
Using language models
for information retrieval

Djoerd Hiemstra



Samenstelling van de promotiecommissie:
Prof. dr. F.M.G. de Jong, promotor
Prof. dr. ir. A. Nijholt
Prof. S.E. Robertson, City University, London
Prof. ir. S.P.J. Landsbergen, Unversiteit Utrecht
Prof. dr. P.M.G. Apers
Dr. W.C.M. Kallenberg
Prof. dr. P.J. Gellings, voorzitter/secretaris

Copyright c© 2000 Djoerd Hiemstra, Enschede, The Netherlands
Printed by: Grafisch Centrum Twente
Cover photo by: Ursula Timmermans
Second printing, January 2001

Taaluitgeverij Neslia Paniculata
Uitgeverij voor Lezers en Schrijvers van Talige Boeken
Nieuwe Schoolweg 28, 7514 CG Enschede, The Netherlands

CTIT Ph.D. Thesis Series No. 01-32
Centre for Telematics and Information Technology
P.O. Box 217, 7500 AE Enschede, The Netherlands

CIP GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Hiemstra, Djoerd

Using Language Models for Information Retrieval
D. Hiemstra - Enschede: Neslia Paniculata. -I11
Thesis Enschede - With ref. - With summary
ISBN 90-75296-05-3
ISSN 1381-3617; No. 01-32 (CTIT Ph.D. Thesis Series)
Subject headings: information retrieval, natural language processing



USING LANGUAGE MODELS
FOR INFORMATION RETRIEVAL

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof. dr. F.A. van Vught,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op vrijdag 19 januari 2001 te 16.45 uur.

door

Djoerd Hiemstra

geboren op 20 februari 1971
te Zwolle



Dit proefschrift is goedgekeurd door de promotor,
prof. dr. F.M.G. de Jong.



One, and two, and three police persons spring out of the shadows
Down the corner comes one more

And we scream into that city night: “three plus one makes four!”
Well, they seem to think we’re disturbing the peace

But we won’t let them make us sad
’Cause kids like you and me baby, we were born to add

Born To Add, Sesame Street
(sung to the tune of Bruce Springsteen’s Born to Run)



to Ursula



Preface

In October 1996, I got a position as a research assistant working on the Twenty-
One project. The project aimed at providing a software architecture that sup-
ports a multilingual community of people working on local Agenda 21 initiatives
in exchanging ideas and publishing their work. Local Agenda 21 initiatives are
projects of local governments, aiming at sustainable processes in environmen-
tal, human, and economic terms. The projects cover themes like combating
poverty, protecting the atmosphere, human health, freshwater resources, waste
management, education, etc. Documentation on local Agenda 21 initiatives are
usually written in the language of the local government, very much unlike doc-
umentation on research in e.g. information retrieval for which English is the
language of international communication. Automatic cross-language retrieval
systems are therefore a helpful tool in the international cooperation between
local governments. Looking back, I regret not being more involved in the non-
technical aspects of the Twenty-One project. To make up for this loss, many of
the examples in this thesis are taken from the project’s domain.

Working on the Twenty-One project convinced me that solutions to cross-
language information retrieval should explicitly combine translation models and
retrieval models into one unifying framework. Working in a language technol-
ogy group, the use of language models seemed a natural choice. A choice that
simplifies things considerably for that matter. The use of language models for
information retrieval practically reduces ranking to simply adding the occur-
rences of terms: complex weighting algorithms are no longer needed. “Born
to add” is therefore the motto of this thesis. By adding out loud, it hopefully
annoys - no offence, and with all due respect - some of the well-established in-
formation retrieval approaches, like Bruce Stringbean and The Sesame Street
Band annoys the Sesame Street police.

Acknowledgements

The research presented in this thesis is funded in part by the European Union
projects Twenty-One, Pop-Eye and Olive, and the Telematics Institute project
Druid. I am most grateful to Wessel Kraaij of TNO-TPD for our cooperation in
these projects, for our cooperation in four years of joined TREC-participations,
and for implementing the language model algorithms in the TNO retrieval en-

i



ii PREFACE

gine. Arjen de Vries did some remarkable things too. Notably, he still calls the
model’s probabilities “beliefs”, illustrating the relativity of academic discussion,
but I am mostly in his debt for implementing the language model algorithms in
the Mirror DBMS, and for doing many of the experiments reported in chapter
5. Many thanks go to people who did some of the odd jobs that need to be
done: Lynn Packwood did the manual disambiguation of the English queries,
Thijs Westerveld implemented the interface on the corpus dictionary, Rudie
Ekkelenkamp of TNO-TPD did the “high initial threshold” adaptive filtering
experiments, and Dirk Heylen selflessly read the proofs of the manuscript.

This thesis would not have been written without the support of Franciska
de Jong, Anton Nijholt and Wilbert Kallenberg. Both Franciska and Anton
have created an open and friendly research environment, in which they leave
their doors open, in which there is room for cooperation with other groups, and
in which there is always support to visit distant conferences and workshops.
Wilbert Kallenberg of the Faculty of Mathematical Sciences of our university
played a major role in the development of the theory presented in this thesis.
I would particularly like to thank him for several long brainstorm sessions,
in which he convinced me to think as a ‘frequencist’. I am honoured that
Peter Apers, Paul Gellings, Jan Landsbergen, and Stephen Robertson agreed
to complete the commission.

Special thanks go to Stephen Robertson, for making a three month internship
at Microsoft Research in Cambridge possible. This thesis benefited a lot from
my stay in Cambridge. I very much appreciate the help I got from Stephen
Walker, Mark Hatton and David Elworthy.

Last but not least I would like to thank colleagues, family, friends, and
“noabers” for forcing me to have lunch, for being patient and supportive, and
just for showing interest.

Enschede, December 2000



Contents

1 Introduction 1
1.1 An introduction to information retrieval . . . . . . . . . . . . . . 1

1.1.1 A definition . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Basic processes of information retrieval . . . . . . . . . . 3

1.2 Mathematical models of information retrieval . . . . . . . . . . . 4
1.2.1 Automatic formulation of the initial query . . . . . . . . . 5
1.2.2 Research questions . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Overview of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Information retrieval modelling 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Models as means for discussion . . . . . . . . . . . . . . . 9
2.1.2 Models as a blueprint to build a system . . . . . . . . . . 10
2.1.3 Three problems that models of IR have to solve . . . . . . 11

2.2 The Boolean model: model of models . . . . . . . . . . . . . . . . 12
2.2.1 Advantages of the Boolean model . . . . . . . . . . . . . . 13
2.2.2 Disadvantages of the Boolean model . . . . . . . . . . . . 13
2.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Models of ranked retrieval . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Early approaches . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 The vector space model . . . . . . . . . . . . . . . . . . . 15
2.3.3 The probabilistic model . . . . . . . . . . . . . . . . . . . 18
2.3.4 Fuzzy set models . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.5 The p-norm extended Boolean model . . . . . . . . . . . . 23
2.3.6 The 2-Poisson model . . . . . . . . . . . . . . . . . . . . . 24
2.3.7 An extension of the probabilistic model . . . . . . . . . . 25
2.3.8 Bayesian network models . . . . . . . . . . . . . . . . . . 26

2.4 Term weighting experiments . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 idf weighting . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Probabilistic weighting . . . . . . . . . . . . . . . . . . . . 30
2.4.3 tf .idf weighting in the Smart system . . . . . . . . . . . . 31
2.4.4 Linear combinations of relevance clues . . . . . . . . . . . 33
2.4.5 Term weighting in the Inquery system . . . . . . . . . . . 33
2.4.6 Term weighting in the Okapi system . . . . . . . . . . . . 34

iii



iv CONTENTS

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Today’s information retrieval systems in practice 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Automatic query systems . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Tokenisation . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Stop word removal . . . . . . . . . . . . . . . . . . . . . . 39
3.2.3 Morphological normalisation . . . . . . . . . . . . . . . . 39
3.2.4 Phrase extraction . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.5 Compound splitting . . . . . . . . . . . . . . . . . . . . . 41
3.2.6 Synonym normalisation . . . . . . . . . . . . . . . . . . . 41

3.3 Operators for manual query formulation . . . . . . . . . . . . . . 42
3.3.1 Standard Boolean operators: AND, OR, NOT . . . . . . . 42
3.3.2 Proximity searching: ADJ, NEAR . . . . . . . . . . . . . . 43
3.3.3 Wildcards . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.4 Natural language search . . . . . . . . . . . . . . . . . . . 45
3.3.5 Field search . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 A language model-based information retrieval system 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 A short history of language models . . . . . . . . . . . . . 49
4.1.2 The application to information retrieval . . . . . . . . . . 50
4.1.3 Two models of information retrieval processes . . . . . . . 50
4.1.4 How the system works . . . . . . . . . . . . . . . . . . . . 52
4.1.5 The query formulation model . . . . . . . . . . . . . . . . 52
4.1.6 The matching model . . . . . . . . . . . . . . . . . . . . . 53
4.1.7 An ideal user . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.8 An overview of this chapter . . . . . . . . . . . . . . . . . 54

4.2 The basic retrieval model . . . . . . . . . . . . . . . . . . . . . . 54
4.2.1 Defining the probability space . . . . . . . . . . . . . . . . 54
4.2.2 Conditional independence assumptions . . . . . . . . . . . 55
4.2.3 Definition of the probability mechanism . . . . . . . . . . 56
4.2.4 Alternative definitions . . . . . . . . . . . . . . . . . . . . 56
4.2.5 Unknown parameters . . . . . . . . . . . . . . . . . . . . . 57

4.3 The extended retrieval model . . . . . . . . . . . . . . . . . . . . 58
4.3.1 Adding statistical translation . . . . . . . . . . . . . . . . 58
4.3.2 Statistical translation in practice . . . . . . . . . . . . . . 59
4.3.3 An extension of strict Boolean retrieval . . . . . . . . . . 59
4.3.4 On-line morphological expansion using a stemmer . . . . 60
4.3.5 Expansion with synonyms and related terms . . . . . . . 60
4.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.7 Extension of the Boolean NOT . . . . . . . . . . . . . . . 62

4.4 Importance of query terms . . . . . . . . . . . . . . . . . . . . . . 63
4.4.1 Simplified notations . . . . . . . . . . . . . . . . . . . . . 63
4.4.2 Relevance weighting . . . . . . . . . . . . . . . . . . . . . 64



v

4.4.3 Ranging from exact matching to stopping . . . . . . . . . 67
4.4.4 Coordination level ranking . . . . . . . . . . . . . . . . . 68
4.4.5 Relation to previous work . . . . . . . . . . . . . . . . . . 69

4.5 Presentation as a hidden Markov model . . . . . . . . . . . . . . 70
4.5.1 The basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5.2 Left-right models . . . . . . . . . . . . . . . . . . . . . . . 71
4.5.3 Application of hidden Markov model theory . . . . . . . . 72
4.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Presentation as a Bayesian network . . . . . . . . . . . . . . . . . 73
4.6.1 The basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.7 From probability measure to weighting algorithm . . . . . . . . . 75
4.7.1 Relation to tf.idf and relevance weighting . . . . . . . . . 75
4.7.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.7.3 A presence weighting algorithm for structured queries . . . 78
4.7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.8 Two extensions: record fields and proximity . . . . . . . . . . . . 80
4.8.1 Three -or more- levels of importance . . . . . . . . . . . . 80
4.8.2 Field searches . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.8.3 Adjacent terms . . . . . . . . . . . . . . . . . . . . . . . . 81
4.8.4 Near terms . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.8.5 Relation to strict Boolean searching . . . . . . . . . . . . 82

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Experimental results 83
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Determining the model’s optimum setting . . . . . . . . . . . . . 84

5.2.1 Exploring four ways of specifying the probabilities . . . . 84
5.2.2 Determining a value for λ . . . . . . . . . . . . . . . . . . 85
5.2.3 A prediction interval for λ? . . . . . . . . . . . . . . . . . 86
5.2.4 Choosing a test system . . . . . . . . . . . . . . . . . . . 89

5.3 Evaluation results . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.1 Comparing results of two algorithms . . . . . . . . . . . . 89
5.3.2 Results on the ad hoc task . . . . . . . . . . . . . . . . . 90
5.3.3 Results of relevance weighting . . . . . . . . . . . . . . . . 91
5.3.4 Results on Boolean-structured queries . . . . . . . . . . . 93

5.4 Some reflection on the alternative versions . . . . . . . . . . . . . 94
5.4.1 Document length correction . . . . . . . . . . . . . . . . . 95
5.4.2 Collection vs. document frequencies . . . . . . . . . . . . 95

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Cross-language information retrieval 97
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1.1 Disambiguation strategies . . . . . . . . . . . . . . . . . . 98
6.1.2 A model of cross-language information retrieval . . . . . . 99

6.2 Document translation vs. query translation . . . . . . . . . . . . 99



vi CONTENTS

6.3 Methods for query translation . . . . . . . . . . . . . . . . . . . . 100
6.3.1 Using one translation per query term . . . . . . . . . . . . 101
6.3.2 Using unstructured queries . . . . . . . . . . . . . . . . . 101
6.3.3 Using structured queries . . . . . . . . . . . . . . . . . . . 102

6.4 Heuristics and statistics for disambiguation . . . . . . . . . . . . 103
6.4.1 Dictionary preferred translation . . . . . . . . . . . . . . . 103
6.4.2 Pseudo frequencies . . . . . . . . . . . . . . . . . . . . . . 103
6.4.3 Frequencies from parallel corpora . . . . . . . . . . . . . . 104
6.4.4 Context for disambiguation . . . . . . . . . . . . . . . . . 104
6.4.5 Manual disambiguation . . . . . . . . . . . . . . . . . . . 105
6.4.6 Other information . . . . . . . . . . . . . . . . . . . . . . 106

6.5 Experimental setup and results . . . . . . . . . . . . . . . . . . . 106
6.5.1 One translation runs . . . . . . . . . . . . . . . . . . . . . 107
6.5.2 Unstructured query runs . . . . . . . . . . . . . . . . . . . 108
6.5.3 Structured query runs . . . . . . . . . . . . . . . . . . . . 109
6.5.4 Some post-hoc experiments . . . . . . . . . . . . . . . . . 110
6.5.5 Pool validation . . . . . . . . . . . . . . . . . . . . . . . . 111

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Adaptive Information Filtering 113
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.1.1 Filtering systems . . . . . . . . . . . . . . . . . . . . . . . 113
7.1.2 The utility of a filtering system . . . . . . . . . . . . . . . 114

7.2 A prototype adaptive filtering system . . . . . . . . . . . . . . . 115
7.2.1 The background corpus . . . . . . . . . . . . . . . . . . . 115
7.2.2 Setting the initial threshold . . . . . . . . . . . . . . . . . 115
7.2.3 Threshold adaptation . . . . . . . . . . . . . . . . . . . . 116
7.2.4 Relevance weighting of query terms . . . . . . . . . . . . . 116

7.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.3.1 Evaluation setup . . . . . . . . . . . . . . . . . . . . . . . 117
7.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8 Conclusions 121
8.1 Contributions to information retrieval theory . . . . . . . . . . . 121

8.1.1 The basic model and term weighting . . . . . . . . . . . . 121
8.1.2 Importance of query terms and relevance feedback . . . . 122
8.1.3 The extended model and structured queries . . . . . . . . 123
8.1.4 Hidden Markov models and Bayesian networks . . . . . . 124

8.2 Automatic query formulation . . . . . . . . . . . . . . . . . . . . 124
8.2.1 Advanced search facilities for free text . . . . . . . . . . . 124
8.2.2 Natural language processing . . . . . . . . . . . . . . . . . 125

8.3 Evaluation results . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.3.1 Retrieval performance on standard tasks . . . . . . . . . . 126
8.3.2 Cross-language information retrieval . . . . . . . . . . . . 127
8.3.3 Adaptive information filtering . . . . . . . . . . . . . . . . 127



vii

8.4 Discussion and recommendations . . . . . . . . . . . . . . . . . . 128
8.4.1 Development of a query language . . . . . . . . . . . . . . 128
8.4.2 Experimentation . . . . . . . . . . . . . . . . . . . . . . . 129
8.4.3 Linguistically motivated document representations . . . . 129

A Evaluation methodology 131
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.2 Test collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.2.1 TREC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
A.2.2 Assumptions about relevance . . . . . . . . . . . . . . . . 132
A.2.3 The document judgements pool . . . . . . . . . . . . . . . 133

A.3 Evaluation measures . . . . . . . . . . . . . . . . . . . . . . . . . 134
A.3.1 Precision at fixed recall levels . . . . . . . . . . . . . . . . 134
A.3.2 Precision at fixed points in the ranked list . . . . . . . . . 135
A.3.3 Average precision over ranks of relevant documents . . . . 136

A.4 Significance tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B Coordination level ranking 139

C Raw evaluation results 141

Bibliography 150

Index 161

Summary / Samenvatting 163



viii CONTENTS



Chapter 1

Introduction

This book introduces a new probabilistic model of information retrieval. This
chapter opens with a definition of information retrieval, the introduction of the
technical vocabulary used throughout the thesis, and the the theoretical and prac-
tical problems this thesis tries to solve. The chapter concludes by giving an
overview of this thesis in section 1.3. Background to the research questions is
given in chapters 2 and 3. Readers who want skip the introductory chapters are
referred to chapter 4, which describes the new probabilistic model.

1.1 An introduction to information retrieval

Does information retrieval still need an introduction today? This book being
a Ph.D. thesis, it is quite probable that you, as a reader, are already familiar
with the subject. But even if you are reading this book for entertainment only,
e.g. because you are a member of the author’s family, chances are that you are
an experienced user of information retrieval systems as well. Surveys show that
about 85 % of the users of the internet use search engines to find information
(Lawrence and Giles 1999). Internet search engines support the classical inter-
active information retrieval dialogue of entering a query, retrieving references
to documents, inspecting some documents, reformulating the query, etc. People
use search engines for instance to locate and buy goods, to choose a vacation
destination, to select a medical treatment or to find background information on
candidates of an election. A good indication of the impact of search engines
and information retrieval technology on ordinary people’s lifes can be found
in common language. If a technology is important enough, many people will
adopt the discipline’s technical vocabulary and new words eventually end up
in official dictionaries. For the author’s native language, Dutch, information
retrieval technology already left its traces in the standard language. In their
latest edition, the Van Dale dictionary (Geerts and den Boon 1999) considers
the Dutch word “zoekmachine” (search engine) and the originally English word
“query” to be part of everyday Dutch.

1



2 CHAPTER 1. INTRODUCTION

Before the world wide web emerged, information storage and retrieval sys-
tems were almost exclusively used by professional indexers and searchers, e.g.
for medical research, in libraries, by governmental organisations and archives.
Typically, professional searchers act as ‘search intermediaries’ for end users or
customers. They try to figure out in an interactive dialogue with the system and
the customer what it is the customer needs, and how this information should
be used in a successful search. Professional users differ from non-professional
users because they know the collection, they know how documents in the col-
lection are represented in the system, and they know how to use Boolean search
operators to control the number of retrieved documents.1

Many modern information retrieval systems, like internet search engines,
are specifically designed for users who are not familiar with the collection, the
representation of the documents, and the use of Boolean operators. The main
requirements for these systems are the following. Firstly, users should be able
to enter any natural language word(s), phrase(s) or sentence(s) to the system,
without the need to enter operators. This usually implies a full text informa-
tion retrieval system, which is a system that potentially indexes every word
in a document automatically. Secondly, the system should rank the retrieved
documents by their estimated degree or probability of usefulness for the user.
Thirdly, though maybe not as important as the first two, the system should sup-
port the automatic reformulation of the search statement from user feedback.
These three requirements form the basis of the research presented in this thesis.

The following sections introduce the discipline of information retrieval and
the technical vocabulary used throughout this thesis.

1.1.1 A definition

The discipline of information retrieval is almost as old as the computer itself.
An old, if not the eldest, definition of information retrieval is the following by
Mooers (1950) (recited from Savino and Sebastiani 1998).

Information retrieval is the name of the process or method whereby
a prospective user of information is able to convert his need for
information into an actual list of citations to documents in storage
containing information useful to him.

An information retrieval system is a software programme that stores and man-
ages information on documents. The system assists users in finding the in-
formation they need. Unlike so-called question answering systems (Voorhees
2000), the system does not explicitly return information or answer questions.
Instead, it informs on the existence and location of documents that might con-
tain the needed information. Some suggested documents will, hopefully, satisfy
the user’s information need. These documents are called relevant documents.
A perfect retrieval system would retrieve only the relevant documents and no

1Until recently, most commercial systems used the Boolean query operators AND, OR,
and NOT; see section 2.2.



1.1. AN INTRODUCTION TO INFORMATION RETRIEVAL 3

irrelevant document. However, perfect retrieval systems do not exist and will
not exist because search statements are necessarily incomplete and relevance
depends on the subjective opinion of the user. Two users may pose the same
query to an information retrieval system and give different relevance judgements
on the retrieved documents.

1.1.2 Basic processes of information retrieval

There are three basic processes an information retrieval system has to support:
the representation of the content of the documents, the representation of the
user’s information need, and the comparison of the two representations. The
processes are visualised in figure 1.1 (Croft 1993). In the figure, squared boxes
represent data and rounded boxes represent processes.

Query

Representation

Information problem Documents

Representation

Comparison

Retrieved documentsFeedback

Indexed documents

Figure 1.1: Information retrieval processes (Croft 1993)

Representing the documents is usually called the indexing process. The pro-
cess takes place off-line, that is, the end user of the information retrieval system
is not directly involved. The indexing process results in a formal representation
of the document: the index representation or document representation. Often,
full text retrieval systems use a rather trivial algorithm to derive the index rep-
resentations, for instance an algorithm that identifies words in an English text
and puts them to lower case. The indexing process may include the actual stor-
age of the document in the system, but often documents are only stored partly,
for instance only title and abstract, plus information about the actual location
of the document.

The process of representing the information problem or need is often referred
to as the query formulation process. The resulting formal representation is the
query. In a broad sense, query formulation might denote the complete inter-



4 CHAPTER 1. INTRODUCTION

active dialogue between system and user, leading not only to a suitable query
but possibly also to a better understanding by the user of his/her information
need. In this thesis however, query formulation generally denotes the automatic
formulation of the query when there are no previously retrieved documents to
guide the search, that is, the formulation of the initial query. The automatic
formulation of successive queries is called relevance feedback in this thesis. The
user and the system communicate the information need by respectively queries
and retrieved sets of documents. This is not the most natural form of commu-
nication. Humans would use natural language to communicate the information
need amongst each other. Such a natural language statement of the information
need is called a request. Automatic query formulation inputs the request and
outputs an initial query. In practice, this means that some or all of the words
in the request are converted to query terms, for instance by the rather trivial
algorithm that puts words to lower case. Relevance feedback inputs a query or
a request and some previously retrieved relevant and non-relevant documents to
output a successive query. An example of the requests that were actually used
in the experiments reported in this book is given in figure A.1 of the appendix.

The comparison of the query against the document representations is also
called the matching process. The matching process results in a ranked list
of relevant documents. Users will walk down this document list in search of
the information they need. Ranked retrieval will hopefully put the relevant
documents somewhere in the top of the ranked list, minimising the time the user
has to invest on reading the documents. Simple but effective ranking algorithms
use the frequency distribution of terms over documents. For instance, the words
“family” and “entertainment” mentioned in the first section occur relatively
infrequent in the whole book, which indicates that this book should not receive
a top ranking for the request “family entertainment”. Ranking algorithms based
on statistical approaches easily halve the time the user has to spend on reading
documents.2 The development and evaluation of ranking algorithms is the major
theme of this book.

1.2 Mathematical models of information retrieval

A mathematical model of information retrieval guides the implementation of
information retrieval systems. In the traditional information retrieval systems,
which are usually operated by professional searchers, only the matching process
is automated; indexing and query formulation are manual processes. For these
systems, mathematical models of information retrieval therefore only have to
model the matching process. In practice, traditional information retrieval sys-
tems use the Boolean model of information retrieval. The Boolean model is
an exact matching model, that is, it either retrieves documents or not without
ranking them. The model supports the use of structured queries, which do not
only contain query terms, but also relations between the terms defined by the
query operators AND, OR and NOT.

2See for instance the experimental results in chapter 5.



1.2. MATHEMATICAL MODELS OF INFORMATION RETRIEVAL 5

In modern information retrieval systems, which are usually operated by non-
professional users, query formulation is automated as well. However, candidate
mathematical models for these systems still only model the matching process.
There are many candidate models for the matching process of ranked retrieval
systems. These models are so-called approximate matching models, that is,
they use the frequency distribution of terms over documents to compute the
ranking of the retrieved sets. Each of these models has its own advantages and
disadvantages. However, there are two classical candidate models for approxi-
mate matching: the vector space model and the probabilistic model. They are
classical models, not only because they were introduced already in the early
70’s, but also because they represent classical problems in information retrieval.
The vector space model represents the problem of ranking the documents given
the initial query. The probabilistic model represents the problem of ranking the
documents after some feedback is gathered.

From a practical point of view, the Boolean model, the vector space model
and the probabilistic model represent three classical problems of information
retrieval, respectively structured queries, initial term weighting, and relevance
feedback. The Boolean model provides the query operators AND, OR and NOT

to formulate structured queries. The vector space model was used by Salton
and his colleagues for hundreds of term weighting experiments in order to find
algorithms that predict which documents the user will find relevant given the
initial query (Salton and Buckley 1988).3 The probabilistic model, provides a
theory of optimum ranking if examples of relevant documents are available.4

The models are further described in chapter 2.
Two gaps in information retrieval theory are identified in this thesis. Firstly,

none of the existing models of information retrieval account for today’s top
performing ranking/term weighting algorithms. Secondly, none of the existing
models account for both structured queries and relevance feedback. Chapter 4
introduces a model of information retrieval that provides a well-motivated prob-
abilistic ranking algorithm which performs as well as, or better than, today’s
top-performing algorithms. An extension of the model integrates structured
queries and relevance feedback into one mathematical framework.

1.2.1 Automatic formulation of the initial query

The lack of mathematical models of the query formulation process is another
gap in information retrieval theory that is filled by the research presented in
this thesis. In practice, automatic query formulation, as used for the vector
space model or the probabilistic model, often includes basic tools like stop word
removal and stemming. Stop words are words in the request with little meaning,
mostly function words like “the” and “it”. Stemming conflates the words in the
request to their stem. For instance, the stemmer introduced by Porter (1980)
conflates the words “computer”, “compute” and “computation” to the stem

3A term weight is a value of the term’s importance in a query or a document.
4Examples of relevant documents, or information about the distribution of terms over

relevant and nonrelevant documents, is sometimes called ‘relevance information’ in this book.



6 CHAPTER 1. INTRODUCTION

comput. An explicit model of the query formulation process should somehow
give mathematical interpretations and descriptions of basic tools like stop word
removal and stemming, but also any other tool that converts request words into
query terms.

A model of the automatic query formulation process accounts for the fact
that the vocabulary of the user might differ from the vocabulary of the in-
dexed documents. This is sometimes called the paraphrase problem (Oard and
Dorr 1996). Obviously, if the vocabulary of the indexed documents consists of
stems, then the stemmer should also be used during query formulation. A less
obvious example is the situation in which the user request contains synonyms
of the words used in the relevant documents, for instance a request for doc-
uments about “nuclear energy”, where the relevant documents all contain the
words “atomic power”. An extreme version of the paraphrase problem is the
situation in which the language of the user request differs from the language
of the documents. For instance, the user states his/her request in Dutch, but
the documents are (indexed) in English. This is the problem of cross-language
retrieval, which is further addressed in chapter 6. For this example, automatic
query formulation results in a structured query, in which possible translations
are grouped appropriately.

1.2.2 Research questions

This thesis answers the following three research questions.

1. How to apply the theory of statistical language models to three classical
problems of matching models of information retrieval: initial term weight-
ing, relevance feedback and structured queries?

2. How to apply the theory of statistical language models to the automatic
formulation of structured queries from natural language search statements?

3. What can be said of the performance of the language model-based ap-
proach compared to the performance of well-established approaches?

