlations among Time 1 measurements.

Age (months) EVT-2 GSVs PPVT-4 GSVs Processing efficiency

EVT-2 GSVs .40

PPVT-4 GSVs .50 .79

Processing efficiency .31 .53 .47

Hourly adult word count −.12 .34 .24 .24
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Table 3

Model comparisons for expressive vocabulary.

Predictors WAIC ± SE Akaike Weight

T1 205.1 ± 14.5 .388

T1 + Processing 205.6 ± 14.9 .301

T1 + Input 207.2 ± 14.4 .138

T1 + Input + Processing 207.3 ± 14.8 .127

T1 + Input + Processing + (Input × Processing) 209.4 ± 14.8 .046

Input + Processing 283.3 ± 14.6 .000
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Table 4

Model comparisons for receptive vocabulary.

Predictors WAIC ± SE Akaike Weight

T1 + Input + Processing 206.8 ± 15.7 .516

T1 + Input + Processing + (Input × Processing) 207.9 ± 15.2 .303

T1 + Processing 209.1 ± 14.7 .170

T1 + Input 214.8 ± 15.7 .009

T1 218.8 ± 14.8 .001

Input + Processing 272.0 ± 14.9 .000
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