1.3 Overview of this thesis

This book is organised as follows. Chapter 2 provides some background of the
first research question. The chapter gives an overview of the most influential
mathematical models that were proposed in information retrieval literature. It
shows that today’s top performing term weighting and ranking algorithms are
not so much based on these models and theories, but instead on intuitions,
approximations and on careful studies of the behaviour in test collections. Fur-
thermore, it shows that none of the existing models accounts for both relevance
feedback and structured queries.

Chapter 3 introduces the context of the second research question. The first
part of the chapter describes some standard approaches to automatic query term



1.3. OVERVIEW OF THIS THESIS 7

selection, like for instance stop word removal and stemming. The second part
of the chapter describes practical query operators for the manual formulation of
structured queries in modern information retrieval systems. The chapter shows
that many of the query term selection strategies and query operators are not
covered by any of the existing information retrieval models and theories.

Chapter 4 introduces a model of information retrieval based on the use of
statistical language models. This chapter provides answers to the first and sec-
ond research question above. It presents a theory of term weighting, relevance
weighting using the user’s feedback, and structured queries. It shows how nat-
ural language processing technology like for instance stemmers or translation
modules can be interpreted and integrated for automatic query formulation.
Finally, the chapter introduces a theory of advanced search facilities like prox-
imity search and field search.

By following the methodology described in appendix A, the chapters 5, 6 and
7 provide answers to the third research question by reporting on experimental
results. The basic search functionalities of the model are evaluated in chapter 5.
Chapters 6 and 7 show how the new model can be applied to two themes that
emerged recently: cross-language information retrieval and adaptive information
filtering. The application to cross-language retrieval shows a practical use of
the automatic formulation of structured queries. The application to adaptive
filtering shows a practical use of the relevance feedback algorithm.

Finally, chapter 8 concludes this book by summarising the research achieve-
ments, by reflecting on the suggested approach to information retrieval, and by
suggesting directions for future research.



8 CHAPTER 1. INTRODUCTION



Chapter 2

Information retrieval
modelling

A short history of information retrieval modelling is given. The first section in-
troduces the notion of mathematical models of information retrieval and explains
why it is important to have these models. Section 2.2 introduces the model of
exact match retrieval: the Boolean model. Section 2.3 contains a selection of
the most influential models of ranked retrieval. Many of these models need an
additional term weighting algorithm before they can be implemented. Section 2.4
gives a short history of term weighting.

2.1 Introduction

There are two good reasons for having models of information retrieval. The first
is that it guides research and provides the means for academic discussion. The
second reason is that models can serve as a blueprint to implement an actual
retrieval system.

2.1.1 Models as means for discussion

Mathematical models are used in many scientific areas with the objective to
understand and reason about some behaviour or phenomenon in the real world.
One might for instance think of a model of our solar system that predicts the
position of the planets on a particular date, or one might think of a model of the
world climate that predicts the temperature given the atmospheric emissions of
greenhouse gases. Webster’s new collegiate dictionary (Mish et al. 1983) gives
the following definition:

model a system of postulates, data and inferences presented as a
mathematical description of an entity or state of affairs

9



10 CHAPTER 2. INFORMATION RETRIEVAL MODELLING

A model of information retrieval predicts and explains what a user will find
relevant given the user query. It is essential that the correctness of the model’s
predictions can be tested in a controlled experiment. In order to do predic-
tions and reach a better understanding of information retrieval, models should
be firmly grounded in intuitions, metaphors and some branch of mathematics.
Intuitions are important because they help to get a model accepted as reason-
able by the research community. Metaphors are important because they help
to explain the implications of a model to a bigger audience. For instance, by
comparing the earth’s atmosphere with a greenhouse, non-experts will under-
stand the implications of certain models of the atmosphere. Mathematics are
essential to formalise a model, to ensure consistency, and to make sure that it
can be implemented in a real system.

2.1.2 Models as a blueprint to build a system

The ability to predict user behaviour does not necessarily imply a better un-
derstanding of it. There is a more pragmatic definition of the word model that
is probably more appropriate for information retrieval. A model of information
retrieval might also serve as a blueprint which is used to implement an actual
information retrieval system; according to Mish et al. (1983)

model a pattern of something to be made

Many of the ranking algorithms and techniques presented in this chapter have
the sole purpose that they should work. This goes especially for the term weight-
ing algorithms presented in section 2.4. Of course, such algorithms and models
have to fulfil certain constraints in order to be successful, that is, it has to be
possible to implement them by using one of the standard information retrieval
architectures for indexing and retrieval. One of those architectures is the in-
verted file architecture, which is currently the best choice for most applications.
For completeness, the data structures and access mechanisms of the inverted
file architecture will be briefly described here. Note however that mathematical
models should abstract away from the implementation details presented in the
next paragraph.

A naive approach to information retrieval would simply scan linearly through
a collection of documents in search for the needed information. Linear scanning
is appropriate when the collection is small, but for larger collections data struc-
tures are built over the text to speed up the retrieval process. An inverted file
is pretty much the same thing as an index you find in the back of a book that
lists index terms alphabetically together with the page numbers where they can
be found. Instead of page numbers, the inverted file structure usually lists a
document identifier, possibly together with the positions of the term in the doc-
ument or the weight of the term in the document. Usually, the data structure
is composed of two distinct substructures: the dictionary file containing the
vocabulary and the postings file containing the occurrences of the terms in the
collection (Harman et al. 1988; Baeza-Yates and Ribeiro-Neto 1999).



2.1. INTRODUCTION 11

2.1.3 Three problems that models of IR have to solve

Models should be judged on the discussion aspect and the blueprint aspect. A
model should be powerful in expressing complex information needs and accurate
in predicting which documents will be relevant, and it should be possible to
implement the model for full text information retrieval in such a way that it
uses a reasonable amount of storage space and produces an answer in reasonable
time, e.g. by using the inverted file architecture.

Because models serve as a vehicle for academic discussion, it is hard to give
an objective account of information retrieval modelling. For instance, the use
of the terms “solar system” and “greenhouse gases” in the examples above, al-
ready suggest the membership of a certain academic school. The same goes
inevitably for information retrieval models. Each model uses its own specific
vocabulary, which this chapter follows where possible and which is mixed with
the vocabulary introduced in section 1.1 if necessary for clarification. The in-
formation retrieval models are compared to each other in a rather informal way,
without an attempt to use mathematical considerations to present a taxonomy
as is done by for instance Baeza-Yates and Ribeiro-Neto (1999, chapter 2), or
meta-model as done by Huibers (1996). Mathematical considerations often blur
the purpose of models and the problems they try to solve. Three purposes and
problems are of special interest in this thesis.

1. term weighting, or better: models that do not simply assume the ex-
istence of a term weighting algorithm. The weight of a term is a value
of the importance of a term, of which many models simply assume the
existence. Term weighting is however not a trivial problem at all.

2. relevance feedback: Relevance feedback uses examples of relevant doc-
uments to improve the retrieval of other relevant documents.

3. structured queries: A structured query does not treat a query as a bag
of words, but defines relations between the query terms. For some models,
the support of structured queries also implies possibility to combine the
evidence from different sources.

The probabilistic model presented in section 2.3.3 is an example of a model that
addresses both term weighting and relevance feedback. The Bayesian networks
model presented in section 2.3.8 is an example of a model that addresses struc-
tured queries and the combination of evidence. Using mathematical considera-
tions, one might classify both models under probabilistic approaches, which is
not very helpful given the difference of the models from a practical perspective.

The following sections will describe a total of eight models of information re-
trieval rather extensively. Many more models were suggested in information re-
trieval literature, but the selection made in this chapter gives a rather complete
overview of the different approaches in terms of the three criteria mentioned
above. Section 2.3 presents seven models of ranked retrieval. Details concern-
ing term weighting are deferred to section 2.4. The next section presents the
Boolean model. This model gets its own section because strictly speaking it is



12 CHAPTER 2. INFORMATION RETRIEVAL MODELLING

more a model of data retrieval than a model of information retrieval, since the
model does not provide a ranking of the search results. The Boolean model also
deserves its own section because it served as a role model -yet another different
use of the word ‘model’- for many other approaches.

2.2 The Boolean model: model of models

The Boolean model is the first model of information retrieval and probably also
the most criticised model. The model can be explained by thinking of a query
term as a unambiguous definition of a set of documents. For instance, the query
term economic simply defines the set of all documents that are indexed with
the term economic. Using the operators of George Boole’s mathematical logic,
query terms and their corresponding sets of documents can be combined to form
new sets of documents. Boole defined three basic operators, the logical product
which will be called AND, the logical sum which will be called OR and the logical
difference which will be called NOT (Chowdhury 1998). Combining terms with
the AND operator will define a document set that is smaller than or equal to the
document sets of any of the single terms. For instance, the query social AND
economic will produce the set of documents that are indexed both with the term
social and the term economic. Combining terms with the OR operator will
define a document set that is bigger than or equal to the document sets of any
of the single terms. So, the query social OR political will produce the set of
documents that are indexed with either the term social or the term political,
or both. This is visualised in the Venn diagrams of figure 2.11 in which each set

social

economic

political

social AND economic

social political

economic

social OR political

social

economic

political

(social OR political)

   economic)
NOT (social AND

Figure 2.1: Three Boolean combinations of sets visualised as Venn diagrams

of documents is visualised by a disc. The intersections of these discs and their
complements divide the document collection into 8 non-overlapping regions, the
unions of which give 256 different Boolean combinations of ‘social, political and
economic documents’. In figure 2.1, the retrieved sets are visualised by the
shaded areas.

1Often, the NOT-operator is implemented as a logical difference instead of a set comple-
ment, requiring the use of A NOT B instead of A AND NOT B



2.2. THE BOOLEAN MODEL: MODEL OF MODELS 13

2.2.1 Advantages of the Boolean model

Although alternatives for the Boolean model have been around since the late
1960’s, the Boolean model was the leading model for commercial retrieval sys-
tems until the mid 1990’s. There are two main reasons for the predominance
of Boolean retrieval. Firstly, the model gives (expert) users a sense of control
over the system. It is immediately clear why a document has been retrieved
given a query. If the resulting document set is either too small or too big, it is
directly clear which operators will produce respectively a bigger or smaller set.
Secondly, the model can be extended with proximity operators and wildcard
operators in a mathematically sound way, which makes it a powerful candidate
for full text retrieval systems as well. Other, more practical, reasons for the
predominance of Boolean retrieval in commercial systems are the costs of major
changes in software and database structures and the fact that a client commu-
nity is trained on existing Boolean systems (Rasmussen 1999). The application
of the Boolean retrieval model in commercial applications will be addressed
further in chapter 3.

2.2.2 Disadvantages of the Boolean model

Especially for untrained users, the model has a number of clear disadvantages.
Its main disadvantage is that it does not provide a ranking of retrieved docu-
ments. The model either retrieves a document or not, which might lead to the
system making rather frustrating decisions. For instance, the query social AND
worker AND union will not retrieve a document indexed with party, birthday
and cake, but will likewise not retrieve a document indexed with social and
worker that lacks the term union. Clearly, it is probable that the latter docu-
ment is more useful than the former.

A second disadvantage is that the rigid difference between the Boolean AND

and OR operators does not exist between the natural language words ‘and’
and ‘or’. For instance, someone interested in ‘social’ and ‘political’ documents,
should enter the query social OR political to retrieve all possibly interesting
documents. In fact, the Boolean model is more complex than the real needs of
users would justify. Expert users of Boolean retrieval systems tend to use faceted
queries. A faceted query is a query that uses disjuncts of quasi-synonyms: the
facets, conjoined with the AND operator. The following query for instance has
two facets: (economic OR financial OR monetary) AND (internet OR www
OR portal). A model that defines ‘phrases’, like e.g. “financial portal” and ‘syn-
onyms’ instead of AND and OR operators would be more natural for non-expert
users of full text retrieval systems (Savino and Sebastiani 1998; Kekäläinen 1999;
see also section 3.3.4).

2.2.3 Discussion

The Boolean model’s main disadvantage is its inability to rank documents. For
this reason, the model does not fit the needs of modern full text retrieval systems



14 CHAPTER 2. INFORMATION RETRIEVAL MODELLING

like for instance web search engines. On the web, and for many other full text
retrieval systems, ranking is of the utmost importance. Furthermore, ranking
is a prerequisite of the TREC evaluation methodology used in this book. The
remaining sections of this chapter discuss models that do address the need of
ranking. Many of these models of ranked retrieval take some of the ideas of the
Boolean model as a starting point. The Boolean model is firmly grounded in
mathematics and its intuitive use of document sets provides a powerful way of
reasoning about information retrieval. In this sense, the Boolean model is ‘a
model of models’, serving as a reference point or role model for ranked retrieval
models.

2.3 Models of ranked retrieval

The Boolean model’s inability to rank documents is addressed by the models
presented in this section. These models usually imply the use of some statistics
on the terms, that is, they somehow take into account the number of occurrences
of terms in the documents or in the index to compute rankings. Another key is-
sue of models of ranked retrieval is automatic query formulation. This addresses
the difficulties non-expert users have with the Boolean operators. Non-expert
users should be able to enter a real natural language request, or possibly just
a couple of terms, without the use of operators. Both ranking and the fact
that operators are not mandatory is shared by the approaches presented in this
section. For each model, some pros and cons are identified.

2.3.1 Early approaches

Luhn (1957) was the first to suggest a statistical approach to searching informa-
tion. He suggested that in order to search a document collection, the inquirer
should first prepare a document that is similar to the needed documents. The
degree of similarity between the representation of the prepared document and
the representations of the document in the collection is used to search the col-
lection.

The more two representations agreed in given elements and their
distribution, the higher would be the probability of their representing
similar information.

Following Luhn’s similarity criterion, a promising first step is counting the num-
ber of elements that the query and the index representation of the document
share. If the document’s index representation is a vector ~d = (d1, d2, · · · , dm) of
which each component dk (1 ≤ k ≤ m) is associated with an index term; and
if the query is a similar vector ~q = (q1, q2, · · · , qm) of which the components are
associated with the same terms, then the simplest of the similarity measures is



2.3. MODELS OF RANKED RETRIEVAL 15

the vector inner product.2

score(~d, ~q) =
∑m

k=1 dk · qk (2.1)

If the vector has binary components, i.e. the value of the component is 1 if the
term occurs in the document or query and 0 if not, then the vector product
measures the number of shared terms. A more general representation would use
for instance natural numbers or real numbers for the components of the vectors
~d and ~q.

The vector product measure does not take the size of the document and
the query into account. Intuitively, longer documents will accidentally share
more terms with a query, but this does not make them better candidates of
relevant documents. Therefore, the vector product measure should somehow be
normalised. The following similarity measures are normalised versions of the
vector product measure, respectively Dice’s coefficient, Jaccard’s coefficient and
the overlap coefficient (Van Rijsbergen 1979).

score(~d, ~q) =
2 ·

∑m
k=1 dk · qk∑m

k=1(dk)2 +
∑m

k=1(qk)2
(2.2)

score(~d, ~q) =
∑m

k=1 dk · qk∑m
k=1(dk)2 +

∑m
k=1(qk)2 −

∑m
k=1 dk · qk

(2.3)

score(~d, ~q) =
∑m

k=1 dk · qk

min(
∑m

k=1(dk)2,
∑m

k=1(qk)2)
(2.4)

All these measures are clearly based on ad-hoc considerations. They lack a
strong metaphor of searching and strong support from some branch of math-
ematics. They are commonly regarded to be obsolete (Savino and Sebastiani
1998).

2.3.2 The vector space model

Salton and McGill (1983) suggested a model based on Luhn’s similarity criterion
that has a stronger theoretical motivation. They considered the index repre-
sentations and the query as vectors embedded in a high dimensional Euclidean
space, where each term is assigned a separate dimension. The similarity mea-
sure is usually the cosine of the angle that separates the two vectors ~d and ~q.
The cosine of an angle is 0 if the vectors are orthogonal in the multidimensional
space and 1 if the angle is 0 degrees.

score(~d, ~q) =
∑m

k=1 dk · qk√∑m
k=1(dk)2 ·

√∑m
k=1(qk)2

(2.5)

The metaphor of angles between vectors in a multidimensional space makes
it easy to explain the implications of the model to non-experts. Up to three

2The function that computes a value that is used to rank documents, and the value itself,
will be called the (document) score.



16 CHAPTER 2. INFORMATION RETRIEVAL MODELLING

dimensions, one can easily visualise the document and query vectors. Figure
2.2 visualises an example document vector and an example query vector in the
space that is spanned by the three terms social, economic and political. The
intuitive geometric interpretation makes it relatively easy to apply the model
to new information retrieval problems. The vector space model guided research
in for instance automatic text categorisation and document clustering.

q

d

economic

social

political

Figure 2.2: A query and document representation in the vector space model

Normalisation of vector lengths

Measuring the cosine of the angle between vectors is equivalent with normal-
ising the vectors to unit length and taking the vector inner product. If index
representations and queries are properly normalised, then the vector product
measure of equation 2.1 does have a strong theoretical motivation.

score(~d, ~q) =
m∑

k=1

n(dk) · n(qk) where n(vk) =
vk√∑m

k=1(vk)2
(2.6)

Some rather ad-hoc, but quite successful retrieval algorithms are nicely grounded
in the vector space model if the vector lengths are normalised. An example is
the relevance feedback algorithm by Rocchio (1971). Rocchio suggested the
following algorithm for relevance feedback, where ~qold is the original query, ~qnew

is the revised query, ~d
(i)
rel (1 ≤ i ≤ r) is one of the r documents the user selected

as relevant, and ~d
(i)
nonrel (1 ≤ i ≤ n) is one of the n documents the user selected

as non-relevant.

~qnew = ~qold +
1
r

r∑
i=1

~d
(i)
rel −

1
n

n∑
i=1

~d
(i)
nonrel (2.7)



2.3. MODELS OF RANKED RETRIEVAL 17

The normalised vectors of documents and queries can be viewed at as points
on a hypersphere at unit length from the origin. In equation 2.7, the first sum
calculates the centroid of the points of the known relevant documents on the
hypersphere. In the centroid, the angle with the known relevant documents is
minimised. The second sum calculates the centroid of the points of the known
non-relevant documents. Moving the query towards the centroid of the known
relevant documents and away from the centroid of the known non-relevant doc-
uments is guaranteed to improve retrieval performance. The sphere is visualised
for two dimensions in figure 2.3. The figure is taken from Savino and Sebastiani
(1998).

political

social

1

1

query

centroid of

known relevant docs.
representations of

representations
of known relevant
documents

Figure 2.3: Rocchio’s relevance feedback method

Discussion

The main disadvantage of the vector space model is that it does not in any way
subscribe what the values of the vector components should be. Early experi-
ments by Salton (1971) already suggested that term weighting is not a trivial
problem at all. Term weighting approaches are addressed in section 2.4. A
second disadvantage of the vector space model is that it is not possible to in-
clude term dependencies into the model, for instance for modelling of phrases
or adjacent terms. It is however possible to give a geometric interpretation of
Boolean-structured queries, which is described in section 2.3.5. A third problem
with the vector space model is its implementation. The calculation of the cosine
measure needs the values of all vector components, but these are not available
in a inverted file architecture. In practice, the normalised values and the vector
product algorithm have to be used. Either the normalised weights have to be
stored in the inverted file, or the normalisation values have to be stored sepa-
rately. Both take significantly more storage space than would be required for
the Boolean model (Witten, Moffat, and Bell 1994).



18 CHAPTER 2. INFORMATION RETRIEVAL MODELLING

2.3.3 The probabilistic model

Maron and Kuhns (1960) formulated a criterion that implicitly goes against
Luhn’s idea to use the degree of similarity between index representations and
query. They argued that a retrieval system should rank the documents in the
collection in order of their probability of relevance. Robertson (1977) called the
criterion the ‘probability ranking principle’. He formulated the principle, which
he contributed to William Cooper, as follows.

If a reference retrieval system’s response to each request is a ranking
of the documents in the collections in order of decreasing probabil-
ity of usefulness to the user who submitted the request, where the
probabilities are estimated as accurately as possible on the basis of
whatever data has been made available to the system for this pur-
pose, then the overall effectiveness of the system to its users will be
the best that is obtainable on the basis of that data.

This seems a rather trivial requirement indeed, since the objective of information
retrieval systems is defined in chapter 1 as “to help the user to find relevant
documents”. However, Robertson showed that optimality of ranking by the
probability of relevance can only be guaranteed if the following conditions are
met. Firstly, relevance should be a dichotomous variable, either yes or no.
Secondly, relevance of a document to a request should not depend on the other
documents in the collection.

The probability of relevance

Whereas Luhn’s intuitive similarity criterion raises the question: “What exactly
makes two representations similar?”, Robertson’s probability ranking principle
raises the question: “How, and on the basis of what data, should the prob-
ability of relevance be estimated?”. First it is necessary to make the notion
of ‘probability of relevance’ explicit. Robertson adopted the Boolean model’s
viewpoint by looking at a term as a definition of a set of documents. Suppose
a user enters a query containing a single term, for instance the term social. If
all documents that fulfil the user’s need were known, it would be possible to di-
vide the document collection into 4 non-overlapping subsets as visualised in the
Venn diagram of figure 2.4. The figure contains additional information about
the size of each of the non-overlapping subsets. The collection in question has
10,000 documents, of which 1,000 contain the word “social”; only 11 documents
are relevant to the query of which 1 contains the word “social”. If a document
is taken at random from the set of documents that are indexed with social,
then the probability of picking a relevant document is 1 / 1,000 = 0.0010. If a
document is taken at random from the set of documents that are not indexed
with social, then the probability of relevance is bigger: 10 / 9,000 = 0.0011.
Since the user entered only one index term, the system has only two options:
either the documents indexed with the term are presented first in the ranking,
or the documents that are not indexed with the term are presented first. In



2.3. MODELS OF RANKED RETRIEVAL 19

the example of figure 2.4, it is wise to present the user first with documents
that not are indexed with the query term social, that is, to present first the
documents that are ‘dissimilar’ to the query. Clearly, such a strategy violates
Luhn’s similarity criterion.

social RELEVANT
1

999 10
8,990

Figure 2.4: Venn diagram of the collection given the query term social

The binary independence assumption

If the user enters two terms, for instance the terms social and political, then
there are four sets that must find their place in the final ranking: social AND
political, social NOT political, political NOT social and NOT(social
OR political). Each of these Boolean subsets can be represented by a pair of
binary values, the first value indicating whether the subset includes documents
indexed with social, the second value indicating whether the subset includes
documents indexed with political. The four Boolean subsets are represented
by respectively (1, 1), (1, 0), (0, 1) and (0, 0). If the documents that fulfil the
user’s need were known, it would be possible to calculate the probability of
picking a relevant document from each of these subsets and rank the subsets
accordingly.

Unfortunately, the number of non-overlapping subsets increases exponen-
tially with the number of query terms. To make the computation of the prob-
ability of relevance ranking possible in reasonable time, the probability of rel-
evance in the complex subsets is determined from the probability of relevance
in the sets of the single terms. It is assumed that given relevance (or non-
relevance) terms occur independently from each other in the documents. The
independence assumption can be applied as follows. Let L be the random vari-
able “document is relevant” with a binary sample space {0, 1}, 1 indicating
relevance and 0 non-relevance. Let Dk (1 ≤ k ≤ n) be a random variable indi-
cating “document belongs to the subset indexed with the kth query term” with
a binary sample space {0, 1}. Given a query of length n, documents in every
subset D1, D2, · · · , Dn will be assigned the value defined by equation 2.9, and
the subsets should be ranked accordingly (Robertson and Sparck-Jones 1976;
Van Rijsbergen 1979). Note that duplicate query terms retrieve the same subset
of documents and should be ignored in the formulas below.

logitP (L=1|D1,· · ·, Dn) = log
P (L = 1|D1, · · · , Dn)
P (L = 0|D1, · · · , Dn)

(2.8)



20 CHAPTER 2. INFORMATION RETRIEVAL MODELLING

= log
P (L = 1)P (D1, · · · , Dn|L = 1) / P (D1, · · · , Dn)
P (L = 0)P (D1, · · · , Dn|L = 0) / P (D1, · · · , Dn)

= log
P (D1, · · · , Dn|L=1)
P (D1, · · · , Dn|L=0)

+ logitP (L=1)

=
n∑

k=1

log
P (Dk|L=1)
P (Dk|L=0)

+ logit P (L=1) (2.9)

Equation 2.8 is a variation of Bayes’ rule that uses a logistic transformation
of probabilities, which is defined by logitP (L) = log(P (L) / (1 − P (L)). It is
used to put the equation in a convenient linear form. The transformation is
strictly monotonic, so ranking documents by equation 2.8 will in fact rank them
by the probability of relevance. The conditional independence assumption is
formalised in equation 2.9. Often, equation 2.9 is called the binary indepen-
dence assumption, because both P (Dk|L = 1) and P (Dk|L = 0) are explicitly
present in the formula. Because of the independence assumption, the definition
of probabilities as proportions as shown in figure 2.4 is no longer possible if
more than one query term is present. So, the probability of relevance of the
subset of documents that are indexed with both social and political is not
necessarily the number of relevant documents in this subset divided by the size
of the subset.

Implementation

Equation 2.9 needs some computation for subsets for which Dk = 0, that is
for non-matching query terms. In the vector space model non-matching terms
are assigned zero weight, which is usual convenient for implementation reasons.
Therefore,

∑n
k=1 log(P (Dk = 0|L = 1) / P (Dk = 0|L = 0)) is subtracted from

the score of each document subset. This does not affect the ranking of the
documents and assigns a score of zero to documents with no matching terms.

P (L=1|D1, · · · , Dn) ∝
∑

k ∈match-
ing terms

log
P (Dk =1|L=1)P (Dk =0|L=0)
P (Dk =1|L=0)P (Dk =0|L=1)

(2.10)

The probabilities are defined by the relative sizes of the of the subsets of doc-
uments that are indexed by the query terms. Figure 2.5 shows again the Venn
diagram of documents indexed with social. The size of the non-overlapping
subsets are defined by R: the number of relevant documents, nk: the number
of documents indexed with social, rk: the number of relevant documents that
are indexed with social and N : the total number of documents in the collec-
tion. The values of nk and N are available to the system, but the values of rk

and R are only available if the user provides those to the system, typically by
marking some previously retrieved documents as relevant. If rk and R are not
available to the system, it is necessary to make some assumptions about them.
Robertson and Sparck-Jones (1976) simply add 0.5 to each non-overlapping sub-
set and Croft and Harper (1979) assume a constant value for P (Dk|L = 1). If



2.3. MODELS OF RANKED RETRIEVAL 21

P(Dk | L )=0=0

P(Dk | L =1)=0

P(Dk=1| L )=0

P(Dk=1| L =1)

R

N−R

social RELEVANT

=

=

=

=

R−r

R−r

n −rr

r
Rk

k

N−n −R+r

n −r

N−R

kk

k

k
k

k

k k

N−n −R+rk k

Figure 2.5: Definition of probabilities

the additional assumption is made that the number of relevant documents is
much smaller than the size of the collection, more specifically: R, rk � N,nk,
then documents might be ranked by a idf -like measure: log((N−nk) / nk) (see
section 2.4).

Discussion

The probabilistic model is one of the few retrieval models that does not need an
additional term weighting algorithm to be implemented (see section 2.4). Rank-
ing algorithms are completely derived from theory. The probabilistic model has
been one of the most influential retrieval models for this very reason. Un-
fortunately, in many applications the distribution of terms over relevant and
non-relevant documents will not be available. In these situations probability of
relevance estimation is of theoretical interest only.

The main disadvantage of the probabilistic model is that it only defines a
partial ranking of the documents. For short queries, the number of different
subsets will be relatively low. By looking at a term as a definition of a set of
documents, the probabilistic model ignores the distribution of terms within doc-
uments. In fact, one might argue that the probabilistic model suffers partially
from the same defect as the Boolean model. It does not allow the user to really
control the retrieved set of documents. For short queries it will not seldomly
assign the same rank to, for instance, the first 100 documents retrieved.

Many more probabilistic approaches have been suggested (Fuhr 1992). Two
of those models will be discussed in section 2.3.6 and 2.3.8.

2.3.4 Fuzzy set models

In fuzzy set theory (Zadeh 1965) an element has a degree of membership to a
set. Whereas in the Boolean model documents belong either to the set defined
by an index term or not, in the fuzzy set model documents belong with a given
degree to the set defined by an index term. The degree of membership is used
to represent inexactness or vagueness. The idea is the following. Although it is
known with certainty that a document contains a term, for instance the term
economic, some documents are more economic than others. For the degree of
membership T of a single term, one of the document term weighting formulas of
section 2.4 can be used. The rules for the membership function T of the union



22 CHAPTER 2. INFORMATION RETRIEVAL MODELLING

and intersection of fuzzy sets are usually the following.

T (a AND b) = min(T (a), T (b))
T (a OR b) = max(T (a), T (b)) (2.11)
T (NOT b) = 1− T (b)

These operators are not very effective for the following reason. Suppose a query
a OR b is entered, then a document belonging to the fuzzy set of a with T (a) =
0.8 and to b with T (a) = 0.7 will get the same score as a document belonging
to a with T (a) = 0.8 and to b with T (a) = 0.1. Intuitively, one would rank
the first document above the second in the example. A similar example can be
constructed for the intersection of fuzzy sets.

The operators of equation 2.11 are not the only generalisations of the strict
Boolean set operators. A variety of fuzzy set operators have been developed
since the late 1970’s (Lee 1995). An example of an extension of the Boolean
model that is at least inspired by fuzzy set theory, is the model of Paice (1984).
Paice’s set operator take into account all of the document weights in the final
score, not only the maximum or minimum weight. The score of a document
given a query (a1 AND a2 AND · · · AND an) or a query (a1 OR a2 OR · · · OR
an) is computed as follows:

score =
∑n

k=1 ri−1T (ak)∑n
k=1 ri−1

(2.12)

where the T (ak)’s are considered in descending order for OR queries and in
ascending order for AND queries. For Boolean queries with more than one oper-
ator, the evaluation proceeds recursively from the innermost clause. The value
of r has to be determined experimentally for both set operators. It determines
the ‘softness’ of the operator. For values close to one, the operators show simi-
lar behaviour. For large values, the operators behave more like in the Boolean
model.

Fuzzy set models have the advantage over the vector space model and the
probabilistic model that they provide a ranking for structured queries. An
extensive comparison both in terms of theoretical properties and retrieval effec-
tiveness of fuzzy set models and other extended Boolean models was conducted
by Lee (1995). Lee measured retrieval effectiveness of Boolean queries on one of
the TREC subcollections. The best performing extended Boolean models were
Paice’s model and the p-norm model which will be addressed in the next sec-
tion. Like the vector space model, the fuzzy set models need an additional term
weighting algorithm to determine the membership function of single terms. A
related disadvantage of the fuzzy set models is that they do not give insight in
why some operators perform better than others. It is not clear what the intu-
itions behind the models are. The theory gives little guidance in how to apply
a fuzzy set model to new retrieval problems.



2.3. MODELS OF RANKED RETRIEVAL 23

2.3.5 The p-norm extended Boolean model

The p-norm extended Boolean model was developed by Salton, Fox, and Wu
(1983), following the vector space model’s metaphor of documents in a multi-
dimensional Euclidean space. If the two terms social and political are again
considered, the vector space spanned by the terms can be easily visualised. If
document vectors are normalised to unit length, then the point (1,1) in the space
represents the situation that both terms are present with weight 1. This is the
desirable location for a document matching the query social AND political.
For the query social OR political on the other hand, the point (0,0) rep-
resenting the situation that both terms are absent, is the undesirable location
for a document. Therefore, AND-queries should rank documents in order of
increasing distance from the point (1,1) and OR-queries in order of decreasing
distance from the point (0,0). If the distances are properly normalised to fall
between 0 and 1, then the following formulas apply. In the formula da denotes
the weight of the term a in a document with index representation ~d.

score(~d, a OR b) =

√
(da − 0)2 + (db − 0)2

2

score(~d, a AND b) = 1−
√

(1− da)2 + (1− db)2

2

(2.13)

Salton, Fox, and Wu (1983) suggested two generalisations of the basic idea.
First of all, query term weights were included to reflect the importance of in-
dividual terms. Secondly, the Euclidean distance measures were generalised by
introducing a parameter p for each set operator. The resulting p-norm model
uses the following formulas.

score(~d, ~q OR(p)) =
(∑m

k=1(qk)p(dk)p∑m
k=1(qk)p

)1/p

score(~d, ~qAND(p)) = 1−
(∑m

k=1(qk)p(1− dk)p∑m
k=1(qk)p

)1/p
(2.14)

The introduction of p results in similar softness of Boolean operators as in Paice’s
formula. For p = 2 the formulas will use the Euclidean distance measures as in
equation 2.13. For p = 1 the OR-operator and the AND-operator produce the
exact same results and the model behaves like the vector space model. If p →∞
then the ranking is evaluated according to the standard fuzzy set operators of
equation 2.11.

As said in section 2.3.4, the p-norm model belongs to the best performing
extended Boolean models. Based on recent publications about such models,
the p-norm model is probably more popular for extended Boolean retrieval than
other well-performing algorithms. Greiff, Croft, and Turtle (1997) copied the be-
haviour of the p-norm model in their inference network architecture and Losada
and Barreiro (1999) propose a belief revision operator that is equivalent to a
p-norm case (see also section 2.3.8).



24 CHAPTER 2. INFORMATION RETRIEVAL MODELLING

A disadvantage of the p-norm model is that it needs an additional term
weighting algorithm to be implemented.

2.3.6 The 2-Poisson model

Bookstein and Swanson (1974) studied the problem of developing a set of statis-
tical rules for the purpose of identifying the index terms of a document. They
suggested that the number of occurrences tf of terms in documents could be
modelled by a mixture of two Poisson distributions as follows, where X is a
random variable for the number of occurrences.

P (X = tf ) = λ
e−µ1 (µ1)tf

tf !
+ (1−λ)

e−µ2 (µ2)tf

tf !
(2.15)

The model assumes that the documents were created by a random stream of
term occurrences. For each term, the collection can be divided into two subsets.
Documents in subset one treat a subject referred to by a term to a greater
extent than documents in subset two. This is represented by λ which is the
proportion of the documents that belong to subset one and by the Poisson
means µ1 and µ2 (µ1 ≥ µ2) which can be estimated from the mean number
of occurrences of the term in the respective subsets. For each term, the model
needs these three parameters, but unfortunately, it is unknown to which subset
each document belongs. The estimation of the three parameters should therefore
be done iteratively by applying e.g. the expectation maximisation algorithm (see
also section 4.4) or alternatively by the method of moments as done by Harter
(1975).

If a document is taken at random from subset one, then the probability
of relevance of this document is assumed to be equal to, or higher than, the
probability of relevance of a document from subset two; because the probability
of relevance is assumed to be correlated with the extent to which a subject
referred to by a term is treated, and because µ1 ≥ µ2. Useful terms will make
a good distinction between relevant and non-relevant documents, that is, both
subsets will have very different Poisson means µ1 and µ2. Therefore, Harter
(1975) suggests the following measure of effectiveness of an index term that can
be used to rank the documents given a query.

z =
µ1 − µ2√
µ1 + µ2

(2.16)

The 2-Poisson model’s main advantage is that it does not need an addi-
tional term weighting algorithm to be implemented. In this respect, the model
contributed to the understanding of information retrieval and inspired some re-
searchers in developing new models as shown in the next section. The model’s
biggest problem, however, is the estimation of the parameters. For each term
there are three unknown parameters that cannot be estimated directly from the
observed data. Furthermore, despite the model’s complexity, it still might not
fit the actual data if the term frequencies differ very much per document. Some
studies therefore examine the use of more than two Poisson functions, but this
makes the estimation problem even more intractable (Margulis 1993).



2.3. MODELS OF RANKED RETRIEVAL 25

2.3.7 An extension of the probabilistic model

Robertson, Van Rijsbergen, and Porter (1981) used the 2-Poisson model to in-
clude the number of term occurrences in the probabilistic model. First of all,
they redefined Dk as a random variable which has as its sample space the set
of natural numbers {0, 1, 2, · · ·}, indicating “document belongs to the subset of
documents with dk occurrences of the kth query term”. Following similar con-
siderations as in section 2.3.3, this results in the following weighting algorithm
that only uses the matching terms in its computation (so, dk > 0).

P (L=1|D1, · · · , Dn) ∝
∑

k ∈match-
ing terms

log
P (Dk =dk|L=1)P (Dk =0|L=0)
P (Dk =dk|L=0)P (Dk =0|L=1)

(2.17)

Subsequently, (Robertson et al. 1981) assumed that the number of term occur-
rences dk in the relevant and non-relevant documents can be modelled by the
2-Poisson distribution. For each term, documents that belong to subset one are
called “elite” for that term. For effective index terms, the proportion of the
relevant documents that are elite for that term should differ from the propor-
tion of the non-relevant document that are elite for that term. In the following
formulas, λk is taken as the probability of eliteness given relevance and κk is
taken as the probability of eliteness given non-relevance.

P (Dk =dk|L=1) = λk
e−µ1k (µ1k)dk

dk!
+ (1−λk)

e−µ2k (µ2k)dk

dk!

P (Dk =dk|L=0) = κk
e−µ1k (µ1k)dk

dk!
+ (1−κk)

e−µ2k (µ2k)dk

dk!

(2.18)

So, relevance is related to eliteness rather than directly to the frequency dk

of the kth query term. The frequency in turn is assumed to depend only on
eliteness, but not on relevance. The probabilistic model’s assumption that terms
occur independently in documents given (non-)relevance should be augmented
with the assumption that the eliteness properties of the terms are independent
as well.

The model’s main advantage is again that it does not need an additional
term weighting algorithm. However, whereas Harter (1975) had to estimate
three parameters for each term, the extension of the probabilistic model needs
the estimation of four parameters for each term, for none of which there will
be any direct evidence. Furthermore, by using the probability of relevance in
the subset of documents with dk occurrences of the query term, the model
implicitly assumes that all documents have equal lengths, which is rarely the
case.3 Although actual implementation of the extension of the probabilistic
model is cumbersome, practical weighting algorithms have been suggested that
are rough approximations of the model (see section 2.4.6).

3In fact, Harter (1975) also assumed equal document lengths for his application of the
2-Poisson model.



26 CHAPTER 2. INFORMATION RETRIEVAL MODELLING

2.3.8 Bayesian network models

A Bayesian network is an acyclic directed graph that encodes probabilistic de-
pendency relationships between random variables. A directed graph is acyclic
if there is no directed path A → · · · → Z such that A = Z. The presenta-
tion of probability distributions as directed graphs, makes it possible to analyse
complex conditional independence assumptions by following a graph theoretic
approach. Probability theory ensures that the system as a whole is consistent.
Some alternative names for Bayesian networks are belief networks, probabilistic
independence networks, influence diagrams and causal nets (Pearl 1988). This
is further explained by the following simple model suggested by Turtle (1991)
and Turtle and Croft (1992). A similar approach is suggested by Ribeiro and
Muntz (1996).

D

3TT2

Q

T1

Figure 2.6: Simple Bayesian network

The Bayesian network of figure 2.6 shows Turtle’s simple model of the rel-
evance of a document given a query of three non-equal terms, for instance the
example query social political economic. All nodes in the network repre-
sent binary random variables with values {0, 1}. The event “query is fulfilled”
(Q = 1) has three possible causes: the subject referred to by the term social is
true (T1 = 1), or the subject referred to by the term political is true (T2 = 1),
or the subject of economic is true (T3 = 1), or a combination of the three causes.
The three subjects in turn are inferred from the event “document is relevant”
(D = 1). By the chain rule of probability, the joint probability of all the nodes
in the graph above is:

P (D,T1, T2, T3, Q) =
P (D)P (T1|D)P (T2|D,T1)P (T3|D,T1, T2)P (Q|D,T1, T2, T3)

(2.19)

The directions of the arcs suggest the dependence relations between the random
variables. The model makes the following conditional independence assump-
tions.

P (D,T1, T2, T3, Q) = P (D)P (T1|D) P (T2|D) P (T3|D)P (Q|T1, T2, T3) (2.20)



2.3. MODELS OF RANKED RETRIEVAL 27

The second, third and fourth term in equation 2.19 are simplified because T1, T2

and T3 are independent given their parent D. The last term is simplified because
Q is independent of D given its parents T1, T2 and T3. Now, the network should
be used as follows. If it is hypothesised that the document is relevant (D = 1),
the probability of query fulfilment P (Q = 1|D = 1) can be used as a score to
rank the documents. The joint probability distribution defined by equation 2.19
can be used as follows to calculate the score.

P (Q=1|D=1) =
P (Q=1, D=1)

P (D=1)
=∑

t1,t2,t3
P (D=1, T1 = t1, T2 = t2, T3 = t3, Q=1)

P (D=1)

The only thing that’s still missing is the specification of the probabilities. Pos-
sible strengths of the relationships are shown in the following five tables.

P (D = 0) P (D = 1) D P (T1 = 0) P (T1 = 1)
0.999 0.001 0 0.60 0.40

1 0.05 0.95
T1 T2 T3 P (Q = 0) P (Q = 1)
0 0 0 1.000 0.000 D P (T2 = 0) P (T2 = 1)
0 0 1 0.901 0.099 0 0.88 0.12
0 1 0 0.887 0.113 1 1.00 0.00
0 1 1 0.992 0.008
1 0 0 0.547 0.453 D P (T3 = 0) P (T3 = 1)
1 1 0 0.332 0.664 0 0.97 0.03
1 0 1 0.271 0.729 1 0.02 0.98
1 1 1 0.220 0.780

Figure 2.7: Example specification of the model’s parameters

The table of P (Q|T1, T2, T3) shows a potential difficulty of this network. The
number of probabilities that have to be specified for a node grows exponentially
with its number of parents, so a query of n non-equal terms requires the speci-
fication of 2n+1 possible values of P (Q|T1, T2, · · · , Tn). Despite the simplifying
assumptions made by the conditional independencies, the model has to make
additional simplifying assumptions to make it possible to calculate the proba-
bility in reasonable time. Turtle (1991, page 53) therefore suggests the use of
four canonical forms of P (Q|T1, T2, · · · , Tn) which can be computed on the fly in
linear time. The four canonical forms which are called “and”, “or”, “sum” and
“weighted sum” (“wsum” for short), are displayed in figure 2.8. The weights w1,
w2 and w3 in the last columns are restricted to positive values and should sum
up to one.4 Suppose for now that the values of P (T1|D), P (T2|D) and P (T3|D)
are known and given by p1, p2 and p3. The calculation of P (D = 1|Q = 1) by

4The definition of “wsum” in (Turtle 1991) is more general



28 CHAPTER 2. INFORMATION RETRIEVAL MODELLING

Pand(Q) Por(Q) Psum(Q) Pwsum(Q)
T1 T2 T3 0 1 0 1 0 1 0 1

0 0 0 1 0 1 0 1 0 1 0
0 0 1 1 0 0 1 2/3 1/3 1− w3 w3

0 1 0 1 0 0 1 2/3 1/3 1− w2 w2

0 1 1 1 0 0 1 1/3 2/3 1−w2−w3 w2+w3

1 0 0 1 0 0 1 2/3 1/3 1− w1 w1

1 0 1 1 0 0 1 1/3 2/3 1−w1−w3 w1+w3

1 1 0 1 0 0 1 1/3 2/3 1−w1−w2 w1+w2

1 1 1 0 1 0 1 0 1 0 1

Figure 2.8: Canonical forms of P (Q|T1, T2, T3)

the canonical forms of table 2.8 will give the same results as the to the following
calculations, which only require linear time. Note that the weighted sum equals
the vector product algorithm of equation 2.1.

Pand(Q = 1|D = 1) = p1 p2 p3

Por(Q = 1|D = 1) = 1− (1−p1)(1−p2)(1−p3)
Psum(Q = 1|D = 1) = (p1 + p2 + p3) / 3

Pwsum(Q = 1|D = 1) = w1 p1 + w2 p2 + w3 p3

(2.21)

The main advantage of the Bayesian network models suggested by Turtle and
Croft (1992) is that the the network topology can be used to combine evidence
in a complex way. Many other recent approaches to information retrieval seek
for new ways of combining evidence from multiple sources (e.g. Van Rijsbergen
1986; Sebastiani 1994; Fuhr 1995; Wong and Yao 1995) Figure 2.9 shows such
a complex Bayesian network. In the network R1 and R2 define different rep-
resentations of the document, for instance one might represent the document’s
title words, whereas the other might represent words from the abstract. The
model’s probabilities might indicate that title words are more important than
words from the abstract. The nodes Q1, Q2 and Q3 represent different queries
for the same information need, which is represented by the node I. The query
represented by Q2 is evaluated as or(and(T1 T2) T3)), whereas the query Q3

is evaluated as wsum(T1 T2 T3).
There are two disadvantages of the Bayesian network models presented in

this section. Firstly, the approaches do not suggest how the probability measures
P (Ti|D), (1 ≤ i ≤ n) should be estimated. Instead, the approaches suggest the
use of Bayesian probabilities. In a nutshell, the Bayesian probability of an
event is a person’s degree of belief in that event, which does not have to refer
to a physical mechanism or experiment. In contrast, the classical probability
always implies such an experiment and therefore can always be interpreted as
a relative frequency. Considering probabilities as a person’s degree of belief is
quite practical if a medical expert system is built as e.g. described by Heckerman
(1991). For full text information retrieval systems however, experts are by



2.4. TERM WEIGHTING EXPERIMENTS 29

R2

3TT2T1 4T

R1

D

Q3

Q1

Q2

I

and

or

sum

wsum

Figure 2.9: Complex Bayesian network

definition not available for specifying the probabilities of the network because it
implies manual indexing of the collection. The models therefore use one of the
term weighting algorithms that use term frequencies and document frequencies
as presented in section 2.4. Note that, despite of the name, the use of Bayesian
networks is not restricted to Bayesian probabilities (Jordan 1998; Krause 1998).

A second disadvantage of the Bayesian network models presented in this sec-
tion is that the calculation of the probabilities generally takes exponential time
in the number n of non-equal query terms. The introduction of the four canon-
ical forms solves this problem, but it could have been solved by the network
topology. For instance the definition of Pand in equation 2.21 actually suggests
(conditional) independence between the probabilities p1, p2 and p3 and, for in-
stance the definition of Pwsum suggests the use of a mixture model topology
(Jordan 1998). By using the four canonical forms, the network is tractable if it
is used for inference, but it is still intractable if used for updating the proba-
bilities. Updating the probabilities might be an effective approach to relevance
feedback. Although the Bayesian network formalism comes with efficient learn-
ing algorithms, these algorithms can in practice not be applied in reasonable
time on the network model presented in this section (Turtle and Croft 1991).

2.4 Term weighting experiments

Of the models presented in section 2.3, the vector space model, the fuzzy set
models, the p-norm model and the Bayesian network models all need an addi-
tional term weighting algorithm before they can be implemented. Weighting of



30 CHAPTER 2. INFORMATION RETRIEVAL MODELLING

search terms is the single most important factor in the performance of infor-
mation retrieval systems. The development of term weighting approaches is as
much an art as it is a science: Literally thousands of term weighting algorithms
were used experimentally during the last 25 years, especially within the Smart
projects. Although Salton experimented with term weighting in the 1960’s, this
section starts its history of term weighting in the 1970’s covering important
work until the end of the 1990’s. The early history presented in this section
is largely based on similar overviews of Belkin and Croft (1987) and Harman
(1992). The section uses the notation that was introduced for the vector space
model in section 2.3.2. Unless stated otherwise, weights of terms that do not
occur in the document or the query are zero.

2.4.1 idf weighting

The document frequency df of a term is defined by the number of documents
a term occurs in. A term with a low document frequency is more specific
than a term with a high document frequency. Sparck-Jones (1972) suggested
that therefore, the system should treat matches on non-frequent terms as more
valuable than ones on frequent terms. An intuitive way to relate the matching
value of a term to its document frequency is suggested by a Zipf-like distribution
of words in a vocabulary (see e.g. Manning and Schütze 1999). If f(df) = m
such that 2m−1 < df ≤ 2m, and N is the number of documents in the collection,
then the weight of a term that occurs df times is f(N)− f(df).5 A continuous
approximation of f is the logarithm to the base 2. The ranking algorithm
is displayed in figure 2.10. The weight log(N/df) will be called the “inverse
document frequency”: idf for short.

vector product: score(~d, ~q) =
∑n

k=1 dk · qk

document term weight: dk = 1

query term weight: qk = log
N

df

Figure 2.10: idf weighting

2.4.2 Probabilistic weighting

The probabilistic model, introduced in section 2.3.3, suggests a simple term
weighting algorithm that uses binary document weights and ‘relevance weights’
for query terms, shown in figure 2.11. Again, df is the document frequency

5The adding of 1 used by Sparck-Jones (1972) was ignored because it is no longer used in
later papers (e.g. Robertson and Sparck-Jones 1976).



2.4. TERM WEIGHTING EXPERIMENTS 31

(n in section 2.3.3), N is the number of documents in the collection, R is the
number of known relevant documents and r is the number of relevant documents
indexed with the term at hand. This weighting algorithm differs from the other
weighting algorithms presented in section 2.4, in that it is derived from the
probabilistic model (Robertson and Sparck-Jones 1976).

vector product: score(~d, ~q) =
∑m

k=1 dk · qk

document term weight: dk = 1

query term weight: qk = log
r (N − df −R + r)

(R− r)(df − r)

Figure 2.11: Binary independence weights

2.4.3 tf .idf weighting in the Smart system

The original Smart retrieval system was developed at Harvard University in
the early 1960’s and later developed at Cornell University. Salton and Yang
(1973) experimented with weighting algorithms that use the inverse document
frequency. They suggested to combine it with the frequency of a term within a
document, the term frequency, tf for short. The introduction of the so-called
tf .idf weights is one of the major break-throughs of term weighting in informa-
tion retrieval. Most modern weighting algorithms are versions of the family of
tf .idf weighting algorithms. Salton’s original tf .idf weights perform relatively
poor, in some cases even poorer than simple idf weighting (see chapter 5).

cosine: score(~d, ~q) =
∑m

k=1 dk · qk√∑m
k=1(dk)2 ·

√∑m
k=1(qk)2

term weights: dk = qk = tf · log
N

df

Figure 2.12: Original tf.idf with cosine normalisation (tfc.tfc)

In 1988, Salton and Buckley summarised the results of 20 years of research
into term weighting with the Smart system. A total of 1800 different combina-
tions of term weight assignments were used experimentally, of which 287 were
found to be distinct. Experimental results of these term weighting algorithms on



32 CHAPTER 2. INFORMATION RETRIEVAL MODELLING

6 document collections were reported. Term weighting algorithms were named
by three letter combinations. The first letter indicated the tf component, the
second component indicates the idf component and the third component in-
dicates the normalisation component. For instance, the three letter code tfc
is the code for the original tf .idf weights with cosine normalisation introduced
above. They concluded that the best performing algorithm is one that maps the
document vectors differently in the vector space than the query vectors. Figure
2.13 displays the tfc.nfc formula which uses a normalised tf factor for the query
term weights.

cosine: score(~d, ~q) =
∑m

k=1 dk · qk√∑m
k=1(dk)2 ·

√∑m
k=1(qk)2

document term weight: dk = tf · log
N

df

query term weight: qk = ( 0.5 +
0.5 tf
max tf

) · log
N

df

Figure 2.13: tfc.nfc term weighting algorithm

The start of the TREC conferences in 1992 gave a new impulse to term
weighting experiments. An important discovery is that weights that are loga-
rithmic in tf outperform weighting algorithms that are linear in tf . Buckley,
Allan, and Salton (1994) suggest to use the algorithm of figure 2.14 which is
called the lnc.ltc formula, where the ‘l’ stands for weights with a logarithmic tf
component.

cosine: score(~d, ~q) =
∑m

k=1 dk · qk√∑m
k=1(dk)2 ·

√∑m
k=1(qk)2

document term weight: dk = 1 + log(tf )

query term weight: qk = (1 + log(tf )) · log
N + 1

df

Figure 2.14: lnc.ltc term weighting algorithm

One of the recent weighting algorithms Lnu.ltu uses a combination of the
document length and the average document length instead of the cosine measure
for length normalisation. The algorithm outperforms the cosine versions on the
TREC collections, but lacks the nice metaphor of measuring the angle between



2.4. TERM WEIGHTING EXPERIMENTS 33

two vectors in a Euclidean space (Singhal, Buckley, and Mitra 1996).

vector product: score(~d, ~q) =
∑m

k=1 dk · qk

document term weight: dk = L × u (Lnu)
query term weight: qk = l × t × u (ltu)

tf factors: l = 1 + log(tf )

L =
1 + log(tf )

1 + log(average tf in document)

idf factor: t = log(
N + 1

df
)

length norm. factor: u =
1

(1−s) + s number of unique words in text
average number of unique words

Figure 2.15: Lnu.ltu algorithm

2.4.4 Linear combinations of relevance clues

By the late 1980’s and early 1990’s, researchers had a pretty good idea which
information is important for good performing term weighting algorithms. Fuhr
and Buckley (1991) therefore suggests the following approach. Based on ex-
perience with term weighting algorithms, develop a function that is a linear
combination of clues that are good indicators of the document’s relevance given
a query term. Then, use a retrieval test collection with corresponding queries
and relevance judgements to fit the function to the data. An example of such a
function of linear clues, is the following by Gey (1994).

w = c0 + c1 log qtf + c2 log
qtf

query length
+ c3 log tf

+ c4 log
tf

document length
+ c5 log

N

df
+ c6 log

collection length
cf

In the formula cf stands for ‘collection frequency’: the number of occurrences of
a term in the collection. Fuhr and Buckley (1991) used polynomial regression to
estimate the values of c0, c1, · · ·. Alternatively, the method of logistic regression
might result in better results (Gey 1994).

2.4.5 Term weighting in the Inquery system

The Inquery system was developed at the University of Massachusetts, Amherst
in the late 1980’s. The system uses the inference network approach introduced
in section 2.3.8. Turtle and Croft (1991) report on term weighting experiments



34 CHAPTER 2. INFORMATION RETRIEVAL MODELLING

with a similar linear combination of retrieval clues as in section 2.4.4, one of
the form α + β · tf + γ · idf + δ · tf · idf . The best performance was achieved
when α = 0.4, β = γ = 0 and δ = 0.6. Variations that work about as well use a
logarithmic normalisation for the tf component. Figure 2.16 shows the ranking
algorithm that was used in the first years of TREC (Broglio et al. 1995). The
document term weights are not zero if the term does not occur in the document,
but instead take the default value α = 0.4. The parameter b determines the
effect of the penalty for long documents and wq is a weight given for to the
whole query. In later versions of the Inquery system, the Okapi’s non-linear tf
function was used, which is explained below.

Inquery weighted sum: score(~d, ~q) =
wq ·

∑m
k=1 dk · qk∑m
k=1 qk

document term weight: dk = 0.4 + 0.6 · (b H + (1−b) ntf ) · nidf
query term weight: qk = tf

penalty long documents: H =
{

1.0 if max tf ≤ 200
200

max tf otherwise

normalised tf: ntf =
log(tf + 0.5)

log (max tf + 1.0)

normalised idf: nidf =
log (N/df )

log N

Figure 2.16: Inquery weighting algorithm

2.4.6 Term weighting in the Okapi system

The Okapi system was originally developed at the Polytechnic of Central Lon-
don in the early 1980’s and later developed at City University London and
Microsoft Research. The system is based on the probabilistic model introduced
in section 2.3.3. Because the performance of the probabilistic weighting was
poor on TREC-1, Robertson and Walker (1994) experimented with weighting
algorithms that take the term frequency and document length into account.
They tried a number of weighting algorithms which led to the BM25 algorithm
(BM stands for best match) presented in figure 2.17. The algorithm uses weights
that are approximately linear for small values of tf , but do not increase in the
same rate for larger values of tf , similar to the algorithms of figure 2.14 and
figure 2.16 that use log(tf ). This behaviour is suggested by the behaviour of
equations 2.17 and 2.18 in section 2.3.7 that combines the 2-Poisson weighting
with the probabilistic model. The parameters k1 and k3 determine the rate in



2.5. DISCUSSION 35

which the weights increase with tf . The parameter b determines the effect of
the document length normalisation component (Robertson et al. 1999).

vector product: score(~d, ~q) =
∑m

k=1 dk · qk

document term weight: dk =
(k1 + 1) tf

K + tf

query term weight: qk =
(k3 + 1) tf

k3 + tf
w

length normalisation: K = k1((1−b) + b
document length

average doc. length
)

relevance weight: w = log
(r + 0.5)(N − df −R + r + 0.5)

(R− r + 0.5)(df − r + 0.5)

Figure 2.17: Okapi BM25 algorithm

2.5 Discussion

This chapter summarises over thirty years of research into ranking algorithms
for information retrieval by presenting the most influential models and weighting
algorithms in the field. The selection made in this chapter was based on models
that attempt to solve one of the following three problems:

1. term weighting and ranking algorithms;

2. relevance feedback from examples of relevant documents;

3. structured queries and the ability to combine information.

None of the existent models of information retrieval address the three problems
at the same time. Three models try to unify term weighting and ranking algo-
rithms, without the use of one of the ad-hoc term weighting algorithms presented
in section 2.4: the probabilistic model, the 2-Poisson model and the combina-
tion of the two. The former is too simple to reach high retrieval performance
and the latter two are too complex to make reliable parameter estimation possi-
ble. The combination of the probabilistic model and 2-Poisson model, however,
inspired the BM25 term weighting algorithm. The vector space model and the
probabilistic model account for relevance feedback. The former intuitively by
Rocchio’s algorithm, doing query term reweighting and query expansion, and the
latter more formally grounded in the model, doing query term reweighting but
no query expansion. The fuzzy set models, the p-norm model and the Bayesian
network models account for the use of structured queries. The Bayesian network



36 CHAPTER 2. INFORMATION RETRIEVAL MODELLING

model also accounts for the combination of evidence from different sources, for
instance from controlled terms and from free text.

The section gives the background of the first research question this thesis
tries to answer: How to apply the theory of statistical language models to three
classical problems of matching models of information retrieval: term weighting,
relevance feedback and structured queries? None of the existent models of infor-
mation retrieval address the three problems at the same time. Of course, many
retrieval systems support term weighting, feedback and structured queries, but
they are either based on ad-hoc considerations or on more than one of the mod-
els introduced above. The information retrieval language models will address
the three problems into one unifying theory in section 4.



Chapter 3

Today’s information
retrieval systems in practice

This chapter lists some of the features and search capabilities that can be found
in today’s experimental and commercial full text information retrieval systems.
The chapter is divided in two sections, the first on automatic query systems,
and the second on query operators for manual query formulation.

3.1 Introduction

A model of the query formulation process should formalise two things. Firstly,
the selection of query terms and secondly, the selection of query operators. This
chapter describes many of the practical approaches to term selection and op-
erator selection. Query term selection is described in section 3.2. The section
describes a number of simple but effective approaches to select terms auto-
matically from a user request, for instance stop word removal and stemming.
Practical query operators are described in section 3.3. In practice, query oper-
ators are almost exclusively used during manual query formulation. The new
retrieval model suggested in the next chapter should support the use of query
operators in a manual query formulation process as well. Examples of these
operators are proximity operators, and mandatory term operators.

3.2 Automatic query systems

With the emergence in the 1970’s of models of ranked retrieval that process
unstructured queries, automatic query systems became a fact. The main phi-
losophy of automatic query systems is that indexing and query formulation
should result in a representation that is closer to the actual meaning of the
text, ignoring as many of the irregularities of natural language as possible. A
typical approach to indexing and query formulation selects the query terms as

37



38 CHAPTER 3. TODAY’S IR SYSTEMS IN PRACTICE

follows. First a tokenisation process takes place, then stop words are removed,
and finally the remaining words are stemmed. Additionally, natural language
processing modules might provide the identification of phrases or splitting of
compounds. Figure 3.1 shows an example text that will be used to illustrate
the typical approach to query term selection.

CHAPTER 1
PREAMBLE

1.1. Humanity stands at a defining moment in history. We are confronted
with a perpetuation of disparities between and within nations, a worsening
of poverty, hunger, ill health and illiteracy, and the continuing deterioration
of the ecosystems on which we depend for our well-being.

Figure 3.1: An example text: the opening lines of Agenda 21

3.2.1 Tokenisation

As a first step in processing a document or a query, it has to be determined
what the processing tokens are. One of the most simple approaches to tokeni-
sation defines word symbols and inter-word symbols. In the example of figure
3.2 all characters that are no letter and no digit are considered to be inter-word
symbols. The inter-word symbols are ignored during this phase, and the re-
maining sequences of word symbols are the processing tokens. As a result it
is not possible to search for punctuation marks like for instance hyphens and
question marks.

chapter 1 preamble 1 1 humanity stands at a defining moment in

history we are confronted with a perpetuation of disparities

between and within nations a worsening of poverty hunger ill

health and illiteracy and the continuing deterioration of the

ecosystems on which we depend for our well being

Figure 3.2: The Agenda 21 text after tokenisation

In the example, mark-up information is also ignored, but this information
might be kept to search for e.g. title words. Heuristics might be used to identify
sentences, or the fact that “1.1” should be kept as one processing token. The
basic tokenisation process may be enhanced by treating multiple sequences of
word symbols as one token or by splitting one sequence of word symbols into
two or more tokens. Some of these approaches are addressed further in section
3.2.4 and 3.2.5.



3.2. AUTOMATIC QUERY SYSTEMS 39

3.2.2 Stop word removal

Stop words are words with little meaning that are removed from the index and
the query. Words might carry little meaning from a frequency (or information
theoretic) point of view, or alternatively from a linguistic point of view. Words
that occur in many of the documents in the collection carry little meaning from
a frequency point of view. They get a low weight because of the idf component
in the weighting algorithms of section 2.4. By removing the very frequent words,
the document scores will not be affected that much. Stop word removal on the
basis of their frequency can be done easily by removing the 200-300 words with
the highest collection frequencies. As a result of stopping the very frequent
words, indexes will be between 30 % and 50 % smaller (Schäuble 1997).

If words carry little meaning from a linguistic point of view, they might be
removed whether their frequency in the collection is high or low. In fact, they
should especially be removed if their frequency is low, because these words af-
fect document scores the most. Removing stop words for linguistic reasons can
be done by using a stop list that enumerates all words with little meaning, like
for instance “the”, “it” and “a”. These words do also have a high frequency in
English, but most publicly available stop lists are, at least partly, constructed
from a linguistic point of view. For instance the stop list published by Van
Rijsbergen (1979), contains words like “hereupon” and “whereafter”, which oc-
cur respectively two and four times in the TREC-8 collection and never in for
instance the Cranfield collection. Stop lists are used in many systems, but the
lengths of the various stop lists may vary considerably. For instance, the Smart
stop list contains 571 words (Smart 1994), whereas the Okapi system uses a
moderate stop list of about 220 words (Robertson and Walker 2000).

chapter 1 preamble 1 1 humanity stands defining moment

history confronted perpetuation disparities nations

worsening poverty hunger ill health illiteracy continuing

deterioration ecosystems depend well being

Figure 3.3: The Agenda 21 text after removing words from the Smart stop list

In section 4, stop words are defined mathematically by assigning zero prob-
ability to one of the model’s parameters. The mathematical definition does not
conflict with the linguistically motivated definition of stop words.

3.2.3 Morphological normalisation

Morphological normalisation of words in documents and queries is used to find
documents that contain morphological variants of the original query. Morpho-
logical normalisation can be achieved either by using a stemmer or by using
dictionary lookup.



40 CHAPTER 3. TODAY’S IR SYSTEMS IN PRACTICE

A stemmer applies morphological ‘rules of the thumb’ to normalise words.
Stemmers were already developed in the 1960’s when the first retrieval sys-
tems were implemented. Well known stemmers are those by Lovins (1968) and
Porter (1980), the last one being the most commonly accepted algorithm. As
reported by Harman (1991) for English and (Kraaij and Pohlmann 1996) for
Dutch, the effect on retrieval performance is limited. Stemming tends to help
as many queries as it hurts. Sometimes stemming algorithms may conflate two
words with very different meanings to the same stem, for instance the words
“skies” and “ski” will both be reduced to “ski”. In such cases users might not
understand why a certain document is retrieved and may begin to question the
integrity of the system in general (Kowalski 1997). Still, stemmers are used
often in many research systems like Smart, Okapi and Twenty-One. The In-
query system uses a stemming technique called Kstem that combines dictionary
lookup and stemming rules (Broglio et al. 1994). Figure 3.4 gives the results
of the Porter algorithm, which does not always result in linguistically correct
stems.

chapter 1 preambl 1 1 human stand defin moment

histori confront perpetu dispar nation worsen

poverti hunger ill health illiteraci continu

deterior ecosystem depend well be

Figure 3.4: The Agenda 21 text after stemming

Dictionary lookup will result in linguistically correct stems, often called lem-
mas. Having a full-form dictionary is however not enough to build a lemmatiser.
Some words will have multiple entries, possibly with different lemmas. For in-
stance, the word “saw” may be a past tense verb, in which case its lemma
is “see” and it may be a noun, in which case its lemma is equal to the full
form. Another example is the word “number” which may be the comparative
of “numb”. For these cases, a lemmatiser has to determine the word’s part-of-
speech before the correct lemma can be chosen. Statistical algorithms trained
on (partially) hand-tagged corpora may be used to effectively find the correct
part-of-speech and therefore the correct lemma.

3.2.4 Phrase extraction

During indexing and automatic query formulation, multiple words may be treat-
ed as one processing token. The meaning of phrases might be quite different
from the meaning of the separate words. A user who enters the query “stock
exchange” will probably not be satisfied with documents that discuss “exchange
of live stock”. There are three basic approaches to phrase extraction. Phrases
might be simply predefined (Robertson and Walker 2000), extracted by sta-
tistical co-occurrence (Mitra et al. 1997) or extracted by syntactic processing



3.2. AUTOMATIC QUERY SYSTEMS 41

(Strzalkowski 1995). Phrase extraction based on statistical co-occurrence may
use very simple methods, e.g. the identification of all pairs of non stop words
that occur contiguously in at least X documents. Syntactic processing might
be used to extract noun phrases which are then normalised to head-modifier
pairs. This will produce the same processing token for e.g. “information re-
trieval” and “retrieval of information”, because in both “information” modifies
the head “retrieval”. Statistical and syntactic techniques for phrase extraction
were compared by Mitra et al. (1997) for English and Kraaij and Pohlmann
(1998) for Dutch. Both evaluations show that phrase extraction, like stem-
ming, does not improve retrieval effectiveness significantly. The most successful
methods use both the phrase and the single words in the index.

The phrase and its single words are obviously related, because the occurrence
of the phrase implies the occurrence of its single words. The application of
ranking algorithms that use term independence might therefore no longer by
justified. This complication is not addressed by the publications mentioned
above, but in fact, the obvious violation of the independence assumption might
be one of the reasons for the disappointing results on retrieval performance.
In section 4.8 a bigram model will be introduced that explicitly models the
dependence relation between words in phrases.

3.2.5 Compound splitting

During indexing or query formulation, some words might be treated as more
than one processing token. A compound word is a single orthographic unit that
consists of two or more single words, like for instance “airport” and “wildlife”
(Allan et al. 2000). Compound words are especially an issue in languages that
allow almost unrestricted compounding like Dutch and German. In Dutch, for
instance the noun phrase “potable water supply” would be one compounded
word: “drinkwatervoorziening”. Unfortunately, compound splitting might re-
sult in accidental splitting of proper names and other words that are not listed in
the dictionary, for instance “Washington” is not the composition of the German
words “Was”, “hing” and “Ton” (Schäuble 1997). Kraaij and Pohlmann (1998)
show that the splitting of compounds improves retrieval performance signifi-
cantly for Dutch. Similar to phrases, both the compound and its components
can be used during searching, but the use of a retrieval model that assumes the
independence between terms might not be appropriate.

3.2.6 Synonym normalisation

Like stemming and lemmatisation, synonymous words might also be conflated
to one processing token during indexing and automatic query formulation. For
instance in Okapi, closely related or synonymous terms like “CIA” and “Central
Intelligence Agency” are conflated (Robertson and Walker 2000). In Inquery
special processing tokens like #CITY and #COMPANY are added for respectively
every mention of a U.S. city or company (Broglio, Callan, and Croft 1994).



42 CHAPTER 3. TODAY’S IR SYSTEMS IN PRACTICE

3.3 Operators for manual query formulation

Despite the existence of the automatic query systems described above, Boolean
retrieval had a monopoly in the world of commercial information retrieval sys-
tems for almost three decades. In the mid 1990’s the monopoly was finally
broken when the major database vendors like e.g. Dialog and Lexis-Nexis added
natural language search functionality to their systems: Dialog offered Target
and Lexis-Nexis offered FreeStyle (Brenner 1996). In these systems, natural
language searching is not intended to replace Boolean searching, but instead is
added as an auxiliary module. At the same time web search engines like Hotbot
(1995) an AltaVista (1996)1 were launched that offered simple natural language
search. Like the commercial database vendors, these engines offer the good
old Boolean retrieval via their advanced search options. The practical use of
Boolean operators, and extensions of the Boolean model for proximity search-
ing are described in section 3.3.1 and section 3.3.2. Section 3.3.3 describes the
use of wildcards. Section 3.3.4 describes the new natural language search facili-
ties of today’s commercial information retrieval systems. Section 3.3 is based on
similar overviews of Kowalski (1997), Chowdhury (1998) and Rasmussen (1999).

3.3.1 Standard Boolean operators: AND, OR, NOT

The Boolean model and its operators were introduced in section 2.2. This section
describes the model’s practical use. Expert users of traditional Boolean retrieval
systems tend to use faceted queries (Kekäläinen 1999). A faceted query is a
query that uses disjuncts of quasi-synonyms: the facets, conjoined with the AND

operator. The following query for instance has two facets: (biotechnology OR
biological resources) AND (human health OR malnutrition OR poverty).
If documents are indexed manually by a documentalist, the query retrieves doc-
uments about the two facets, not necessarily containing any of the exact words.
Automatic full text indexing usually does not do much more than identifying
words and putting them all in the index. Therefore, if documents are indexed
automatically by their full text, the Boolean operators get a slightly different
purpose (Salton, Fox, and Wu 1983). The AND operator may be used to identify
phrases as in biological AND resources. The OR operator may relate syn-
onymous terms as in poverty OR hardship OR destitution OR indigence,
which might be necessary because poverty is no longer a controlled term. The
use of the AND operator for phrases and the OR operator for real synonyms is
not really an issue in systems that use manual indexing with controlled terms,
because phrases are precoordinated and synonyms are explicitly avoided by the
documentalist.

Usually systems have a default order in which the Boolean operators are
processed, either from left to right or possibly with precedence of AND over OR

as in SQL. Parentheses can be used to specify a different order than the default.
The NOT operator is usually implemented as AND NOT.

1Web addresses are listed in the bibliography and cited following the convention (name
year), where the year is the year that the site was launched.



3.3. OPERATORS FOR MANUAL QUERY FORMULATION 43

query interpretation

(renewable OR sustainable) select documents containing the term
AND development “development” and one or both of the

terms “renewable” and “sustainable”

renewable OR select documents containing either the
(sustainable AND development) term “renewable” or both the terms

“sustainable” and “development”

development NOT sustainable select documents that contain the term
“development”, that do not contain
the term “sustainable”

Table 3.1: Standard Boolean operators

3.3.2 Proximity searching: ADJ, NEAR

With the emergence of automatic full text indexing, commercial retrieval sys-
tems added new Boolean operators to the standard Boolean operators mentioned
in section 3.3.1. These operators use the positions of words in text to compensate
for the loss of expressiveness caused by using separate words instead of complex
manual index terms. The ADJ operator allows for the search of exact phrases by
looking for documents that contain two adjacent terms in the specified order, for
instance environmental ADJ damage selects only documents containing the ex-
act phrase “environmental damage”. The NEAR operator allows for the search
of two terms that are near to each other without any requirements on the order
of the words. Table 3.2 list some examples.

query interpretation

waste ADJ management select documents containing the
exact phrase “waste management”

waste NEAR management select documents containing e.g.
“waste management”, “manage-
ment of waste” or “waste of
valuable management talent”

(hazardous OR toxic) ADJ wastes select documents containing
either “hazardous wastes”
or “toxic wastes”

(hazardous AND waste) ADJ management ill-defined because “management”
could not be adjacent to both
“hazardous” and “waste”

Table 3.2: Proximity operators

In the traditional Boolean model, single terms and Boolean combinations of



44 CHAPTER 3. TODAY’S IR SYSTEMS IN PRACTICE

terms are represented by sets of documents as presented in section 2.2. With
the introduction of proximity searching, the set of a single term should some-
how include the positions of the term in the document. If two single terms
are combined by the Boolean OR, then the result set still includes the position
information, because any occurrence of a or b has its own position in a docu-
ment. However, if two single terms are combined by the Boolean AND, then
the result set no longer includes useful position information, because there are
no actual positions on which a and b occur in a document. Some combina-
tions of operators might therefore be ill-defined, for instance the combination
of an AND-result set with the ADJ operator as shown in the last row of table
3.2. Some systems produce an error if such a query is entered, but usually
system designers decide to process the ill-defined example of table 3.2 as e.g.
(hazardous ADJ management) AND (waste ADJ management).

3.3.3 Wildcards

Wildcards are used to mask part of a query term with a special character, allow-
ing it to match any term that maps to the unmasked portion of the query term.
Table 3.3 shows some examples of the use of wildcards, taken from Kowalski
(1997). Of the options in table 3.3, suffix searches are the most common. In

query interpretation

dog∗ suffix truncation selects documents containing e.g.
“dog”, “dogs” or “doggy”, but also “dogma”
and “dogger”

∗computer prefix truncation: selects documents containing e.g.
“minicomputer”, “microcomputer” or “computer”

colo∗r infix truncation: selects documents containing e.g.
“colour”, “color”, but also “colorimeter” or
“colourbearer”

multi$national single position truncation: selects documents
containing “multi-national” or “multinational”,
but no “multi national” if it is two processing
tokens

Table 3.3: Wildcards

some systems suffix searches are the default without the user having to specify
this. Suffix truncation is also the easiest of the options above to implement.
Term lookup is often implemented by sorting the index terms in alphabetic or-
der or by using a trie. Prefix truncated terms cannot use the alphabetically
sorted term list or the trie and therefore should use a linear search through the
entire list. One possible way to support fast lookup is to include all possible
rotated word forms in the list (Salton 1989).



3.3. OPERATORS FOR MANUAL QUERY FORMULATION 45

In the Boolean model, wildcards are nicely defined by assuming an OR op-
erator. Searching for dog∗ is like searching for dog OR dogs OR doggy OR . . .
Because the OR operator does not conflict with position information, the use of
term expansion is well-defined if used in combination with the NEAR and ADJ

operators. There is no obvious way to define wildcards in the models of ranked
retrieval presented in section 2.3.

3.3.4 Natural language search

Usually, ‘natural language search’ means that the user only has to type a request
and the system takes care of automatic query formulation. It seems therefore
strange to write about natural language search in a section on query opera-
tors and manual query formulation. Strictly speaking this is right, but natural
language search is for many commercial systems synonymous with search fa-
cilities with ranking capabilities that do not require knowledge of Boolean set
operators. Instead of the Boolean operators, these systems often use related
operators that are more easy to understand by non-expert users. The use of
these operators is however not mandatory, making it possible to enter a request
as shown in the first example of table 3.4. The operators, which can be found
in for instance Dialog Target, Lexis-Nexis FreeStyle, or Altavista are summed
up in the following paragraphs. In these systems, the actual tokens used for
these operators might differ from the ones used in the examples. Section 3.2
addresses the strict interpretation of natural language searching that does not
require operators at all.

query interpretation

how to promote sustainable real natural language request: rank
consumption patterns the documents containing one or

more of the terms

how to reduce the production of rank the documents considering that
+"harmful materials" -uranium documents should contain the phrase

“harmful materials” and should not
contain that the term “uranium’

why (forbid prohibit ban) wasteful rank the documents considering that
packaging[0.9] of products[0.1] the terms “forbid”, “prohibit” and

“ban” are synonyms and considering
that “packaging” is much more im-
portant than “products”

Table 3.4: Natural language search operators



46 CHAPTER 3. TODAY’S IR SYSTEMS IN PRACTICE

Exact match operator / mandatory terms

The mandatory term operator can be used to indicate that a term must be
present in the selected documents. It is inspired by the AND operator in Boolean
queries, but has slightly different semantics. Unlike the AND operator, which
is a binary operator requiring two arguments, the mandatory term operator is
a unary operator requiring one argument. The example uses the plus symbol
to flag mandatory terms, but other conventions are also used, e.g. using the
asterisk-character, or using a separate user interface field.

Exclusion operator

The exclusion operator can be used to indicate that a term should not be present
in the selected documents. Obviously it is inspired by the NOT operator in
Boolean queries. This operator is not as common as the exact match operator,
because the absence of a term is not as clear an indication of relevance as the
presence of a term. In table 3.4 the minus symbol is used to flag terms that
documents should not contain.

Synonyms and wildcards

Operators for synonyms and wildcards are inspired by the Boolean OR. Usually
the operator for wildcards used for natural language queries does not differ
from the operator used in Boolean queries. Explicit marking of synonyms is
sometimes supported by putting synonyms between parenthesis. The system
uses this information to produce a better ranking. Other conventions leave the
main term outside the parenthesis as in child (minor, infant).

Phrases

Explicit marking of phrases is inspired by the Boolean ADJ operator. The
system uses the phrase to produce a better ranking. Identifying phrases is very
useful in combination with the exact match operator to perform a high-precision
search, looking for an exact phrase or an exact quotation. Most query languages
use single or double quotation marks to mark phrases.

Manual term weighting

Query term weights are, one way or the other, used in many ranking algorithms.
Some systems give the user access to these weights so they can indicate them-
selves which terms are important and which terms are not important. The last
row in table 3.4 gives an example of this use of term weights. Manual term
weighting is for instance supported by Microsoft Index Server.

3.3.5 Field search

Although documents in a retrieval system might just be represented by their
text only, this is generally not sufficient for professional applications. A quite



3.4. DISCUSSION 47

standard, but very important feature of information retrieval systems is the sup-
port of different fields per document. If this is the case, the document is usually
called (database) record. Some of these fields, like for instance the ‘title’ field or
the ‘abstract’ field might be treated as full text fields. Others, like for instance
‘publication date’ or ‘language’ might be treated as predefined, structured data
as in traditional database management systems. Each application might have
its own domain dependent fields. For instance, in web search engines there
might be a ‘url’ field that stores the web address (uniform resource locator) of
the document.

Users may want to restrict their full text search to documents that were
for instance published during the last decade, or the last four weeks. Also,
users may search fields separately, for instance to retrieve all documents with
the words “harmful” and “materials” in the title. The last example has a by
now familiar problem if it is used in a Boolean retrieval system. If there are
no documents with either the word “harmful” or the word “materials” in the
title, then the system will not retrieve anything. In this case however, the user
might still be helped if the system retrieves documents with one or both words
in the abstract or in the full text. In fact, the user might prefer a document
that contains both words in the abstract over a document that contains only
one of the words in the title.

3.4 Discussion

This chapter provided some background to the following research question: How
to apply the theory of statistical language models to the automatic formulation
of structured queries from natural language search statements? Section 3.2 pre-
sented a number of techniques for automatic indexing and automatic query
formulation that have been extensively studied by the information retrieval re-
search community. Two of these techniques, the use of stop words and stemmers,
are standard practice in research systems, and to a lesser extend also in com-
mercial systems. In terms of retrieval models, there has been little attention to
stop words and stemmers. For instance, from the viewpoint of the vector space
model, there is no good reason why one should remove certain words, and there
is certainly no reason to conflate words to a common stem since this violates
the orthogonality of vectors. Traditionally this was never a problem, because
the indexing and query formulation processes were considered to fall outside the
scope of the mathematical models of information retrieval. This thesis tries to
break with this tradition by presenting an explicit model of the query formula-
tion process. The new model of information retrieval that is introduced in the
next chapter integrates a query formulation model and a matching model, and
gives for instance a mathematical interpretation of stemming.

The automatic formulation of structured queries might benefit from a model
that explains or defines the advanced query operators for free text presented
in section 3.3. A number of these query operators are not covered by any of
the models of ranked information retrieval. Examples of these facilities are



48 CHAPTER 3. TODAY’S IR SYSTEMS IN PRACTICE

wildcards, proximity operators, synonym operators, mandatory query term op-
erators or a text search that is restricted to title words only. The language
model-based retrieval system presented in chapter 4 suggests ranked retrieval
versions of the proximity operators, and can be used to define or explain the
other operators introduced in this chapter.



Chapter 4

A language model-based
information retrieval system

This chapter presents a new probabilistic model of information retrieval based
on the use of statistical language models. Section 4.1 introduces the term ‘lan-
guages models’, gives a summary of related research and informally describes
this approach to information retrieval. Section 4.2 formally introduces the ba-
sic model. In section 4.3 translation of terms is added to model the automatic
formulation of structured queries from a natural language search statement. Sec-
tion 4.4 addresses the notion of importance of query terms. Section 4.5 and 4.6
will present the exact same models in terms of respectively hidden Markov mod-
els and Bayesian networks. Section 4.7 addresses implementation details and
shows the resemblance of the resulting weighting formulas with other models.
Finally, section 4.8 introduces extensions for proximity searching.

4.1 Introduction

4.1.1 A short history of language models

Statistical language models have been around for quite a long time. They were
first applied by Andrei Markov at the beginning of the 20th century to model
letter sequences in works of Russian literature (Manning and Schütze 1999).
Another famous application of language models are Claude Shannon’s models of
letter sequences and word sequences, which he used to illustrate the implications
of coding and information theory (Shannon 1948). Later, statistical language
models were developed as a general natural language processing tool. Language
models were first successfully used for automatic speech recognition at the end of
the 1970’s. The by now standard model of automatic speech recognition consists
of two parts. The first part is the language model, that predicts the next word in
continuous speech. The second part models the acoustic signal and is therefore
called the acoustic model. The theory behind the speech recognition models

49



50 CHAPTER 4. A LANGUAGE MODEL-BASED IR SYSTEM

is part of hidden Markov model theory (indeed, a ‘hidden’ version of Markov’s
models) that was developed by Leonard Baum and his colleagues at IBM in
the late 1960s and early 1970s (Rabiner 1990; Jelinek 1997). Recently, hidden
Markov models are studied as part of a general graphical model formalism,
which subsumes many of the multivariate probabilistic models used in statistics,
systems engineering, information theory and pattern recognition. Examples
include Bayesian networks, Markov random fields, factor analysis and Kalman
filters (Jordan 1998; Bengio 1999).

4.1.2 The application to information retrieval

Only very recently, since 1998, statistical language models are applied to in-
formation retrieval. The past two years show a remarkably large number of
publications in which statistical language models are used to compute the rank-
ing of documents given a query. To sum them up quickly: Ponte and Croft
(1998) were the first to suggest the use of language models in information re-
trieval. They used estimation based on risk functions to overcome the problem
of small sample sizes. Hiemstra (1998a) and Hiemstra and Kraaij (1999) were
the first to introduce ranking based on a mixture of global and local probability
distributions that is also used in the publications mentioned in the remainder of
this paragraph. Miller, Leek, and Schwartz (1999) use hidden Markov models
for ranking, including the use of bi-grams to model two word phrases and a
method for performing blind feedback. Sahami (1999) suggested an approach
to document clustering based on smoothing the document models by using the
geometric mean of the global and local distributions. Berger and Lafferty (1999)
and Hiemstra and De Jong (1999) developed a model that includes statistical
translation. Ng (2000) introduced a model that uses the ratio of the conditional
probability of the query given the document and the prior probability of the
query, including a method for query expansion. Song and Croft (1999) used a
model which includes bi-grams and introduced Good Turing re-estimation to
smooth the document models. This chapter will address details of many of the
above mentioned publications. They will be recited where appropriate in the
following sections. It is assumed that the reader is familiar with the basics of
probability theory as for instance presented by Mood and Graybill (1963).

4.1.3 Two models of information retrieval processes

This chapter will introduce two models of information retrieval: a basic retrieval
model and an extension of the basic model, the statistical translation retrieval
model. The basic model defines the system’s matching process. It has the same
function as the models presented in chapter 2. The extended model adds statis-
tical translation to the basic retrieval model to model both the matching process
and the query formulation process. Because today’s computers are still not able
to really understand the documents and the user’s request, both matching and
query formulation are modelled by simple probability mechanisms. Matching
is modelled by the generation of a random query from a relevant document



4.1. INTRODUCTION 51

and query formulation is modelled by translation of the query into the request
(Hiemstra and De Jong 1999).

t , t ,..., t1    2 n

document
relevant natural language

search statement

matching model
d query formu−

lation model

s , s ,..., sn1     2

query

Figure 4.1: Model of matching and query formulation

Figure 4.1 suggests an information theoretic view of the problem (Miller,
Leek, and Schwartz 1999; Berger and Lafferty 1999). Information theory was
developed by Shannon (1948) to model the problem of decoding a message that
is sent over a noisy communication channel. From this viewpoint, a relevant
document d gets ‘corrupted’ into a query t1, · · · , tn by sending it through a
noisy channel, and the query gets again corrupted into a request s1, · · · , sn by
sending it through a second noisy channel. A natural language information
retrieval system can be thought of as a decoding function f : s1, · · · , sn → d,
that tries to reproduce the message that was originally sent, that is, to find
the document that is relevant to the request. An optimal retrieval system will
choose f(s1, · · · , sn) such that:

f(s1, · · · , sn) = argmax
d

P (D=d|S1 =s1, · · · , Sn =sn)

By Bayes’ rule and because P (S1 = s1, · · · , Sn =sn) does not depend on d:

= argmax
d

P (S1 =s1,· · ·, Sn =sn, D=d)

= argmax
d

∑
t1,···,tn

P (S1 =s1,· · ·, Sn =sn, T1 = t1,· · ·, Tn = tn, D=d)

Because there are two independent channels:

= argmax
d

∑
t1,···,tn

P (S1 = s1, · · · , Sn =sn|T1 = t1, · · · , Tn = tn)

P (T1 = t1, · · · , Tn = tn|D=d)P (D=d)

P (D = d) is the prior probability of relevance of the document d, and P (T1 =
t1, · · · , Tn = tn|D=d) is the probability of the query given a relevant document.
Together, P (D = d) and P (T1 = t1,· · ·, Tn = tn|D = d) define the matching
model. P (S1 = s1,· · ·Sn = sn|T1 = t1,· · ·, Tn = tn) is the probability of the
natural language request given the query, which defines the query formulation



52 CHAPTER 4. A LANGUAGE MODEL-BASED IR SYSTEM

model. A real life retrieval system does not know these probabilities, but instead
defines them by some simple basic principles. A basic principle for the matching
model might be that each document has the same probability of being relevant,
and that within a document each occurrence of a term has the same probability
of ending up in the query. A basic principle for the query formulation model
might be that each query term is translated to one and only one word in the
request.

4.1.4 How the system works

For each document in the collection, a two-step statistical model defines the
probability of generating the user request. Documents are ranked according
to this probability. If a request is entered, the system first uses the query
formulation model to hypothesise for each word in the request the terms that
might have generated it. This results in a structured query that represents all
queries that might have generated the request. In a second step, the system
uses the matching model of each document to calculate the probability that the
document generated any of the queries represented by the structured query.

The two parts have objectives that are similar to the two parts of the speech
recognition models. The objective of the translation model of information re-
trieval is similar to the acoustic model of speech recognition. Both model the
observed signal, respectively the user’s request and the sound wave. The struc-
tured query that represents all queries that might have generated the request,
can be compared to a so-called word lattice in speech recognition (Rabiner
1990). The objective of the basic model of information retrieval is similar to
the objective of the language model of speech recognition. The models predict
respectively the next term in the query, and the next word in speech. So, the
basic retrieval model is the ‘true’ language model, and the translation model is
the signal model. The distinction between language model and signal model can
also be made for e.g. models for part-of-speech tagging (Cutting et al. 1992),
and models for statistical machine translation (Brown et al. 1990). The major
difference with the models of speech recognition, part-of-speech tagging and ma-
chine translation, is that for information retrieval there is a separate language
model for each document in the collection.

4.1.5 The query formulation model

For the query formulation model a simple one-to-one statistical translation
model will be used (Hiemstra 1998b), that is, each query term is translated
to one, and only one request word. The model requires easier calculations dur-
ing actual use than the one-to-many models of Brown et al. (1990) which are
quite standard in the field. Training a one-to-one model from data, for instance
training a machine translation lexicon from a parallel corpus, is however less
straightforward, but can be done efficiently by some effective approximations.
The training of statistical translation models is not addressed by this thesis. The
existence of a translation tool for query formulation is simply assumed. Any



4.1. INTRODUCTION 53

natural language processing tool or algorithm that converts natural language
words into some other representation may be used as the translation/query for-
mulation tool. Examples are stemming algorithms (Porter 1980), edit distance
algorithms (Baeza-Yates 1992), fuzzy matching algorithms (De Heer 1979), the
soundex algorithm (Gadd 1988), ontologies as Wordnet (Miller et al. 1990), or
machine-readable bilingual dictionaries.

4.1.6 The matching model

The matching model assumes that relevant documents are drawn at random
from the document collection. Given a relevant document, queries are generated
by the explicit generation of important terms and unimportant terms. The
important terms are supposed to be drawn at random from the document. The
unimportant terms are supposed to be drawn at random from the full collection.
The probabilities of drawing the terms from the document are calculated by a
simple procedure that, in introductory courses on probability theory (Mood and
Graybill 1963), is often explained by urns containing coloured balls. Consider 4
urns with coloured balls, one of them with 3 red balls, 1 blue ball and 6 yellow
balls. For instance, the probability of selecting at random the described urn
and then drawing at random a red ball is 1/4 × 3/(3+1+6) = 0.25 × 0.3 =
0.075, and the probability of drawing the urn and then drawing at random,
with replacement, first a red ball and then a blue ball is 1/4 × 3/10 × 1/10 =
0.25× 0.3× 0.1 = 0.0075. Instead of urns containing coloured balls, the system
uses documents containing terms, but the procedure is exactly the same.

4.1.7 An ideal user

The probability mechanisms that define how requests are generated from a rele-
vant document should in some way reflect the way users choose the words when
they formulate the request. When users enter a request in a full text information
retrieval system, they do have a reasonable idea of what a relevant document
would look like and they will choose the words accordingly (Ponte and Croft
1998). To formulate a request, users might picture themselves a relevant docu-
ment to choose words from. A probability is assigned to each hypothesis “the
user has the document in mind” and the documents are ranked by this proba-
bility (Miller et al. 1999). The document in the collection that is most similar
to the document that the user has in mind is the best candidate for retrieval.

An ideal user might be defined as follows. Ideal users choose the relevant
document they picture in their mind, and the corresponding query terms accord-
ing to the probability mechanism that is informally introduced in the previous
section. Ideal users know exactly what the collection looks like. Once they have
decided which document they are looking for, they choose important terms and
unimportant terms as defined above: the important terms are selected at ran-
dom from the relevant document, and the unimportant terms are selected at
random from the collection. Of course, ideal users do not exist in practice. Real
users do not know what the collection looks like, and they often do not know



54 CHAPTER 4. A LANGUAGE MODEL-BASED IR SYSTEM

exactly what they are looking for. Thinking of the retrieval model as a model
of an ideal user explains under which circumstances the model works best. Ac-
cording to the experimental results reported in chapter 5, 6 and 7, the ideal
user assumption provides a reasonable approximation of the behaviour of the
real world user. Similar reasons for using simplifications to real world problems
exist in other research areas for very different problems. For instance in ther-
modynamics, an ideal gas consist of particals with zero volume that move in
any direction with equal probability. Ideal gasses do not exist in practice, but
in many cases they provide a convenient approximation of the real world: that
is the essence of modelling.

4.1.8 An overview of this chapter

The remainder of this chapter is structured as follows. Section 4.2 formally
introduces the basic model of the matching process. In section 4.3 translation
of terms is added to model the query formulation process. Section 4.4 addresses
the notion of importance of query terms. Section 4.5 and 4.6 will present the
exact same models in terms of respectively hidden Markov models and Bayesian
networks. Section 4.7 addresses implementation details and shows the resem-
blance of the resulting weighting formulas with other models. Finally, section
4.8 introduces extensions for proximity searching.

4.2 The basic retrieval model

This section formalises the basic retrieval model, that is, the model of the match-
ing process. The section introduces respectively, the model’s random variables
and their sample spaces, the conditional independence assumptions and the
specification of the probability measures.

4.2.1 Defining the probability space

Based on the informal description above, this section will define the basic prob-
ability measures that are used to rank the documents given a query. The model
uses the following discrete random variables.

Definition 1 Let D be a discrete random variable “the document that the
user has in mind”, which sample space contains a finite number of points
{d(1), d(2), · · · , d(N)} each referring to an actual document in the collection.

Definition 2 Let Ii be a discrete random variable “importance of the ith query
term”, over the sample space {0, 1}, where 0 stands for unimportant and 1 for
important.

Definition 3 Let Ti be a discrete random variable “the ith query term”, which
sample space contains a finite number of points {t(1), t(2), · · · , t(m)} each refer-
ring to an actual term in the collection.



4.2. THE BASIC RETRIEVAL MODEL 55

The notation t(1) is used to denote the actual first term in the system’s vocabu-
lary, for instance the term “aardvark” if the dictionary is sorted in alphabetical
order. The notation t1 is used to denote the realisation of the first term in the
user’s query, and changes per query.

At this point, one can argue that the retrieval model uses Luhn’s similarity
criterion (see section 2.3), because relevance information is not modelled explic-
itly. This is certainly true. In absence of relevance information, the similarity
between query and document is the only information there is. If one of the
documents in the collection is completely similar to the relevant document the
ideal user has in mind, it is certainly relevant. Relevance information will be
introduced more explicitly in section 4.4 in which sets of r relevant documents
are modelled by using a separate random variable Dk (1 ≤ k ≤ r) for each
relevant document.

4.2.2 Conditional independence assumptions

The joint probability P (D, I1, · · · , In, T1, · · · , Tn) completely defines the infor-
mation retrieval problem for a query of length n. According to the informal
description of section 4.1, a query is generated by first selecting a document d
with probability P (D=d). Given that d is the document the user has in mind,
tossing for importance and selecting the query terms is done independently for
each query term i with respectively probability P (Ii) and P (Ti|Ii, D) as shown
in equation 4.1.

P (D, I1, · · · , In, T1,· · ·, Tn) = P (D)
n∏

i=1

P (Ii)P (Ti|Ii, D) (4.1)

The major difference between the language model-based retrieval model and
the other retrieval models is that queries are explicitly modelled as sequences
of query terms, not as sets of query terms. So, there is no special treatment of
duplicate query terms, and relative positions of terms might in theory matter
for the probability calculations. Of course, the relative positions do not matter
in equation 4.1, because of the independence between query terms, but they do
matter if for instance a simple bigram model is used as described in section 4.8.

Naive summing over all possible combinations of important and unimportant
query terms would require 2n additions, but fortunately sums can be distributed
over the products as follows (McEliece and Aji 2000).

P (D,T1,· · ·, Tn) = P (D)
n∏

i=1

1∑
k=0

P (Ii =k)P (Ti|Ii =k,D) (4.2)

Ranking the documents by equation 4.2 will in fact rank the documents in
decreasing order of the probability that the document is relevant given the
query. This can be shown as follows by applying Bayes’ rule. On the left-
hand side, P (D|T1, T2, · · · , Tn) is the probability of D conditioned on the query



56 CHAPTER 4. A LANGUAGE MODEL-BASED IR SYSTEM

T1, T2, · · · , Tn of length n.

P (D|T1, T2,· · ·, Tn) =
P (D) P (T1, T2,· · ·, Tn|D)

P (T1, T2,· · ·, Tn)

The denominator of the right-hand side of the formula does not depend on D.
Therefore, documents might as well be ranked according to the numerator of
the right-hand side, which is exactly what is done by equation 4.2. Note that
in the traditional probabilistic model, the probability of relevance is defined by
the probability of drawing a relevant document from a set of documents, for
instance the set that is indexed with a certain term. The language model-based
approach is not a set-based approach to retrieval. Therefore, it is only valid to
talk about the probability of relevance of a specific document d.

4.2.3 Definition of the probability mechanism

The definition of the probability measures introduced above is quite straightfor-
ward. They are defined by using the number of documents in the collection and
the term frequencies of a term in a document. The term frequency tf (t, d) of a
term t in a document d is defined as the number of times the term t occurs in
the document d. Given the informal description of the probability mechanism
presented in section 4.1, estimation of P (D = d), P (Ti = ti|Ii = 1, D = d) and
P (Ti = ti|Ii =0) in equation 4.2 will be done as follows.

P (D = d) =
1

#(documents)
(4.3)

P (Ti = ti|Ii = 1, D = d) =
tf (ti, d)∑
t tf (t, d)

(4.4)

P (Ti = ti|Ii = 0) =
∑

k tf (ti, k)∑
t,k tf (t, k)

=
cf (ti)∑
t cf (t)

(4.5)

As said in section 4.1, important terms are selected from the relevant docu-
ment. The probability P (Ti = ti|Ii = 1, D = d) of selecting an important term
is therefore defined by the number of occurrences of the term in the document
divided by the length of the document. The probability of selecting an unim-
portant term does not depend on the relevant document. Unimportant terms
are selected at random from the entire collection, so P (Ti = ti|Ii =0) is defined
by the number of occurrences cf (ti) of the term in the collection divided by the
total length of the collection

∑
t cf (t). In equation 4.5, cf (ti) is the collection

frequency of the term ti: the frequency of occurrence in the collection.1

4.2.4 Alternative definitions

Two alternatives to respectively equation 4.3 en 4.5 might be defined. The
alternative to equation 4.3, the probability that a document is drawn at random

1In some publications (e.g. Sparck-Jones et al. 2000) the term ‘collection frequencies’ is
also used to denote document frequencies.



4.2. THE BASIC RETRIEVAL MODEL 57

from the collection, is based on the following observation. Suppose that the
system has to find relevant documents to a query that only contains unimportant
terms. In this case, the best thing the system probably can do is to give the
user the longest documents. Long documents contain more information and
therefore have a higher probability of containing information that is useful to
the user.

P (D = d) =
∑

t tf (t, d)∑
t,k tf (t, k)

(4.6)

So, it is assumed that the marginal probability of a document being relevant
P (D=d) is proportional to its length. One might imagine the random selection
of a document by the random selection of a term from the collection; whichever
document contained the term is the selected relevant document.

The alternative of equation 4.5, the probability of drawing a term at random
from the collection, is based on the following pragmatic observation. Most of the
term weighting algorithms presented in section 2.4 use the document frequency
df (t) to include global information of terms. The document frequency df (t) is
defined by the number of documents in which the term t occurs.

P (Ti = ti|Ii = 0) =
df (ti)∑
t df (t)

(4.7)

4.2.5 Unknown parameters

The probability that a term on position i in the query is important, P (Ii =1),
is not easily defined by a basic principle of the probability mechanism that is
informally described in section 4.1. Therefore, the probabilities will be treated
as the unknown parameters of the model, for which λi will be used.

P (Ii = 1) = λi (4.8)

This also determines the probability of a term being unimportant as P (Ii =0) =
1−λi, but it does not explain how to determine the value of λi. The importance
of a query term in a document is an event that cannot be observed directly. A
query term is either important or unimportant, but there is no way that the
system can know which query terms are the important terms and which query
terms are the unimportant terms. For an ad-hoc query (when there are no
previously retrieved documents to guide the search), the additional simplifying
assumption is made that each query term i will be equally important, which
leaves the model with only one unknown parameter λ. The exact value of λ will
be determined empirically on some information retrieval test collection. If some
relevant documents are known, the EM-algorithm presented in section 4.4 can
be used to determine estimates λi for each query term. Some implications of
this line of reasoning is further discussed in 4.4.



58 CHAPTER 4. A LANGUAGE MODEL-BASED IR SYSTEM

4.3 The extended retrieval model

This section adds translation of terms to the basic model presented in section
4.2. The concept of statistical translation of terms turns out to be a valuable
tool to explain the use of structured queries.

4.3.1 Adding statistical translation

If the vocabulary of the request differs from the vocabulary of the document
representations, an additional query formulation step has to account for the
translation of the query terms to the request words. An extreme example of
such a case is the situation where the user wants to do a cross-language search
using French queries on an English database. To model this situation another
random variable will be introduced.

Definition 4 Let Si be a discrete random variable “the ith request word”,
which sample space contains a finite number of points {s(1), s(2), · · · , s(m′)} each
one referring to an actual word in the vocabulary of requests.

The random variable Si has as its sample space all words occurring in requests,
whereas Ti has as its sample space all terms occurring in the queries and the
document collection. The joint probability measure P (D, I1, · · · , In, T1, · · · , Tn,
S1, · · · , Sn) completely defines the information retrieval problem if a query of
length n is entered. According to the informal description of section 4.1, a
query is generated by first selecting a relevant document with probability P (D).
Given that D is the document the user has in mind, tossing for importance
and selecting the terms is done independently for each term on position i with
respectively probability P (Ii) and P (Ti|Ii, D). Given each Ti, selection of the
request words Si is assumed to be done conditionally independent from D and
Ii given Ti with probability P (Si|Ti). This situation is formalised in equation
4.9.

P (D, I1, · · · , In, T1, · · · , Tn, S1, · · · , Sn) =

P (D)
n∏

i=1

P (Ii)P (Ti|Ii, D)P (Si|Ti)
(4.9)

Summing over all possible translations and over all possible combinations of
important and unimportant terms can again be done by distributing the sums
over the products as follows, where m is the number of points in the sample
space of Ti (Hiemstra and De Jong 1999).

P (D, S1, · · · , Sn) =

P (D)
n∏

i=1

m∑
j=1

P (Si|Ti = t(j))
1∑

k=0

P (Ii =k)P (Ti = t(j)|Ii =k, D) (4.10)

A similar statistical translation model was introduced by Berger and Lafferty
(1999). Their model differs from equation 4.10, because they smoothed (see sec-
tion 4.4) the model with global information on Si instead of global information
on Ti.



4.3. THE EXTENDED RETRIEVAL MODEL 59

4.3.2 Statistical translation in practice

In practice, the statistical translation model will be used as follows. The auto-
matic query formulation process will translate the request S1, S2, · · · , Sn using
a probabilistic dictionary. The probabilistic dictionary is a dictionary that lists
pairs (s, t) together with their probability of occurrence, where s is from the
sample space of Si and t is from the sample space of Ti. For each Si there will
be one or more realisations ti of Ti for which P (Si|Ti = ti) > 0, which will
be called the possible translations of Si. The possible translations should be
grouped for each i to search the document collection, resulting in a structured
query. For the example of cross-language information retrieval, suppose the
original French request on an English collection is “déchets dangereux”, then
possible translations of “déchets” might be “waste”, “litter” or “garbage”, pos-
sible translations of “dangereux” might be “dangerous” or “hazardous” and the
structured query can be presented as follows.

((waste ∪ litter ∪ garbage), (dangerous ∪ hazardous))

The product from i = 1 to n (in this case n = 2) of equation 4.10 is represented
above by using the comma as is done in the representation of a query of length 2
as T1, T2. The sum from j = 1 to m of equation 4.10 is represented by displaying
only the realisations of Ti for which P (Si|Ti) > 0 and by separating those by
‘∪’. So, in practice, translation takes place during automatic query formulation,
resulting in a structured query like the one displayed above that is matched
against each document in the collection. Unless stated otherwise, whenever this
chapter mentions ‘query terms’, it will denote realisations of Ti. Realisations
of Si, the ‘request words’, will usually be left implicit. The combination of the
structured query representation and the translation probabilities will implicitly
define the sequence of the request words S1, S2, · · · , Sn, but the actual realisation
of the sequence is not important to the system.

4.3.3 An extension of strict Boolean retrieval

The difference between the vocabularies of Si and Ti is not an essential feature
of the statistical translation model, but the fact that it allows for the modelling
of structured queries is essential. The resemblance of the translated query and
structured queries in the Boolean model is striking. If the Boolean model was
to be used for a cross-language retrieval task, the obvious thing to do would be
to build a faceted query that groups the possible translations of each term using
the OR operator and conjoin the groups using the AND operator.

The statistical translation model defines a conjunction and disjunction op-
eration that can be used to replace the Boolean operators as an extension of
strict Boolean searching. Following this line of reasoning, unstructured queries
of the simple model defined by equation 4.2 are assumed to be AND-queries. An
OR-query consists of all realisations ti of the random variable Ti in equation 4.10
for which P (Si|Ti = ti) > 0. The calculation of AND-queries uses the product of



60 CHAPTER 4. A LANGUAGE MODEL-BASED IR SYSTEM

probabilities, whereas the calculation of OR-queries uses the sum of probabili-
ties.2 If all words in the request are important,3 that is, if P (Ii =1) = 1 for each
request position i, then equation 4.10 will behave like the traditional Boolean
model, assigning zero probability to documents that do not exactly match the
structured query. The documents that do match the structured query will be
assigned some probability higher than 0. All realisations of Ti that are not part
of the structured query are assigned a translation probability of 0. For the real-
isations that are part of the query, the translation probabilities P (Si|Ti) might
be any value higher than 0, indicating the probability that the term Ti actually
generated the request word Si.

4.3.4 On-line morphological expansion using a stemmer

Consider the example of a stemmed index and natural language request. During
indexing the system might keep track of all pairs of stems and full forms to build
a dictionary that translates full forms to stems. In this case, each word will have
only one possible translation, so the resulting query in not structured in any
way. However, the translation probability might improve the system.

More interestingly is the following weird example. Suppose that the user
enters stems, and the index contains the full forms of the words from the docu-
ments. Again, during indexing the system might keep track of all pairs of stems
and full forms to build a dictionary that translates stems to full forms. Note
that the translation probabilities of all entries are 1, because each term in the
collection generates one unique stem. By using the dictionary, the system can
generate all possible morphological variants of each ‘request stem’ and group
those for each i. For instance, the request (funni, tabl), which might be the
result of stemming “funny tables” with the Porter stemmer, can be translated
to form the following structured query.

((funny ∪ funnies ∪ funniness), (table ∪ tables ∪ tabled))

This will be called on-line stemming, or on-line morphological generation. As
will be shown in section 4.7.3, this weird example of the user entering ‘request
stems’ produces exactly the same information retrieval results as the traditional
use of a stemmer during indexing and query formulation. Interestingly, since
this thesis presents a model, may-be the only model, of the query formulation
process, it might be concluded that stemmers have been used weirdly in infor-
mation retrieval systems for the past 30 years.

4.3.5 Expansion with synonyms and related terms

As said before, often the actual realisation of the request words S1, S2, · · · , Sn

will be left implicit to the system. Suppose however that there is in fact a
2Interestingly, when George Boole devised his system of logic, he called the AND and OR

operators respectively the ‘logical product’ (×) and the ‘logical sum’ (+) (see section 2.2).
3Note that, because of the one-to-one translation model an important query term generates

an important request word, and an unimportant query term generates an unimportant request
word.



4.3. THE EXTENDED RETRIEVAL MODEL 61

large quantity of previously entered requests with corresponding relevance judge-
ments. If such a corpus of documents and associated requests were available,
the system could infer for instance that most documents that contain the terms
nuclear and energy have corresponding requests that contain “atomic” and
‘power”. In fact, such corpora exist. They are called information retrieval test
collections (see appendix A). Unfortunately, test collections only contain a very
small number of requests compared to the number of documents, making the
construction of a reliable probabilistic dictionary of synonyms and related terms
problematic. Lacking such a corpus, Berger and Lafferty (1999) automatically
generated synthetic training requests as random samples of a distribution that
is based on some mutual information statistic. The resulting synthetic training
data was used to construct a probabilistic translation dictionary that lists pairs
of synonyms and related terms. For instance, the query “pope cuba” for Pope
John Paul II’s visit to Cuba in 1998 would be expanded by their system in the
following structured query.

((pope ∪ pontiff ∪ paul ∪ john), (cuba ∪ castro))

4.3.6 Discussion

The extensions of the Boolean model presented in sections 2.3.4 and 2.3.5, the p-
norm model and Paice’s fuzzy set model, are quite different from the extension
suggested in this section. Both models assume that unstructured queries are
queries that are somewhere ‘in between’ AND-queries and OR-queries. The p-
norm model and Paice’s model can be reduced to the vector model by assigning a
value of 1 to respectively both p parameters of p-norm, and both r parameters of
Paice’s model. Slightly higher values of these parameters will result in operators
that are somewhat AND and somewhat OR. For a user it is hard to interpret an
operator that is AND with e.g. p, or r = 2 as is done by some of the extensions
of the Boolean model suggested in information retrieval literature.

The extension in this section suggests that AND-queries should rank a doc-
ument by multiplying, and OR-queries by adding the probability of drawing
terms from the document. The underlying probability mechanism is easy to
understand and easy to explain. For instance, if a fair die is tossed twice, the
probability of first a 5 and then a 6 should be calculated as 1/6 × 1/6. On each
toss it is possible to specify more than one preferred outcome. For instance the
probability of first a 4 or a 5, and then a 6 should be calculated as (1/6 + 1/6)
× 1/6. This line of reasoning needs the queries to be in conjunctive normal
form, because the number of draws has to be unambiguously specified as well as
which draw belongs to which query term. For instance the query (a AND b) OR
c is not a valid query, because (a AND b) refers to drawing two terms from a
document which contradicts with OR c which refers to drawing one term from a
document. In fact, the reason that this query is invalid is closely related to the
reason that for instance the query (a AND b) ADJ c is invalid in the traditional
Boolean model (see section 3.3.2).

Automatic query formulation, for instance using a translation module or us-



62 CHAPTER 4. A LANGUAGE MODEL-BASED IR SYSTEM

ing a morphological component, will produce valid queries in conjunctive normal
form by design. This might also be the case for manually formulated structured
queries. For instance, the natural language query languages introduced in sec-
tion 3.3.4 practically force the users to formulate their queries in conjunctive
normal form. If the query language uses the traditional Boolean operators,
manually formulated Boolean queries might be converted automatically to their
conjunctive normal form. For the extended Boolean models presented in sec-
tion 2.3, the p-norm model, Paice’s fuzzy set model, and the inference network
model all combinations of the standard Boolean operators AND and OR are
valid. However, for these models, the distributive laws that hold for conven-
tional Boolean expressions are not valid. For instance, (a AND c) OR c and (a
OR c) AND (b OR c) are equivalent in the traditional Boolean model, but this
is not generally the case for the extended Boolean models presented in section
2.3.

Section 4.7 will show the following. For each indexing strategy that unam-
biguously converts words in documents to index terms, there is a corresponding
query formulation strategy that produces the exact same results on an index
that did not use this indexing strategy. Unambiguously in this context means
that each word will be converted deterministically to one, and only one term
e.g. as done by converting words to lower case or as done by a stemmer. For
instance, the weird on-line morphological generation as described above should
produce exactly the same retrieval results as off-line stemming. This is the case
for strict Boolean searching, but this is not generally the case with the extended
Boolean models presented in section 2.3. Section 4.7 will show that the language
modelling extension will produce the exact same probabilities and therefore the
exact same ranking for on-line generation and off-line stemming. This implies
that for instance a wildcard search for dog∗ will produce the exact same re-
sults as a hypothetical indexing and automatic query formulation process that
converts each word beginning with the characters d, o, g to the term dog.

4.3.7 Extension of the Boolean NOT

The metaphor of drawing terms at random from documents provides a natu-
ral extension of the Boolean NOT. For instance a search for development NOT
sustainable might be modelled by a probability mechanism in which first the
term development is drawn at random from the document and then any term
except for the term sustainable. The probability that the next query term is
not ti is calculated as follows.

P (Ti 6= ti|Ii = 1, D = d) = 1− P (Ti = ti|Ii = 1, D = d)
P (Ti 6= ti|Ii = 0) = 1− P (Ti = ti|Ii = 0)

Like the extension of the Boolean OR, the NOT operator should always refer
to the position in the query to which it applies. So, a NOT (b AND c) is not a
valid query, whereas a NOT (b OR c) is a valid query. One might argue that
the extension of the NOT operator is modelled by a disjunction of all terms,
except for terms specified within the not.



4.4. IMPORTANCE OF QUERY TERMS 63

The extension of AND and OR behaves like the traditional strict Boolean
model if all terms are important terms. This is not the case for the NOT

operator. Even if the draw of any term except for the term sustainable in
the example above is an important term with P (Ii =1) = 1, then this will still
match every document in the collection because every document will contain
some terms that are not the term sustainable. If users want a strict Boolean
NOT, the system should provide two separate operators, one with the strict
interpretation and one as specified above. For full-text retrieval however, queries
using NOT are generally quite rare. the manually formulated Boolean queries
used for the experiments in section 5 only have one occurrence of the NOT

operator in 50 queries.

4.4 Importance of query terms

The importance of query terms is one of the key-concepts of the language mod-
elling approach presented in this book. It can be used to explain mandatory
terms, stopping, coordination level ranking of short queries and relevance feed-
back. First, some simplified notations will be introduced.

4.4.1 Simplified notations

The previous sections introduced a rather elaborate notation to describe the
new retrieval model. The notation differs considerably from the notations used
in earlier publications (Hiemstra 1998a) and from the notation used in the publi-
cations by Miller, Leek, and Schwartz (1999), Song and Croft (1999) and Berger
and Lafferty (1999). The old notations will be reintroduced at the end of this
paragraph. The reason for presenting a new notation is two-fold. Firstly, the
notation used in this chapter is more explicit in the assumptions made and there-
fore mathematically more precise. Secondly, the notation explicitly introduces
a new concept in retrieval modelling: the importance of a query term. However,
the notation that is used to introduce the importance of a query term is not
very readable. Therefore, the following notations will be used as a short-hand.

λi instead of P (Ii = 1)
1− λi instead of P (Ii = 0)

P (Ti|D) instead of P (Ti|Ii = 1, D)
P (Ti) instead of P (Ti|Ii = 0)

(4.11)

The simplified notations of the probability measures are more in correspon-
dence with the way the probabilities are actually defined than the elaborate
notation. The simplified notation is intuitively easy to understand. It will be
used throughout the rest of this book. Substituting the probability measures
of equation 4.2 by their simplified versions results in the following definition of



64 CHAPTER 4. A LANGUAGE MODEL-BASED IR SYSTEM

the matching model.

P (D,T1, T2,· · ·, Tn) = P (D)
n∏

i=1

((1−λi)P (Ti) + λiP (Ti|D)) (4.12)

Similarly, the simplified notation of the statistical translation information re-
trieval model of equation 4.10 results in the following definition of the extended
model.

P (D,S1, S2, · · · , Sn) =

P (D)
n∏

i=1

m∑
j=1

P (Si|Ti = t(j))((1−λi)P (Ti = t(j)) + λiP (Ti = t(j)|D)) (4.13)

In publications of Hiemstra (1998a), Song and Croft (1999) and Berger and
Lafferty (1999), the parameter λ is called a smoothing parameter. Smoothing
parameters are used in probability estimators to move the estimates away from
maximum likelihood estimates (Manning and Schütze 1999). This book presents
the parameter λ as the probability of term importance and argues that all
definitions should use maximum likelihood estimates as done by Miller et al.
(1999). Of course, this does not really make the model very different, but it
does make the interpretation of the model different and it might lead to a better
understanding of information retrieval. One practical difference from all of the
publications mentioned in this paragraph, is that each query term i might be
assigned a different λi, of which the value can be determined from some examples
of relevant documents.

4.4.2 Relevance weighting

Documents that are judged relevant by the user can be used to re-estimate
the importance weights for each i separately. Since the importance of terms
given a document is an event that cannot be observed directly, it is necessary
to resort to methods for the estimation of probabilities from incomplete data.
A standard method for finding maximum likelihood estimates from incomplete
data is the Expectation Maximisation (EM) algorithm (Dempster, Laird, and
Rubin 1977). The general idea of the EM-algorithm is that if only the expected
values of the unobserved data were known, then these values could be used to
estimate the probabilities we want to know. Unfortunately, in order to compute
the expected values the probabilities are needed. To break the vicious circle,
the EM-algorithm takes any set of probabilities to compute the expected values;
these are used to re-estimate the probabilities. The new probabilities are used to
compute new expected values, etc. The two steps, called expectation step and
maximisation step are repeated until the probabilities do not change significantly
anymore. The algorithm is guaranteed to converge to a local maximum.

The EM-algorithm will be applied as follows. The algorithm should max-
imise for each document the probability that the user has the document in mind
when he/she entered the query. Strictly speaking, the model as presented up till



4.4. IMPORTANCE OF QUERY TERMS 65

now does not allow that the user has more than one document in mind, because
the documents d(1), d(2), · · · of the sample space of D are mutually exclusive.
Therefore r separate random variables Dj , (1 ≤ j ≤ r) will be introduced, one
for each relevant document.

Definition 5 Let Dj be a discrete random variable “the jth relevant docu-
ment”, which sample space contains a finite number of points {d(1), d(2),· · ·, d(N)}
each referring to an actual document in the collection.

Definition 6 Let Iij be a discrete random variable “the importance of the ith
query term in the jth relevant document”, over the sample space {0, 1}, where
0 stands for unimportant and 1 for important.

Dempster et al. (1977) describe the algorithm by defining the observed data
as the ‘incomplete data’ and the combination of the observed data and the
unobserved data as the ‘complete data’. The incomplete data consist in this case
of a sequence of n query terms Ti, (1 ≤ i ≤ n), and a set of r relevant documents
Dj , (1 ≤ j ≤ r). The complete data ‘completely’ define how the model generated
the observed data. It consists of the query terms, the relevant documents and r
sequences of n binary random variables Iij , (1 ≤ i ≤ n; 1 ≤ j ≤ r) indicating the
importance of each term on position i in the relevant document j. The values
λ1, · · · , λn that the algorithm tries to find are related to the complete data by
the following likelihood function, assuming independence between the observed
relevant documents:

r∏
j=1

P (Dj =dj , T1 = t1, · · · , Tn = tn, I1j =x1j , · · · , Inj =xnj)

=
r∏

j=1

P (Dj =dj)
n∏

i=1

(
((1−λi)P (Ti = ti))(1−xij)(λiP (Ti = ti|Dj =dj))xij

)
=

( r∏
j=1

P (Dj =dj)
)( n∏

i=1

r∏
j=1

P (Ti = ti|Dj =dj)P (Ti = ti)
)

( n∏
i=1

λ

∑r

j=1
xij

i

)( n∏
i=1

(1−λi)
r−

∑r

j=1
xij

)
The complete-data sufficient statistics are n counts Mi for which Mi =

∑r
j=1 Iij

(1 ≤ i ≤ n), and the unknown parameters λi can be estimated from the real-
isation of the complete-data sufficient statistics by: λi = mi/r. This will be
the maximisation step. The expectation step will estimate the complete-data
sufficient statistics, by the following expectation.

E(M1, · · · ,Mn|T1, · · · , Tn, D1, · · · , Dr, λ1, · · · , λn)

Since the expectation of a sum is the sum of an expectation, the expectation of
the importance of terms in each separate relevant document might be summed
instead.



66 CHAPTER 4. A LANGUAGE MODEL-BASED IR SYSTEM

=
r∑

j=1

E(I1j , · · · , Inj |T1, · · · , Tn, D1, · · · , Dr, λ1, · · · , λn)

Because of independence between terms, it is not necessary to enumerate all
2n combinations of important and unimportant terms. Instead the expected
values can be computed for each term independently. The resulting algorithm
is displayed in figure 4.2. The algorithm iteratively maximises the probability
of the query t1, t2, · · · , tn given r relevant documents d1, d2, · · · , dr. Before the
iteration process starts, the importance weights are initialised to their default
values λ

(0)
i , where i is the position in the query. Each iteration p estimates a

new relevance weight λ
(p+1)
i by first doing the E-step and then the M-step until

the value of the relevance weight does not change significantly anymore.

E-step: mi =
r∑

j=1

λ
(p)
i · P (Ti = ti|Dj = dj)

(1−λ
(p)
i )P (Ti = ti) + λ

(p)
i P (Ti = ti|Dj = dj)

M-step: λ
(p+1)
i =

mi

r

Figure 4.2: Relevance weighting for the basic model: EM-algorithm

A similar relevance weighting algorithm can be developed for structured
queries of the statistical translation retrieval model by following the procedure
as above. In this case, both the translations and the importance of the terms
cannot be observed directly. The EM-algorithm estimates the translation prob-
abilities τi(j) of jth possible translation t(j) of the request word on position
i, and the probabilities λi of importance of the request word on position i.
The algorithm displayed in table 4.3 iteratively maximises the model for query
t1, t2, · · · , tn of length n and r relevant documents d1, d2, · · · , dr. Before the it-
eration process starts, the importance weights and the translation probabilities
are initialised to their default values λi

(0) and τi(j)(0), where i is the position
in the query and j is the jth translation. Each iteration p estimates a new
importance weight λi

(p+1) by first doing the E-step and then the M-step until
the values do not change significantly anymore. Translation probabilities that
are initialised to zero, that is terms that are not in the structured query, will
remain zero during and after reestimation. The same thing goes for the impor-
tance weights for that matter. Importance weights that are initialised to zero,
that is request words that are treated as stop words, will remain zero even if
the relevant documents contain many occurrences of the possible translations
of the word.

The application of the EM-algorithm to the estimation of unknown param-
eters is standard practice in many applications of statistical language models.
Often, a less broadly applicable version is used, for instance the Baum-Welch
algorithm that was developed for the estimation of hidden Markov model pa-



4.4. IMPORTANCE OF QUERY TERMS 67

mi =
r∑

k=1

λ
(p)
i (

∑m
l=1 τi(l)(p) P (Ti = t(l)|Dk =dk))∑m

l=1 τi(l)(p)((1−λ
(p)
i )P (Ti = t(l)) + λ

(p)
i P (Ti = t(l)|Dk =dk))

E-step:

ni(j)=
r∑

k=1

τi(j)(p) ((1−λ
(p)
i )P (Ti = t(j)) + λ

(p)
i P (Ti = t(j)|Dk =dk))∑m

l=1 τi(l)(p)((1−λ
(p)
i )P (Ti = t(l))+λ

(p)
i P (Ti = t(l)|Dk =dk))

λ
(p+1)
i =

mi

r
M-step:

τi(j)(p+1) =
ni(j)

r

Figure 4.3: Relevance weighting for the extended model: EM-algorithm

rameters (Manning and Schütze 1999). Experimental results of the algorithm
for the basic model (see section 5) indicate that in a few cases, the model de-
grades performance even if training data and test data are the same. Similar
problems have been noted with language models for part-of-speech tagging (El-
worthy 1994). The problem might be related to the the maximum likelihood
criterion that underlies the EM-algorithm (Jelinek 1997, page 72). The max-
imum likelihood criterion is not directly related to the aim of maximising the
probability of relevance and so it might not lead to it. A useful alternative
criterion might be the maximum mutual information criterion which is success-
fully applied to speech recognition (Rabiner 1990). Instead of maximising the
observed data, the criterion tries to minimise the model’s average uncertainty
of what the relevant document is. The criterion might result in better results
but is hard to apply because it needs information from relevant and nonrelevant
documents. In practice however, the basic EM-algorithm is as effective as rel-
evance weighting for the traditional probabilistic model, which seems to make
similar mistakes in a retrospective relevance weighting experiment.

4.4.3 Ranging from exact matching to stopping

Instead of providing some examples of relevant documents, the user might di-
rectly assign a value to λi. The concept of important and unimportant query
terms is intuitively easy to understand for naive users of retrieval systems. As-
signing an importance weight of 1 to a term will have the same effect as the
exact match operator presented in section 3.3.4. The document should contain
the term. Documents that do not contain the term are assigned zero probability
and are therefore not retrieved. Assigning an importance weight of 0 to a term
will be like treating the term as a stop word presented as in section 3.2.2. The
term will have no effect on the final ranking.



68 CHAPTER 4. A LANGUAGE MODEL-BASED IR SYSTEM

Note that the model completely separates the importance of query terms
from their frequency in the collection. In principle, the importance of a term
does not necessarily have anything to do with the frequency of occurrence in
the collection. For retrieval experts this needs getting used to, but for naive
users this is an important advantage. There is something to the importance
of query terms that has nothing to do with its frequency of occurrence in the
collection. This ‘something’ is embodied in the value of λi. Sometimes a term,
whether frequent or infrequent, simply does not occur in any of the relevant
documents. The importance of a term is directly related to the term’s distri-
bution over relevant and non-relevant documents. Some words, like “the” or
“and” are generally unimportant words, not because their collection frequency
is high, but because their distribution in relevant documents is similar to their
distribution in non-relevant documents. The same goes for some infrequent
words like e.g. the word “presumably”. As long as the relevant documents are
unknown, all query terms, whether frequent or infrequent, might be assumed
equally important. The retrieval model makes sure that the impact of each
term on the final ranking will be based on their frequency of occurrence in the
collection. Alternatively, some words like e.g. “the”, “and” and “presumably”
might be assigned an importance weight of 0. These words will not affect the
ranking and therefore might as well be removed from the query as is done with
stop words.

4.4.4 Coordination level ranking

If no information on relevant documents is available, the importance weights
should be constant for each position i in the query that does not contain a
stop word. The optimum value of the constant, λ, might change for different
applications. A high value of λ results in rankings that obey the conditions of
coordination level ranking (Hiemstra 2000). Coordination level ranking partially
ranks documents in such a way that documents containing n query terms are
always ranked above documents containing n−1 query terms. For low relevance
weights however, chances are that documents that contain n−1 query terms are
ranked above documents that contain n query terms. According to studies of
user preferences, users do not like systems that do not obey the conditions of co-
ordination level ranking. These problems become particularly apparent if short
queries are used (Rose and Stevens 1997). In a lot of practical situations short
queries are the rule rather than the exception, especially in situations where
there is no or little user training like with Web-based search engines. High
relevance weights might therefore be a good choice for applications in which
very short queries are used, like web search engines. For some research groups,
the interest of users in coordination level is the reason for developing ranking
methods that are based on the lexical distance of search terms in documents
instead of on frequencies of terms (Hawking and Thistlewaite 1996; Clarke et al.
1997). As pointed out by experiments of Wilkinson et al. (1996), some tf .idf
measures behave more like coordination level ranking than others. For instance,
the Okapi BM25 algorithm behaves more like coordination level ranking than



4.4. IMPORTANCE OF QUERY TERMS 69

the Smart tfc.nfc algorithm (see section 2.4). They showed that weighting mea-
sures that are more like coordination level ranking perform better on the TREC

collection, especially if short queries are used. Following the results of Wilkinson
et al. (1996) it might be useful to investigate what exactly makes a weighting
measure “like” coordination level ranking. Appendix B sketches a proof that a
high value of λ guarantees coordination level ranking.

4.4.5 Relation to previous work

Importance weighting as presented above is closely related to relevance weight-
ing of the traditional probabilistic model presented in section 2.3.3. Both ap-
proaches try to use the distribution of terms over relevant and non-relevant
documents to estimate term weights. The Robertson/Sparck-Jones relevance
weight is different from the importance weight as it might range from minus
infinity to infinity, but one of its components is quite similar: the probability of
term occurrence given relevance. A simple approach to importance weighting
might assume that a term is important if it occurs in the relevant document
and unimportant otherwise. If so, the importance weight λi of the language
models is equal to P (Dk|L) = pi, the probability of term occurrence given rele-
vance of the traditional probabilistic model, where R is the number of relevant
documents and ri is the number of relevant documents containing the term.

λi = pi =
ri

R
(4.14)

As said in section 4.2.3, in absence of relevance information it will be assumed
that the value of λi is fixed for each position i in the query. Assuming a fixed
value for the traditional probabilistic model’s pi in absence of relevance infor-
mation was suggested by Croft and Harper (1979). Often a constant value of
pi = 0.5 is used for the traditional probabilistic model if no relevance informa-
tion is available. This results in negative weights for terms that occur in more
than half of the documents in the collection. A lower constant might be more
realistic, but also results in more terms with negative contributions, which might
not be desirable for any term in absence of relevance information (Robertson
and Walker 1997). Terms cannot have a negative contribution in the language
model-based system.

The relation between importance weighting and relevance weighting is even
stronger in the extension of the traditional probabilistic model presented in sec-
tion 2.3.7. This model uses the binary event eliteness suggested by Harter’s
2-Poisson model (see section 2.3.6). Given relevance, the probability of term
eliteness is used like the probability of term importance, as the source of a mix-
ture model. As shown in equation 2.15, the within document term frequencies
are modelled by a mixture of two Poisson distributions, similar to the mixture
model presented in this chapter. Term eliteness and term importance are both
unknown, unobservable events, on which respectively the production of docu-
ments and the production of queries depend. However, they do not refer to the
same event. If a query term does not occur in a relevant document, then it has



70 CHAPTER 4. A LANGUAGE MODEL-BASED IR SYSTEM

to be an unimportant term, but this term might still be elite if the document
treats the subject referred to by the term to some extent.

4.5 Presentation as a hidden Markov model

In the last two decades, hidden Markov models have been successfully applied to
numerous natural language processing tasks, like e.g. speech recognition, part-
of-speech tagging and optical character recognition. This section briefly presents
the retrieval model in terms of hidden Markov models as done by Miller et al.
(1999). Hidden Markov models are often presented, and graphically displayed,
as probabilistic finite state machines. Each state transition is assigned a prob-
ability. The state transitions generate an output sequence by some probability
function as well. The models are called hidden Markov models, because only the
output symbols can be observed, but not the underlying state sequence. For in-
formation retrieval, the output symbols are the query terms which are assumed
to be produced by some unknown state sequence. This section is largely based
on a tutorial by Rabiner (1990).

4.5.1 The basics

In general, an N -state hidden Markov model with M possible output symbols is
described by three probability measures A, B and Π. The probability measure
A has as its parameters the transitions probabilities aij (1 ≤ i, j ≤ N). The
probability measure B has as its parameters the observation probabilities bj(k)
(1 ≤ j ≤ N ; 1 ≤ k ≤ M). The probability measure Π has as its parameters the
initial state probabilities πi (1 ≤ i ≤ N).

Ii 0=

I 1i=

Ti

Figure 4.4: Document model as a two-state hidden Markov model

For information retrieval, each document is assigned a separate hidden Mar-
kov model. The simplest document model can be interpreted as the two-state
hidden Markov model shown above if λi is constant (1 ≤ i ≤ n) (Miller et al.
1999). The model has one state for the unimportant terms and one state for the
important terms. The observation probabilities are estimated as P (Ti|Ii = 0)
for the unimportant terms and P (Ti|Ii = 1, D = d) for the important terms,
presented in section 4.2.3. The two transition probabilities to the state of the



4.5. PRESENTATION AS A HIDDEN MARKOV MODEL 71

important terms are estimated as P (Ii =1) = λ and the two transition probabil-
ities to the state of the unimportant terms are estimated as P (Ii =0) = 1−λ, as
presented in section 4.2.3. States are graphically displayed as nodes of a graph,
and state transitions with a probability higher than zero are displayed by an arc
from one node to the other as shown in figure 4.4. The model has two different
state transition values defined by only one parameter λ.

Tied state transitions

Note that generally a two-state hidden Markov model may have four different
state transition values, defined by two parameters a11 (the probability of going
from state 1 to state 1) and a22, and the fact that a12+a11 = 1 and a22+a21 = 1.
In the hidden Markov model displayed above, a12 is constrained to be equal to
a22. The state transitions are said to be tied. By tying the state transitions,
the probability of going to a state does not depend on the (previous) state the
model is in. This makes the model memoriless: a degenerate case of a hidden
Markov model. Note that state transitions are also tied across all document
models.

Fixed parameters

The number of free parameters of a hidden Markov model can be reduced by
fixing the values of some parameters, so that the values may not be changed
during training. For the retrieval model all output parameters (the probability
measure B) will be fixed, because they describe the physical characteristics
of the document collection which should only change if the collection, or a
document in the collection, changes.

4.5.2 Left-right models

Each output symbol can be given its own states by expanding the two-state
model of figure 4.4 to the 2n-state model of figure 4.5. The resulting model
is called a left-right model. Suppose that the states in figure 4.5 are somehow
numbered from left to right, then state transition probabilities aij from a state i
to a state j for which j < i will be zero. In fact, the model displayed in figure 4.5
is a strict left-right model as aij = 0 for i = j as well. Again, state transitions to
the same state are tied, making the model a memoriless process. The random
variables of the output symbols are displayed above the corresponding state
transitions.

For the statistical translation model, the output symbols are modelled by
the stochastic variable Si. Each Si may have several possible translations that
should be assigned hidden states as well. There should be a state for each
possible term in the vocabulary of the documents. The resulting left-right model
of the statistical translation information retrieval model is graphically displayed
in figure 4.6. Again, random variables of the output symbols are displayed above
the corresponding state transitions. Transitions to the model’s Ii =0 and Ii =1



72 CHAPTER 4. A LANGUAGE MODEL-BASED IR SYSTEM

I1 1=

I1=0 0I2=

I2 1= I3 1=

0I =3

T1 T3T2

Figure 4.5: Document model as a left-right hidden Markov model

states do not produce an output symbol. These transitions are called epsilon
transitions.

1S S32S

I1=0

I1 1=

0I2=

I2 1= I3 1=

0I =3

t(1)

(2)t

t(1)

(2)t

t(1)

(2)t

(m)t (m)t

ε εε
. .

 . 

(3)t

. .
 . 

(3)t

. .
 . 

(3)t

(m)t

Figure 4.6: Extended document model as a hidden Markov model

4.5.3 Application of hidden Markov model theory

There are three basic problems of interest to be solved for a hidden Markov
model in order to be useful in real-world applications. These problems are the
following (Rabiner 1990; Manning and Schütze 1999).

1. Given the observation sequence s1, s2, · · · , sn and a document model, how
to efficiently compute the probability of the observation sequence given
the model?

2. Given the observation sequence s1, s2, · · · , sn and a document model, how
to choose a corresponding state sequence that best explains the model?

3. How to adjust the parameters (A,B,Π) of the document model to max-
imise the probability of a given observation sequence s1, s2, · · · , sn?



4.6. PRESENTATION AS A BAYESIAN NETWORK 73

Problem 1 is the search problem in information retrieval. It involves the distri-
bution of sums over products as shown by equation 4.2 which is usually called
the forward algorithm (or alternatively, the backward algorithm). Problem 2
is not so interesting for the information retrieval models. It decides for each
term its importance and its most probable translation in the document. It usu-
ally involves the Viterbi algorithm. The third problem is the relevance feedback
problem in information retrieval. It describes the case in which some documents
are known to be relevant, and their parameters have to be optimised for the
given output sequence. It is used to re-estimate the importance weight of each
query term. This involves the EM-algorithm presented in section 4.4.2, which
is a general version of the Baum-Welch algorithm that is specifically designed
for hidden Markov models (Rabiner 1990).

4.5.4 Discussion

Hopefully, this section was an eye opener for readers that gained experience
with hidden Markov models on other applications. Remember that this section
presented the exact same model from a different perspective. A number of
little tweaks to hidden Markov model theory were needed to describe the model
correctly: tied state transitions, fixed parameters and epsilon transitions. These
tweaks are also extensively used in speech recognition (Rabiner 1990). It was
also noted that the models as presented above are memoriless systems and
therefore degenerate cases of hidden Markov models.

4.6 Presentation as a Bayesian network

Bayesian networks were successfully applied in the mid 1980’s and the 1990’s to
a wide variety of applications, ranging from for instance medical expert systems
(Heckerman 1991) to error correction codes (McEliece, MacKay, and Cheng
1998). This section briefly presents the retrieval model in terms of Bayesian
networks. Previous work on the application of Bayesian networks to information
retrieval was presented in section 2.3.8.

4.6.1 The basics

A Bayesian network is an acyclic directed graph that encodes probabilistic de-
pendency relationships between random variables. A directed graph is acyclic
if there is no directed path A → · · · → Z such that A = Z. The presenta-
tion of probability distributions as directed graphs, makes it possible to analyse
complex conditional independence assumptions by following a graph theoretic
approach. Probability theory ensures that the system as a whole is consistent.
Some alternative names for Bayesian networks are belief networks, probabilistic
independence networks, influence diagrams and causal nets (Pearl 1988).

Figure 4.7 graphically displays the basic retrieval model of section 4.2 as a
Bayesian network. It should not be confused with the graphical representation



74 CHAPTER 4. A LANGUAGE MODEL-BASED IR SYSTEM

D

I3I1 I2

T2 3TT1

Figure 4.7: Retrieval model as a Bayesian network

of the hidden Markov model introduced earlier, in which each node represents
the value of a state variable and arcs represent state transitions. In figure 4.7,
the nodes represent random variables and arcs represent dependence relations.
Following the convention used by Jordan (1998), clear nodes are used to rep-
resent unknown, hidden variables and shaded nodes are used to denote known,
observed variables.

D

I1 I3I2

S3S2

T2

S1

3TT1

Figure 4.8: Retrieval model as a Bayesian network, including translation

Figure 4.8 displays the extended retrieval model. The graphical representa-
tion shows that, for each i, the terms Ti are conditionally independent given D
and Ii. The translation to each word Si is in turn conditionally independent
from D and Ii given Ti.

4.6.2 Discussion

Remember again that this section presented the exact same retrieval models
from a different perspective. The application of Bayesian networks to infor-
mation retrieval was discussed before in section 2.3.8. The model presented
above shares some important features with previously introduced Bayesian net-
works for information retrieval. For instance, the model infers the probability



4.7. FROM PROBABILITYMEASURE TO WEIGHTING ALGORITHM 75

of the query from the hypothesis that a document is relevant as is done by
Turtle (1991). The model differs considerably from previous work for two main
reasons.

Firstly, it does not imply a commitment to the Bayesian approach to prob-
ability and statistics. The success of the theory presented in this book, should
in the author’s opinion mainly be contributed to the ‘dumb’ formulation of an
explicit probability mechanism in section 4.1 that accounts for the estimation
of classical probabilities in an intuitively plausible way.

The second difference with previous publications is that the models of figure
4.7 and figure 4.8 are tractable. Estimates of the probability of relevance can be
computed rather trivially in linear time by distributing sums over products as is
done in the belief propagation algorithm introduced by Pearl (1988) for complex
Bayesian networks. It is therefore unnecessary to introduce approximate link
matrices as e.g. done by Turtle (1991) for the Inquery model.

4.7 From probability measure to term weighting
algorithm

Similar to the traditional probabilistic model presented in section 2.3.3, the
probability measures for ranking documents can be rewritten into a format that
is easy to implement. A presence weighting scheme (Robertson and Sparck-
Jones 1976) (as opposed to a presence/absence weighting scheme) assigns a
zero weight to terms that are not present in a document. Presence weighting
schemes can be implemented using the vector product formula. This section
presents the resulting algorithms.

4.7.1 Relation to tf.idf and relevance weighting

First, let’s have a look again at the simplified notation of the basic probability
measure as introduced by equation 4.12:

P (D,T1, T2,· · ·, Tn) = P (D)
n∏

i=1

((1−λi)P (Ti) + λiP (Ti|D))

Dividing the formula by
∏n

i=1((1−λi)P (Ti)) will not affect the ranking because
λi and P (Ti) have the same value for each document. Doing so results in a
document ranking function that is somewhat similar to Ng’s likelihood ratio
formula (Ng 2000).

P (D,T1, T2,· · ·, Tn) ∝ P (D)
n∏

i=1

(1 +
λiP (Ti|D)

(1−λi)P (Ti)
)

Any monotonic transformation of the document ranking function will produce
the same ranking of the documents. Instead of using the product of weights, the
formula can be implemented by using the sum of logarithmic weights. Doing so



76 CHAPTER 4. A LANGUAGE MODEL-BASED IR SYSTEM

and replacing P (D), P (Ti|D) and P (Ti) by the definitions in equations 4.3, 4.4
and 4.5 results in:

P (D=d, T1 = t1, T2 = t2,· · ·, Tn = tn) ∝
n∑

i=1

log(1 +
λitf (ti, d)

∑
t cf(t)

(1−λi)cf(ti)
∑

t tf (t, d)
) (4.15)

The formula above will assign zero weight to each term ti for which tf (ti, d) = 0,
since log(1) = 0. In the formula, the definition of P (D) can be ignored, because
it is constant for any document d. If the alternative equation 4.6 of section
4.2.4 is used, then P (D) can no longer be ignored, except for its denominator∑

t,k tf (t, k). The resulting presence formula will rank the entire collection, only
assigning a zero score to documents of length 1, whose sole term is not among
the query terms.

P (D=d, T1 = t1, T2 = t2,· · ·, Tn = tn) ∝∑
t tf (t, d) +

n∑
i=1

log(1 +
λitf (ti, d)

∑
t cf(t)

(1−λi)cf(ti)
∑

t tf (t, d)
)

Equation 4.7 of section 4.2.4 results in an algorithm that uses document fre-
quencies instead of collection frequencies. Document frequencies are familiar
from other retrieval models, and are used in most of the existing term weighting
algorithms. The resulting presence weighting algorithm is the following.

P (D=d, T1 = t1, T2 = t2,· · ·, Tn = tn) ∝
n∑

i=1

log(1 +
λitf (ti, d)

∑
t df(t)

(1−λi)df(ti)
∑

t tf (t, d)
)

The formula can be interpreted as a tf.idf term weighting algorithm with doc-
ument length normalisation. Also, the formula can be interpreted as using the
odds of the probability of term importance which, as said in section 4.4.5, might
be approximated by the probability of term occurrence given relevance of the
traditional probabilistic model. Using the vocabulary of the vector space model
and the traditional probabilistic model, the weighting function might be inter-
preted as follows:

tf (ti, d)
df(ti)

is the tf.idf weight of the term ti in the document d

1∑
t tf (t, d)

is the inverse length of document d

λi

1− λi

is the odds of the probability of term importance given
relevance∑

t df(t)
is constant for any document k and term ti. It is cal-
culated once for the collection.

The query weights of the vector product formula can be used to account for
multiple occurrences of the same term in the query. The resulting vector product
version of the ranking formula is displayed in figure 4.9 in a similar informal
way as done in section 2.4 for other term weighting algorithms.



4.7. FROM PROBABILITYMEASURE TO WEIGHTING ALGORITHM 77

vector product: score(~d, ~q) =
∑m

k=1 dk · qk

query term weight: qk = tf

document term weight: dk = log(1 +
tf · (sum of df ’s)

df · document length
· λk

1−λk
)

Figure 4.9: tf.idf-like term weighting algorithm

4.7.2 Discussion

The purpose of this section is not to show that the language modelling ap-
proach to information retrieval is so flexible that it can be used to model or
implement many other approaches to information retrieval. For this reason, it
differs considerably from other publications that also compare retrieval models
within one framework (Turtle and Croft 1992; Wong and Yao 1995). Although
this section claims that the language modelling approach may result in tf.idf
term weighting, the tf component and the idf component both fall within the
logarithm, making it a tf + idf algorithm rather than a tf .idf algorithm. Also,
as shown in section 4.2.3, collection frequencies would be the usual thing to do
when statistical language models are used, making it a tf.icf algorithm. One
may have similar objections against the comparison of the language modelling
approach with the probabilistic model. Figure 4.9 uses the probability of term
importance and not the probability of term occurrence given relevance as used
by the traditional probabilistic model of information retrieval.

Despite the differences, the similarity between the language models and the
traditional models is important, because it gives insight in why tf.idf term
weighting works and why the combination with relevance weighting, as e.g.
done in the Okapi BM25 algorithm, works. Remember that, most weighting
and ranking algorithms presented in section 2.4 are not so much based on mod-
els and theories, but instead on intuitions and on careful studies of the behaviour
in test collections. The derivation presented above puts many of these intuitions
in a different light. For instance, one of the original tf.idf intuitions, that term
weights should be linear in the tf component, turned out to be not quite right in
studies of Buckley, Allan, and Salton (1994) and Robertson and Walker (1994).
The latter authors based their non-linear weighting of tf on an approximation
of the 2-Poisson model, but the derivation above shows without any approx-
imations that the tf component falls within the logarithm, making the term
weights linear in log(tf ). Another original intuition is that ‘document length
normalisation’ should be applied to each term separately. Recent studies of
Robertson and Walker (1994) and Singhal, Buckley, and Mitra (1996) showed
the best performing algorithms only normalise each term partially. It is true
that the denominator of the document term weight of figure 4.9 does contain the
document length. The reason for this has nothing to do with the assumption
that long and short documents are equally likely to be relevant, but instead it



78 CHAPTER 4. A LANGUAGE MODEL-BASED IR SYSTEM

is the result of proper normalisation of probabilities. Whether document length
normalisation is applied or not is based on the use of either equation 4.3 or
4.6. The use of equation 4.6 will not have an impact on each query term, but
instead it has an impact that is independent of the query length. If its impact
were distributed over query terms as in the original intuition, then each term
should indeed be normalised only partially.

This section supports the indications that the two old intuitions mentioned
above were not quite right. Many other intuitions, like for instance the intu-
ition that the use of document frequencies is essential for good retrieval (see
section 4.2.4) or the intuition that probability of relevance estimation can be
approximated by simple term occurrences for best match weighting algorithms
(see section 4.4.5) might turn out to be not quite right as well.

4.7.3 A presenceweighting algorithm for structuredqueries

The extended model introduced in section 4.3 can also be implemented as a
presence weighting algorithm. This section shows how to rewrite the probability
measures of the statistical translation retrieval model into a form that is similar
to the basic model of section 4.2. Once the model is in this form, it is possible
to follow the steps introduced in the previous section to derive the presence
weighting algorithm. First, let’s have a look again at the simplified notation of
the statistical translation probability measure as introduced by equation 4.13:

P (D,S1, S2, · · · , Sn) =

P (D)
n∏

i=1

m∑
j=1

P (Si|Ti = t(j))((1−λi)P (Ti = t(j)) + λiP (Ti = t(j)|D))

Filling in the estimators of equation 4.3, 4.4 and 4.5 results in the following for-
mula. The probability measure P (Si|Ti = t(j)) will be replaced by the translation
probability estimates τi(j).

P (D,S1, S2, · · · , Sn) =
1
N

n∏
i=1

m∑
j=1

τi(j)((1−λi)
cf (t(j))∑

t cf (t)
+ λi

tf (t(j), d)∑
t tf (t, d)

)

The translation probabilities can be moved into the inner sum of unimportant
and important terms. As summing is associative and commutative, it is not
necessary to calculate each probability separately before adding them. Instead,
respectively the collection frequencies and the term frequencies of the disjuncts
can be added beforehand, properly multiplied by the translation probabilities.
Only λi in the big sum is constant for every addition and can therefore be moved
outside the sum, resulting in:

P (D,S1, S2, · · · , Sn) =
1
N

n∏
i=1

((1−λi)

∑m
j=1 τi(j)cf (t(j))∑

t cf (t)
+ λi

∑m
j=1 τi(j)tf (t(j), d)∑

t tf (t, d)
)



4.7. FROM PROBABILITYMEASURE TO WEIGHTING ALGORITHM 79

With these steps, the probability measure is rewritten back into its basic form,
similar to equation 4.12. Following the exact same steps as in the previous
section, the probability measure can now be rewritten into a presence weighting
algorithm, resulting in equation 4.16.

P (D,S1, S2, · · · , Sn) ∝
n∑

i=1

log(1+
λi (

∑m
j=1 τi(j)tf (t(j), d))

∑
t cf (t)

(1−λi)(
∑m

j=1 τi(j)cf (t(j)))
∑

t tf (t, d)
) (4.16)

The model does not require the translation probabilities τi(j) to sum up to one
for each i, since they are conditioned on the query term and not on the request
word. Interestingly, for the final ranking it does not matter what the actual
sum of the translation probabilities is. Only the relative proportions of the
translations define the final ranking of documents. This can be seen by τi(j)
which occurs in the numerator and in the denominator of the big fraction.

4.7.4 Discussion

Equation 4.16 relates to equation 4.15, the presence weighting algorithm of the
basic model, as follows. Equation 4.16 sums up respectively the term frequencies
and the collection frequencies of the possible translations of the words in the
request weighted by the translation probabilities. If the sums are replaced by
tf ′(ti, d) and cf ′(ti), that is:

tf ′(ti, d) =
∑m

j=1 τi(j)tf (t(j), d)
cf ′(ti) =

∑m
j=1 τi(j)cf (t(j))

then equation 4.16 equals equation 4.15. So, a weighted sum of respectively the
term frequencies and the collection frequencies is used in a tf .idf -like (tf .icf in
this case) formula. If the translation probabilities are restricted to either 0 or 1,
then the sums of respectively the term frequencies and the collection frequen-
cies are ‘real’ sums, that is, no longer weighted sums. Translation probabilities
might be restricted to 1 for possible translations if there is a deterministic pro-
cess that converts query terms to one, and only one, request words. A stemmer
is such a deterministic process: it converts a word always to the same stem,
ignoring e.g. the word’s part-of-speech. In these cases tf (ti, d) =

∑
j tf (t(j), d)

and cf ′(ti) =
∑

j cf (t(j)), which are exactly the same values for tf (ti, d) and
cf (ti) if the deterministic process, like e.g. the stemmer, was used during index-
ing. So, for any deterministic process that is used during indexing, there is a
corresponding query formulation strategy that produces the exact same rank-
ing of the documents. This is not necessarily true if document frequencies are
used instead of collections frequencies, because some possible translations might
co-occur in one document.

Grouping morphological variants by using respectively the sum of the term
frequencies and the sum of the document frequencies in a tf .idf measure was
done by Harman (1991) for an experiment with on-line stemming. The algo-
rithm is implemented in the Inquery system as a synonym operator (Rajashekar



80 CHAPTER 4. A LANGUAGE MODEL-BASED IR SYSTEM

and Croft 1995). Harman introduced the algorithm because it provides a way to
do experiments for a number of different stemmers, without the need to index
the collection for each single experiment. Rajashekar and Croft introduced the
algorithm because it is an intuitively plausible way to combine synonyms and
synonym-like terms. Grouping possible translations of a source language term
by the Inquery synonym operator has shown to be a successful approach to
cross-language information retrieval (Ballesteros and Croft 1998; Pirkola 1998).
This section derived a more general version of these algorithms from a formal
model of information retrieval.

4.8 Two extensions: record fields and proximity

With the theory presented in this chapter, ranked versions of Boolean operators
can be formulated by thinking of a suitable urn model. For instance, a suit-
able urn model for the query (sustainable OR renewable) AND development
would be the following: The first term that is drawn from the relevant document
is either “sustainable” or “renewable”. The second term that is drawn from the
document is the term “development”. Likewise, it is possible to find suitable
urn models for the Boolean proximity operators of section 3.3.2 and the field
searches of section 3.3.5.

4.8.1 Three -or more- levels of importance

Field searches are introduced by extending the model presented so far by allow-
ing the random variable Ii to have more than two realisations. If words from
e.g. the title field are searched, before drawing a term it is decided if the term
is drawn from the entire collection (Ii = 0), the relevant document (Ii = 1),
or from the relevant document’s title (Ii = 2). If the simplified notation µi is
used instead of P (Ii =2) and P (Ti|F,D) instead of P (Ti|Ii =2, D=d), then the
resulting simplified notation of the basic field search measure is as follows.

P (D,T1, T2,· · ·, Tn) =

P (D)
n∏

i=1

((1−λi−µi)P (Ti) + λiP (Ti|D) + µiP (Ti|F,D)) (4.17)

Similarly for proximity searching, before drawing a term first it is decided
if the term is drawn from the entire collection (Ii = 0), the relevant document
(Ii = 1), or from the collection of terms in the relevant document that have
a proximity relation with a previously drawn term (Ii = 2). Except for the
different sample space of each Ii, the probability measures of equation 4.2 and
4.10 have to be extended because the query terms are no longer independent.
Dependence relations between terms that are adjacent in the query are now
permitted. This is visualised in the Bayesian Network of figure 4.10. If the
simplified notation µi is used instead of P (Ii =2) and P (Ti|Ti−1, D) instead of



4.8. TWO EXTENSIONS: RECORD FIELDS AND PROXIMITY 81

D

I3I1

3T1T 2T

I2

Figure 4.10: Graphical model of dependence relations between query terms

P (Ti|Ti−1, Ii =2, D), then the resulting simplified notation of the basic proxim-
ity searching measure is as follows.

P (D,T1, T2,· · ·, Tn) = P (D) ((1−λ1)P (T1) + λ1P (T1|D))
n∏

i=2

((1−λi−µi)P (Ti) + λiP (Ti|D) + µiP (Ti|Ti−1, D)) (4.18)

Likewise, it would be possible to introduce a fourth level of importance: one
that uses information on multiple fields or query terms like e.g. trigram proba-
bilities. Statistical translation can be included by assuming that the translation
of a term is done independently of relevance, importance and independently of
the database field or the previous term(s).

4.8.2 Field searches

For the example of searching documents whose title contain the query terms,
the probability of drawing a term from the title may simply be defined by the
number of occurrences of that term in the title, divided by the length of the
title.

P (Ti = ti|F,D=d) =
#(ti in TITLE of d)∑
t #(t in TITLE of d)

(4.19)

4.8.3 Adjacent terms

A suitable urn model for the adjacency operator would be the following. First a
term is drawn from the relevant document like presented earlier. Then a second
term is drawn from the collection of terms that are adjacent to any occurrence
of the first term in the relevant document. The estimation of probabilities is
straightforward. Whatever the proximity operator, the number of hits should be
counted and normalised properly. For the adjacency operator, familiar bigram
estimates are used.

P (Ti = ti|Ti−1 = ti−1, D=d) =
#(ti−1 ADJ ti in d)

tf (ti−1, d)
(4.20)



82 CHAPTER 4. A LANGUAGE MODEL-BASED IR SYSTEM

Bigram probabilities were also used by Miller, Leek, and Schwartz (1999) and
Song and Croft (1999). If all of the occurrences of ti−1 have an adjacent term
ti in k then the probability is one. If none of the occurrences of ti−1 have an
adjacent term ti in k then the probability of the adjacent operator is zero.

4.8.4 Near terms

A suitable urn model for the NEAR operator would be the following. First a
term is drawn from the relevant document as it was done in the simple model.
Then a second term is drawn from the collection of terms that are within a
window of x terms to any occurrence of the first term in the relevant document.
The resulting estimator is shown below.

P (Ti = ti|Ti−1 = ti−1, D=d) =
#(ti−1 NEAR ti within x in d)

2 x tf (ti−1, d)
(4.21)

This operator matches terms in a specified window of x terms in any order.
Alternatively, the operator could for instance be specified in such a way that it
matches terms in a specified order. In this case, the actual window is twice as
small and the 2x in the denominator should be replaced by x.

4.8.5 Relation to strict Boolean searching

The relation of the extensions introduced above with their strict Boolean ver-
sions is as follows. If a value of 1 is assigned to the probability of importance
level 2 given relevance, i.e. µi = 1, then the formula assigns zero probability to
every document that does not exactly match the structured query. In the case
of a search for query terms in the title field, the system only retrieves docu-
ments in which the term occurs in the title; other documents are assigned zero
probability. In case of proximity operators, the system assigns zero probability
to document that do not contain the term adjacent to, or near to, the query
term on position i− 1.

4.9 Conclusion

This chapter introduced a language model-based approach to information re-
trieval consisting of a basic model for the processing of simple queries and an
extended model for the processing of structured queries. Proximity operators
and field search operators can be included by introducing more than two levels
of importance, that is, by introducing a mixture of more than two models.

The combination of evidence from different sources of information should
be done by the following recipe. Different representations of the document
can be combined by using a mixture of more than two models of the document.
Different representations of the request or information need can be combined by
using the statistical translation model (query formulation model). The optimum
way to combine all the evidence can be found by using the EM-algorithm on
some previously found examples of relevant documents.



Chapter 5

Experimental results

Using the evaluation methodology described in appendix A, this chapter reports
on the evaluation of a language model-based retrieval system. Section 5.1 in-
troduces three basic retrieval tasks to be evaluated. Section 5.2 determines an
optimum setting of the model on the Cranfield test collection. In section 5.3,
these settings are used in three experiments that compare the performance of the
language model-based retrieval algorithms with the performance of traditional
retrieval models and today’s top performing term weighting algorithms.

5.1 Introduction

This chapter will evaluate the new retrieval model by comparing it to some well-
established methods in a controlled experiment. Traditionally there are three
quite distinct problems that retrieval models try to solve. The three problems,
which were introduced in chapter 2, are the following:

1. term weighting and ranking algorithms;
2. relevance feedback from examples of relevant documents;
3. structured queries.

Following the three problems, three basic retrieval tasks were designed. The
three experiments serve to illustrate that the language model-based system per-
forms well in situations that call for, respectively, the ability to rank documents
without the use of relevance information, the probability of relevance estimation
from relevant documents, and the ability to process Boolean-structured queries.
The first experiment is set up as the ad-hoc task in TREC. The ad-hoc task
represents the situation in which a user enters a query that is previously unseen
by the system. The second task is called the retrospective relevance weight-
ing task. It determines the ability of the retrieval algorithms to re-estimate
their parameters from all known relevant documents. This task is mainly of
theoretical interest and was done before by Robertson and Sparck-Jones (1976)
and Sparck-Jones, Walker, and Robertson (2000) for the probabilistic model.

83



84 CHAPTER 5. EXPERIMENTAL RESULTS

The third task measures the ability of systems to process manually formulated
Boolean-structured queries.

For each of the three retrieval tasks, the language model-based system will
be compared with one or more of the traditional models that try to solve the
problem associated with the task. Ideally, we would like to take the three clas-
sical models of information retrieval for comparison, respectively: the Boolean
model, the vector space model and the probabilistic model. Since the Boolean
model does not provide a ranking of the documents, the popular p-norm model
will be used instead. Of the vector space model and the probabilistic model,
two versions will be evaluated for comparison. Of each model, one version rep-
resents the model as it was introduced in the 1970’s and one version represents
the model as it was actually used in the TREC experiments of the late 1990’s.

The chapter is organised as follows. Section 5.2 reports on preliminary tests
on the Cranfield collection that are used to determine the best version of the
model and the best value of the unknown parameter λ. Section 5.3 reports
the performance results of the language model and the well-established models
on the three tasks introduced above, respectively the ad-hoc retrieval task, the
retrospective relevance weighting task and the manually formulated Boolean
queries task. Section 5.4, reports on a few post-hoc tests to check if the decisions
made from the Cranfield results were reasonable. Finally, section 5.5 draws
conclusions and identifies the additional experiments of the chapters 6 and 7.

5.2 Determining the model’s optimum setting

The goal of the experiment described in this section is not to test a hypothesis,
but to choose a reasonable version of the model and to establish a reasonable
value of the unknown parameter λ. This is usually called ‘tuning’ of a model.
In this section, results are reported of tuning the model on the Cranfield test
collection (Vickery 1970). The Cranfield collection is a small collection of 1398
abstracts on aerodynamics with 225 requests. For retrieval standards, the num-
ber of documents is really small. The collection’s advantage is the relatively
large number of requests, and the fact that all documents have been judged for
each request.

The tests were done with the experimental language model retrieval engine
developed at the University of Twente. Documents and queries were prepro-
cessed as follows. Tokenisation was done by assuming that all non-letters, in-
cluding hyphens, are word boundaries. Words occurring in the Smart stop list
(Smart 1994) were removed. The remaining words were stemmed using the
Porter stemmer (Porter 1980).

5.2.1 Exploring four ways of specifying the probabilities

Chapter 4 introduced the definitions of the three probability measures P (D),
P (Ti|D) and P (Ti) by equations 4.3, 4.4 and 4.5. Of the first and the last of
these measures, an alternative definition was introduced by equations 4.6 and



5.2. DETERMINING THE MODEL’S OPTIMUM SETTING 85

4.7. This leads to four versions of the model that have to be explored. For
completeness the weighting algorithms of the four versions are displayed below.
Remember that the sum of i = 1 to n covers the query terms on each position
i, which recomputes the weight of duplicate terms. In practice, this might of
course be implemented by multiplying the weight of the term by the frequency
of occurrence of the term in the query.

score1(d) =
n∑

i=1

log(1 +
λi tf (ti, d)(

∑
t cf (t))

(1−λi)cf (ti)(
∑

t tf (t, d))
)

score2(d) =
n∑

i=1

log(1 +
λi tf (ti, d)(

∑
t df (t))

(1−λi)df (ti)(
∑

t tf (t, d))
)

score3(d) = log(
∑

t tf (t, d)) +
n∑

i=1

log(1 +
λi tf (ti, d)(

∑
t cf (t))

(1−λi)cf (ti)(
∑

t tf (t, d))
)

score4(d) = log(
∑

t tf (t, d)) +
n∑

i=1

log(1 +
λi tf (ti, d)(

∑
t df (t))

(1−λi)df (ti)(
∑

t tf (t, d))
)

The four versions differ by the use of document frequencies instead of collection
frequencies for the versions 2 and 4, and by a document length correction value
which is added for the versions 3 and 4.

5.2.2 Determining a value for λ

If there is no previous relevance information available for a query, i.e. none of the
relevant documents has been identified yet, each term that is entered by the user
and that is not in the stop list, will be considered equally important. As shown
in chapter 4, the model has only one unknown parameter in this case, because
λi will be equal for each position i in the query. The unknown parameter will
simply be called λ in the following. One way to find an optimum value for λ is
to take a test collection and evaluate retrieval performance for a wide range of
values of λ.

Figure 5.1 shows the average precision averaged over 225 queries plotted
against different values of λ of the four versions. The figure shows similar
shapes of the plots of the four versions of the model. Necessarily, for λ = 0, the
system will produce random results and perform close to zero average precision.
When λ is increased the average performance will improve to a maximum. If
λ is increased further, the average performance will steadily decline. The ver-
sions that use document frequencies outperform the versions that use collection
frequencies. Document length correction does not really improve version 1 that
uses collection frequencies, but it shows a slight improvement of version 3 that
uses document frequencies. The original version of the model, version 1, reaches
its maximum performance of 0.416 for λ = 0.35. Miller et al. (1999) report a
value of λ = 0.3 for this model on the TREC collection. The version using both
alternative probability specifications, version 4, is the best performing version.



86 CHAPTER 5. EXPERIMENTAL RESULTS

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0 0.2 0.4 0.6 0.8 1

av
er

ag
e 

pr
ec

is
io

n

value of lambda

1: collection freq.
2: document freq.

3: collection freq. / document length correction
4: document freq. / document length correction

Figure 5.1: Average precision against values of λ on Cranfield

It reaches an average precision value of 0.437 for λ = 0.15, which was reported
before in (Hiemstra and Kraaij 1999).

5.2.3 A prediction interval for λ?

For version 4 of the model a value of λ = 0.15 will on average produce maximum
performance in terms of average precision. This raises the question: “how
reliable is this value?” A single query will usually not perform maximally for
exactly λ = 0.15, but it might be possible to define an interval for λ in which
most queries reach optimum performance. As it turns out, the smallest 95 %
prediction interval of λ for version 4 of the model would be [0.03, 1.00]. So,
95 % = 214 of the 225 Cranfield queries reach optimum performance between
λ = 0.03 and λ = 1.00. Apparently, there is a huge variation in the optimum
value of λ when single queries are considered.

Averaging the performance of 225 queries hides many of the interesting de-
tails of the behaviour on single queries. Just as recall-precision graphs of single
queries show much more chaotic behaviour than the average graph of all queries,
so do the graphs of the average importance λ against average precision. All ex-
amples presented in this section are the result of version 4 of the model.

A common picture is one that is similar to the average performance over
all queries. First the graph reaches an early maximum, after which the graph
monotonically decreases with steps. An example is shown in figure 5.2. Most
Cranfield queries show similar behaviour.

Another typical example shows the opposite behaviour. The performance
increases slowly and optimum performance is only reached when λ is close to
one, that is when all query terms are almost with certainty important. These
queries would probably show quite good performance in a traditional exact
match retrieval system. Note that the plots have different vertical scales. The



5.2. DETERMINING THE MODEL’S OPTIMUM SETTING 87

absolute performances of the examples differ considerably, but at this point only
the shapes of the plots are of interest.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

av
er

ag
e 

pr
ec

is
io

n

value of lambda

Figure 5.2: Example of predominantly unimportant terms (query 9)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

av
er

ag
e 

pr
ec

is
io

n

value of lambda

Figure 5.3: Example of predominantly important terms (query 18)

Some queries do not follow any of the two patterns shown above. Many show
a large number of local maxima. The example plot of figure 5.4 has at least four
local maxima. The global maximum occurs for a really precise value of λ on a
really small interval. Without relevance information it is impossible to predict
where the maximum will exactly fall. Apart from the very hard queries, there
are also a number of queries that are plain simple. The example of figure 5.5
shows a query that performs extremely well for any λ > 0.



88 CHAPTER 5. EXPERIMENTAL RESULTS

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

av
er

ag
e 

pr
ec

is
io

n

value of lambda

Figure 5.4: Example of ‘unpredictable behaviour’ (query 36)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

av
er

ag
e 

pr
ec

is
io

n

value of lambda

Figure 5.5: Example of ‘easy retrieval’ (query 78)

The examples presented in this section show that different queries need dif-
ferent retrieval strategies. Because of this Ng (2000) used a two stage retrieval
method. In the first stage, the top 5 of the retrieved documents is used to es-
timate a query specific value of λ. This weight is used in a second stage that
produces the actual retrieval results. For the ad-hoc experiments in sections
5.3.2 a one stage retrieval process will be used to make the comparison with
other models not too complicated. All queries will use the same importance
weight λ. The fact that different queries need different strategies does not di-
minish the fact that on average only 15 % of the query terms is important. This
implies for instance that a query of length four will not have any important
term in over half (0.854 = 0.522) of the relevant documents.



5.3. EVALUATION RESULTS 89

5.2.4 Choosing a test system

This section reports on the performance of four different versions of the language
model-based retrieval system on the Cranfield collection for a wide range of
values for the unknown parameter λ. The best performance was reached by
version 4 for λ = 0.15. It is not clear that this setting will also be the best on
the TREC collection. The TREC collection contains very different documents
and is about 400 times as large as Cranfield. It would be interesting to do
a comparison of the same scale as reported above on a larger test collection
that is more similar to the TREC collection. Lacking such a comparison, the
experiments described in the remainder of this chapter will use version 4 and
λ = 0.15. The same system setting was used in a number of other experiments
(Hiemstra 1998a; Hiemstra and Kraaij 1999; Hiemstra 2000).

5.3 Evaluation results

This section presents the results of version 4 of the model on three different
tasks. The first task is the ad hoc task which represents the situation of a
user who enters a previously unseen query and then checks the results. The
second task is the ‘retrospective relevance weighting’ task, which measures the
ability of the system to estimate optimal term weights from examples of relevant
documents. The third task measures the system’s ability to rank documents if
the user enters a Boolean-structured query.

Experiments were done using the Mirror DBMS, a prototype database man-
agement system especially designed for multimedia and web retrieval (De Vries
1999). The Mirror DBMS combines content management and data management
in a single system. The main advantage of such integration is the facility to com-
bine information retrieval with traditional data retrieval. Furthermore, informa-
tion retrieval researchers can experiment more easily with new retrieval models,
using and combining various sources of information. This is an important ben-
efit for advanced information retrieval like for instance web retrieval, speech
retrieval, and cross-language retrieval. Each of these might require the use of
several representations of content, which is hard to handle in the traditional
file-based approach, and becomes too slow in traditional database systems.

The TREC collection that is used for the experiments consists of a total of
528,024 documents from four separate sources: Federal Register, Los Angeles
Times, Foreign Broadcast Information Services and the Financial Times. Docu-
ments and queries were preprocessed as for the Cranfield experiments of section
5.2 using the title and description field of the TREC topics. Additionally, words
that are specific to the TREC domain, like “document” and “relevant” were
stopped from the topics. The same index was used for all three experiments.

5.3.1 Comparing results of two algorithms

Pair-wise comparisons between runs are based on the average precision measured
over the ranks of relevant documents as described in section A.3. The average



90 CHAPTER 5. EXPERIMENTAL RESULTS

precision at 11 levels of recall will be reported by recall-precision plots. The
appendix gives a detailed description of the results on other measures. The
two-tailed pair-wise sign test, which is described in section A.4, will be used
to determine significant differences between two runs. Differences at the 5 %
level are reported as significant. In this case, the critical value is 17, that is,
the number of times that the least frequent sign occurs should be 17 or less
than 17 in order for the difference to be significant. The appendix also reports
differences that are significant at the 1 % level, for which the critical value is
15.

5.3.2 Results on the ad hoc task

The first experiment is a TREC-style automatic ad-hoc experiment using TREC

topics 401-450. It serves to illustrate that the language model-based system per-
forms well on a task where no relevance information is available and the system
has to rely on the similarity between the query and the documents. The experi-
ment compares the average precision of five different term weighting algorithms
that were presented in section 2.4. The weighting algorithms implemented and
tested are the original tf.idf with cosine normalisation, the Robertson/Sparck-
Jones weight of the traditional probabilistic model, the Lnu.ltu formula and the
BM25 formula. The Lnu.ltu slope parameter was set to 0.2. The BM25 tuning
parameters were set to k1 = 1.2, b = 0.75 and k3 = ∞. The values of tun-
ing parameters of the weighting formulas are the ones reported in respectively
(Singhal et al. 1996) and (Robertson et al. 1999).1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

pr
ec

is
io

n

recall

language model
BM25

Lnu.ltu
probabilistic

tfc.tfc

Figure 5.6: Recall-precision plots of ad-hoc runs

The experiment shows that both the original probabilistic model and the
original vector space model underperform on this task. The Lnu.ltu, BM25 and

1The results for BM25 differ from (Hiemstra and De Vries 2000), which used k1 = 2
reported in (Robertson and Walker 1994).



5.3. EVALUATION RESULTS 91

language model algorithms perform better. In fact, they show similar results on
the very high precision / 0.0 recall point, where Lnu.ltu and BM25 are slightly
better than the language model. On the other recall points, the performance of
the language model and BM25 diverges from the performance of Lnu.ltu. Both
the language model and BM25 seem to perform consistently better than the
Lnu.ltu algorithm on these points. The precision values at document cut-offs
10, 30 and 100 and the average precision over the ranks of relevant documents
retrieved are displayed in table 5.1. In the table “LM” stands the for language
model-based algorithm.

run precision at document: average
10 30 100 precision

tfc.tfc 0.240 0.187 0.122 0.126
probabilistic 0.248 0.187 0.153 0.165
Lnu.ltu 0.450 0.345 0.214 0.229
BM25 0.484 0.366 0.234 0.261
LM 0.494 0.385 0.235 0.277

Table 5.1: Results of ad hoc queries

If the average precision is taken as the measure to base our hypotheses
upon, then the following conclusions can be drawn. The difference between the
language model and BM25 is not statistically significant. The difference be-
tween the language model and Lnu.ltu and the difference between BM25 and
Lnu.ltu are both significant. The difference between any of the three modern
term weighting algorithms and the original tf .idf algorithm and the traditional
probabilistic model are also significant. Interestingly, despite the big absolute
difference between the average precision of the probabilistic model and the vec-
tor space model with original tf .idf weights, this difference is not statistically
significant.

5.3.3 Results of relevance weighting

The second experiment takes the relevant documents of each topic (401-450) to
estimate relevance weights, which are used retrospectively to determine optimal
performance on the collection. The same experiment was done by Robertson
and Sparck-Jones (1976) on the Cranfield collection using the traditional prob-
abilistic model, and by Sparck-Jones et al. (2000) on the TREC collection using
the traditional probabilistic model and the BM25 algorithm. The purpose of this
experiment is two-fold. Firstly, the experiment shows how the language model’s
relevance weighting method performs compared to relevance weighting of the
traditional probabilistic model and the BM25 formula. Secondly, by comparing
the performance with the experiments presented in the previous section, the
experiments show how much can be gained if the system has perfect knowledge
about the distribution of terms over relevant and non-relevant documents.



92 CHAPTER 5. EXPERIMENTAL RESULTS

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

pr
ec

is
io

n

recall

language model
BM25

probabilistic

Figure 5.7: Recall-precision plots of retrospective relevance weighting

Comparison of figure 5.6 and figure 5.7 shows that the three models show
similar increase in performance, except for the probabilistic model’s increase of
precision for high recall levels. On the 0.8 and 0.9 recall levels the traditional
probabilistic model noticeably outperforms the BM25 model. The precision at
document cut-offs 10, 30 and 100, and the average precision measure is displayed
in table 5.2.

run precision at document: average
10 30 100 precision

probabilistic 0.268 0.217 0.172 0.198
BM25 0.526 0.400 0.258 0.289
LM 0.550 0.410 0.260 0.311

Table 5.2: Results of retrospective relevance weighting

Pair-wise comparison of the average precision of the experiments shows the
following. The BM25 algorithm and the language model-based algorithm per-
form significantly better than the probabilistic model on this task. There is not
enough evidence to disprove equal performance of the BM25 algorithm and the
language model-based algorithm for relevance weighting.

Comparison of the retrospective weighting experiments and the ad-hoc ex-
periments reveals the following. The average precision after retrospective rele-
vance weighting is significantly better than the ad-hoc versions of the traditional
probabilistic model and the language model. There is not enough evidence to
show that relevance weighting improves the performance of the BM25 algorithm.



5.3. EVALUATION RESULTS 93

The query by query comparison shows that the three methods actually decrease
the average precision of respectively 4, 18 and 10 out of 50 queries. This seems
rather alarming, because a good relevance feedback method should never de-
crease performance if the weights are used retrospectively. For the language
model, we do have a clue why the relevance weighting algorithm seems to be
suboptimal. As said in section 4.4, the likelihood criterion of the EM-algorithm
is not directly related to the aim of optimising the probability of relevance, so
it might not lead to it. The BM25 algorithm makes more mistakes still, some
in fact quite substantial. This suggests that it might be possible to improve
upon the relevance weighting algorithms of the language model and the BM25
algorithm. More research into relevance feedback algorithms is therefore needed.

5.3.4 Results on Boolean-structured queries

The third experiment uses manually formulated Boolean queries. For this ex-
periment we used the Boolean queries that were formulated by Schiettecatte
(1998) for TREC topics 301-350. Wildcards and multi-term expressions were
replaced by Boolean equivalents, using the OR-operator for wild cards and the
AND-operator for multi-term expressions. The experiment tries to answer two
questions. First of all it shows how the language model-based system performs
compared to a system based on the p-norm model. Secondly, it measures the
additional benefit of extended Boolean models over versions of the model that
do not use the Boolean operators.

Following the experiments reported by Salton et al. (1983) binary query
weights and tf.idf document weights were used for the p-norm experiments.
Experiments were done both using tfc weights and Ltu weights for documents.
The p-norm model can be reduced to the vector model by assigning a value
of 1 to both p parameters. Using a higher value for p, say p = 2, should
therefore show improved results. The language model does not have a similar
knob. Therefore one experiment ‘LM vector’ was done after throwing away the
Boolean operators, just leaving the terms. Again, using the Boolean operators
as in ‘LM Boolean’ should show improved results compared to not using them.
For the language model-based algorithm, queries were converted automatically
to their conjunctive normal form. Boolean expressions that did not contradict
on the number query positions, like for instance the disjunction of two two-
word phrases as in (funny AND tables) OR (amusing AND chairs) were also
converted to their conjunctive normal form. These queries deserve additional
attention in future evaluations.

The experiment shows that not much can be gained by the special treatment
of Boolean operators. Special treatment of Boolean operators seems to have the
same absolute impact on the p-norm model as on the language model: about
0.02 gain in average precision. The improvement of performance between p = 1
and p = 2 of the p-norm model is significant if tfc weights are used, but the
improvement is no longer significant if the p-norm model uses Ltu weights. The
difference between the ‘LM Boolean’ run and the ‘LM vector’ run is also not
statistically significant.



94 CHAPTER 5. EXPERIMENTAL RESULTS

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

pr
ec

is
io

n

recall

language model, structured query
language model vector query

p−norm Ltu p=2
p−norm Ltu p=1
p−norm tfc p=2
p−norm tfc p=1

Figure 5.8: Recall-precision plots of structured queries

run precision at document: average
10 30 100 precision

p-norm tfc p=1 0.222 0.140 0.088 0.084
p-norm tfc p=2 0.286 0.171 0.103 0.102
p-norm Ltu p=1 0.276 0.223 0.147 0.156
p-norm Ltu p=2 0.366 0.260 0.180 0.182
LM vector 0.398 0.303 0.185 0.224
LM Boolean 0.372 0.292 0.188 0.244

Table 5.3: Results of Boolean-structured queries

Term weighting seems to have a bigger impact on retrieval performance. The
difference between the Ltu p = 2 experiment and the tfc p = 2 experiment is
statistically significant. The difference between the ‘LM Boolean’ run and the
Ltu p = 2 run is also significant.

5.4 Some reflection on the alternative versions

From the results on the Cranfield collection, it was hypothesised in section 5.2.1
that version 4 of the model would be the preferred version for further inspection.
This section explores if this hypothesis was correct by reporting on the results
of the algorithm without the document correction component (version 2) and
the results of the algorithm using collection frequencies instead of document
frequencies (version 3).



5.4. SOME REFLECTION ON THE ALTERNATIVE VERSIONS 95

5.4.1 Document length correction

Table 5.4 displays the average precision measures of the language model exper-
iments presented above if document length correction was not used. Version 2
of the model uses a uniform marginal probability of relevance of a document.
Comparison of the results given in table 5.4 with the results given in table 5.1,

run precision at document: average
10 30 100 precision

LM ad-hoc 0.474 0.354 0.223 0.263
LM rel. weights 0.514 0.400 0.251 0.299
LM vector 0.380 0.299 0.184 0.216
LM Boolean 0.384 0.301 0.196 0.234

Table 5.4: Results of using LM version 2

5.2 and 5.3, indicates that the use of a uniform marginal probability of rele-
vance of a document performs noticeably worse than the alternative used in the
experiments reported above. The differences with the version 4 runs are signif-
icant for ad-hoc run and the relevance weighting runs. The differences with the
version 4 runs of the Boolean-structured queries are however not significant.

5.4.2 Collection vs. document frequencies

Table 5.5 presents the results of the experiments presented above if collection
frequencies instead of document frequencies are used (version 3). Comparison of

run precision at document: average
10 30 100 precision

LM ad-hoc 0.490 0.372 0.230 0.273
LM rel. weights 0.542 0.408 0.262 0.309
LM vector 0.376 0.274 0.175 0.221
LM Boolean 0.372 0.284 0.181 0.240

Table 5.5: Results of using LM version 3

the results given in table 5.5 with the language model results given in table 5.1,
5.2 and 5.3, indicates that the use of collection frequencies (equation 4.5) instead
of document frequencies (equation 4.7) has the tendency to perform a little bit
worse (about 1 % on all four runs). For all four runs, the differences with the
version 4 runs is not significant. Whether the difference is significant or not, the
slightly worse results of collection frequencies seems to be consistent over the
difference between the query sets of the ad-hoc and relevance weighting runs
compared to the Boolean-structured query runs. However, the use of collection



96 CHAPTER 5. EXPERIMENTAL RESULTS

frequencies instead of document frequencies is not nearly as bad as generally
assumed (see e.g. Church and Gale 1999).

5.5 Discussion

In this chapter the performance of the new language model-based retrieval sys-
tem was evaluated against the performance of systems based on three traditional
models of information retrieval: the vector space model, the probabilistic model
and the p-norm model. On the three tasks and on the test collections and test
queries used, the new model’s average precision is better than the average pre-
cision of the traditional models. All these differences are significant at the 5 %
level, except for the difference with the BM25 algorithm for which the test was
not able to detect a significant difference.

The results on the ad-hoc queries show that the new model performs well on
the main TREC task. This is rather impressive if one recalls that for instance the
Lnu.ltu term weighting algorithm is the result of many years of research within
the Smart projects in which hundreds of term weighting algorithms were tried
(see section 2.4). Section 4 showed that the language model’s term weighting
algorithm is completely defined by the underlying theory. This is not the case
for the modern term weighting algorithms, like Lnu.ltu and BM25, but until
recently these algorithms did have the advantage that they simply performed
better than simple or well-motivated algorithms.

The relevance weighting experiment presented in section 5.3.3 shows that,
if all relevant documents are known, the language model shows a performance
gain that is similar to the gain of the traditional probabilistic model and better
than the performance gain of the BM25 algorithm. The retrospective rele-
vance weighting experiment serves no other purpose than just that. There is
little practical use for an algorithm that needs to know all relevant documents
beforehand. There is however use of relevance weighting algorithms that can
predict the relevance of future documents from a small sample of known relevant
documents. In chapter 7, the usefulness of the relevance weighting algorithm
will be further explored in a prototype adaptive filtering system that uses the
user’s feedback to predict the relevance of future documents.

The experiment with Boolean-structured queries showed some improvement
over unstructured queries, but the results are not significant. Actually, the use of
traditional Boolean-structured queries is somewhat unnatural for the language
model-based system, because the queries need to be converted automatically
to their conjunctive normal form before processing. One of the modern query
languages for structured queries as presented in section 3.3.4 would be more
suitable. A second interesting application of structured queries might be auto-
matic query formulation and expansion by the system. A promising application
in this respect is that of cross-language information retrieval, in which a request
in one language is used to formulate a structured request in another language
automatically. In chapter 6, the usefulness of this application is further explored
by using automatically translated queries from machine readable dictionaries.



Chapter 6

Cross-language information
retrieval

This chapter reports on the evaluation of a prototype cross-language information
retrieval system. The chapter’s key issue is the question whether it is possible to
improve upon a system that uses serious disambiguation methods during trans-
lation by using the structured query approach introduced in chapter 4. A brief
introduction to cross-language retrieval is given in section 6.1. Section 6.2 ex-
plores possibilities for the comparison of the document translation approach with
the query translation approach. Section 6.3 introduces three basic methods for
query translation. Section 6.4 addresses heuristics and statistics for disambigua-
tion when the query translation approach to cross-language retrieval is applied.
Section 6.5 discusses experimental setup and experimental results. Finally, sec-
tion 6.6 contains concluding remarks.

6.1 Introduction

Cross-language retrieval supports the users of multilingual document collections
by allowing them to submit queries in one language, and retrieve documents in
any of the languages covered by the retrieval system. Consider the example of
Dutch queries on an English document collection. Cross-language retrieval can
be achieved by: off-line document translation: translating English documents
into Dutch, then indexing in Dutch; off-line index translation: indexing English
documents in English, then translating the resulting index into Dutch; on-line
query translation: indexing English documents in English and translating Dutch
queries on the fly into English. The latter method is preferred when the former
two are impractical. Query translation is enforced in environments where it
would be impossible to produce translations for all documents in the document
base and/or translated indices for each language. Document translation has the
major advantage that it is possible to present the user a high quality preview
of the retrieved documents. Translating documents after they are retrieved,

97



98 CHAPTER 6. CROSS-LANGUAGE INFORMATION RETRIEVAL

as offered by some web search engines, does not suffice because it does not
help users to identify material that they might want to have translated. Since
it presupposes that the user has already found the relevant document in its
original foreign language, it fails to support exactly that part of a search in a
multilingual environment which is the most difficult one: to formulate a query
which will take the user to the foreign language document of interest.

6.1.1 Disambiguation strategies

If a word has more than one possible translation it is called ambiguous, e.g. the
English word “plant” has two possible French translations “plante” for the sense
of ‘vegetation’ and “usine’ for the sense of ‘factory’. The term ‘disambiguation’
is used in two ways in this chapter. Disambiguation might refer to the process
of choosing one best translation, which is called explicit disambiguation. Dis-
ambiguation might also refer to the estimation of probabilities for each possible
translation: implicit disambiguation. The disambiguation process might for in-
stance assign a probability of 0.8 to plante and 0.2 to usine. The probabilities
can be used to identify the most probable translation explicitly, but, if the query
translation approach is taken, they might also be used implicitly during retrieval
by weighting each possible translation with the methods described in chapter 4.
In the Twenty-One project, translation and disambiguation can be pursued in
four ways:

1. Using existing machine translation software (LOGOS);
2. selection of the preferred translation from a machine readable dictionary

(Van Dale);
3. using domain specific dictionaries that are automatically generated on the

basis of statistically processed parallel corpora;
4. disambiguation on the basis of the frequency of noun phrases in the doc-

ument collection.

Twenty-One is a project funded by the EU Telematics programme, sector
Information Engineering that started in 1996 and was completed in 1999. The
project had three important focal points. Firstly, the project has a clear tar-
get domain, focusing on disclosing literature on sustainable development in four
languages: Dutch, English, French and German. Secondly, it has a strong focus
on the disclosure of paper documents which have to be scanned and converted
to an electronical format by optical character recognition software. The third
focus is on natural language processing and cross-language retrieval in the four
supported languages. At indexing time, noun phrases are recognised and used as
complex index terms. As the Twenty-One domain is limited and as heavy pre-
processing and storage of scanned documents has to be reckoned with anyhow,
it is a classic case for the document translation approach. Document transla-
tion using existing machine translation software is the approach taken by the
Twenty-One demonstrator system, which was the first on-line text retrieval sys-
tem supporting cross-language search in Europe (Twenty-One 1998). The other



6.2. DOCUMENT TRANSLATION VS. QUERY TRANSLATION 99

three approaches mentioned above were developed within the project as well.
They are evaluated in this chapter.

6.1.2 A model of cross-language information retrieval

One might argue that the new model of information retrieval that is introduced
in chapter 4 is specially designed for cross-language information retrieval. The
model explicitly includes statistical translation, which is used in chapter 5 to
process manually formulated Boolean-structured queries. In this chapter, the
model will be used to process structured queries that are automatically gener-
ated by the translation tools mentioned above. The tools will generate queries in
a convenient conjunctive normal form, and include the translation probabilities.

This chapter further investigates the new model’s ability to use structured
queries. It tries to answer the question whether it is possible to improve upon
a system that uses sophisticated explicit disambiguation methods during trans-
lation, by using the structured query approach introduced in chapter 4. The
disambiguation strategies are provided by the modules that are developed within
the Twenty-One project. The experiments reported in this chapter were done
as part of the Twenty-One project and were published before as (Hiemstra and
de Jong 1998 and 1999). The chapter is organised as follows. d Section 6.2
explores possibilities for the comparison of the document translation approach
with the query translation approach. Section 6.3 introduces three basic meth-
ods for query translation. Section 6.4 addresses heuristics and statistics for
disambiguation if the query translation approach to cross-language retrieval is
applied. Section 6.5 discusses the experimental setup and experimental results.
Finally, section 6.6 contains concluding remarks.

6.2 Document translation vs. query translation:
one or more possible translations?

In the introduction, three important advantages of document translation over
query translation were mentioned. Firstly, it can be done off-line. Secondly, if
a machine translation system is used, it is possible to present the user a high
quality preview of a document. Thirdly, there is more context available for
explicit lexical disambiguation which might lead to better retrieval performance
in terms of precision and recall. For several types of applications, the first and
second advantage may be a good reason to choose for document translation.
The third advantage seems quite plausible and was hypothesised in a number
of early publications on cross-language retrieval, e.g. by Oard and Dorr (1996),
Hull and Grefenstette (1996) and Kraaij (1997).

Does the document translation approach to cross-language retrieval using
classical machine translation really lead to better retrieval performance than
the query translation approach using a machine readable dictionary? A recent
experimental study by Oard (1998) suggests it does. However, for a number
of reasons it is very difficult to answer this question on the basis of empirical



100 CHAPTER 6. CROSS-LANGUAGE INFORMATION RETRIEVAL

evidence. A first problem is that in the query translation approach, searching
is done in the language of the documents while in the document translation
approach searching is done in the language of the query. But information re-
trieval is probably not equally difficult for each language, for instance because
some languages (e.g. Finnish) have a much more complex morphology than
other languages (e.g. English). A second problem is that, for a sound answer
to the question, it is necessary to have a machine translation system and a
machine readable dictionary that have exactly the same lexical coverage. If
the machine translation system misses vital translations that the machine read-
able dictionary does list, one ends up comparing the coverage of the respective
translation lexicons instead of the two approaches to cross-language retrieval.
Within the Twenty-One project there is a third, more practical, problem that
prevents evaluation of the usefulness of the used translation system (LOGOS)
against the usefulness of the machine readable dictionaries available within the
project (Van Dale). The Van Dale dictionaries are entirely based on Dutch head
words, but translation from and to Dutch is not supported by LOGOS. These
considerations urge us to rephrase the issue into a more manageable question.

A first, manageable, step in comparing document translation with query
translation might be the following. What is, given a translation lexicon, the
best approach for query translation: using one translation for each query term
(i.e. explicit disambiguation) or using all possible translations? Picking one
translation is a necessary condition for the document translation approach. For
query translation one can either use one translation for searching, or more than
one. The choice for either one or more translations also reflects the classical
precision / recall dilemma in information retrieval: picking one specific trans-
lation of each query term is a good strategy to achieve high precision; using
all possible translations of each query term is a good strategy to achieve high
recall.

6.3 Methods for query translation

As stated in the previous section, one of the issues dealt with in this chapter is
comparing cross-language information retrieval using one translation per query
term with retrieval using more than one translation per query term. Results
will be reported of retrieval experiments using the Dutch queries on the English
TREC cross-language task collection. A Dutch query will be referred to as the
source language query; the English query will be referred to as the translated
query. The experiments can be divided into three categories:

1. query translation using one translation per source language query term;

2. query translation using unstructured queries of all possible translations
per source language query term;

3. query translation using structured queries of all possible translations per
source language query term.



6.3. METHODS FOR QUERY TRANSLATION 101

6.3.1 Using one translation per query term

If only one translation per query term is used for searching, the translation pro-
cess must have some kind of explicit disambiguation procedure. This procedure
might be based on an existing machine translation system, or alternatively, on
statistical techniques or heuristics. After disambiguation, the translated query
can be treated the way a query is normally treated in a monolingual setting.
A ‘normal’ monolingual setting in this context might be retrieval on the basis
of one of the ranked retrieval models presented in section 2.3. Of course, the
basic model of section 4.2 will be used instead. For the sake of completeness,
the ranking algorithm is repeated below.

scorec1(d) = log(
∑

t tf (t, d)) +
n∑

i=1

log(1 +
λ tf (ti, d)(

∑
t df (t))

(1−λ)df (ti)(
∑

t tf (t, d))
)

Figure 6.1 gives an example of an English request “third, world” that is used
to search a French collection. Although both “third” and “world” might have
more than one possible translation, the system has to pick one of them.

“third world”

↓ dictionary lookup
and disambiguation

tiers, monde

Figure 6.1: Using one translation per query term

In section 6.4 a number of heuristics and statistics for disambiguation will be
explored. As explained in section 6.2 it is not possible to actually use machine
translation for disambiguation. It is however possible to define an upper bound
on what is achievable with the one-translation approach by asking a human ex-
pert to manually disambiguate the output of the machine readable dictionary.
It is hypothesised that query translation using a machine translation system
with the same lexical coverage as the machine readable dictionary will not re-
sult in better retrieval performance than query translation using the manually
disambiguated output of the same dictionary.

6.3.2 Using unstructured queries

If more than one translation per source language query term is used for search-
ing we might still treat the translated query as an unstructured bag-of-words.
As will be shown in section 6.5, the way of weighting the possible translations is
crucial for unstructured queries. In particular it is important to normalise the
possible translations in such a way that for each source language query term
the weights of possible translations sum up to one. Not using normalisation



102 CHAPTER 6. CROSS-LANGUAGE INFORMATION RETRIEVAL

will make source language query terms with a lot of possible translations un-
intentionally more important than source language query terms that have less
possible translations. For the unstructured query runs statistical translation
was added ‘artificially’ by making the number of times a query term occurs in
equation 4.2 proportional to the translation probabilities. The ranking algo-
rithm used is the following, where Q is the bag-of-words containing the possible
translations q of all source query terms, and w(q) is the weight of a possible
translation q. Note that the algorithm uses the new model in a way that was
not originally intended: the number of times a query term occurs in the query
is replaced by the translation probabilities / weights. A similar generalisation
of the query term frequency is used by Ng (2000).

scorec2(d) = log(
∑

t tf (t, d)) +
∑
q∈Q

w(q) · log(1 +
λ tf (q, d)(

∑
t df (t))

(1−λ)df (q)(
∑

t tf (t, d))
)

Figure 6.2 again gives the example of an English query (third, world) that
is used to search a French collection. It is assumed that the English term third
has two possible French translations: tiers and troisième and that the English
term world has three possible translations: monde, mondial and terre. Instead
of selecting one translation we might use all possible translations to search the
document collection. The results of the translation module in figure 6.2 could be

“third world”

↓ dictionary lookup

tiers, troisième, monde, mondial, terre

Figure 6.2: Translation using an unstructured query

used directly for searching the French collection (see run2a in section 6.5), but
this would make the term world in the source language query more important
(because it has more possible translations) than the word third. Normalisation
of the possible translations might therefore be used to make the contribution of
third as high as the contribution of world. In this case the possible translations
of third are reweighted to 0.5 and the possible translations of world to 0.33 (see
run2c in section 6.5). If one of the possible translations of a source language
query term is more probable than the other(s), this possible translation might
be weighted higher than the other(s) while keeping the normalisation in tact
(run2d in section 6.5).

6.3.3 Using structured queries

Treating all possible translations as one unstructured bag-of-words, ignores the
fact that a document containing one possible translation of each source language



6.4. HEURISTICS AND STATISTICS FOR DISAMBIGUATION 103

query term is more likely to be relevant than a document containing all possible
translations of only one source language query term. Structuring the queries as
suggested in section 4.3 should show better results than unstructured queries.
For the experiments with structured queries, a variant of equation 4.16 with
document frequencies and document length correction was used, which is the
formula shown below. In the formula, τi(j) is the probability of the jth possible
translation of ith source language query term, which is by definition zero for all
possible translations that were not suggested by the translation module.

scorec3(d) =

log(
∑

t tf (t, d)) +
n∑

i=1

log(1+
λ (

∑m
j=1 τi(j)tf (t(j), d))

∑
t df (t)

(1−λ)(
∑m

j=1 τi(j)df (t(j)))
∑

t tf (t, d)
)

Figure 6.3 again gives the example of an English query (third world) on
a French document collection by using the representation of structured queries
introduced in section 4.3. The structured query reflects the possible translations
of the source language query terms in an intuitive way.

“third world”

↓ dictionary lookup

((tiers ∪ troisième), (monde ∪ mondial ∪ terre))

Figure 6.3: Translation using a structured query

6.4 Heuristics and statistics for disambiguation

This section lists a number of information resources that can be used to iden-
tify the correct translation or translations of a query term. The section briefly
describes information that is explicitly or implicitly in the dictionary and in-
formation from other sources like parallel corpora and the document collection
itself.

6.4.1 Dictionary preferred translation

The VLIS lexical database of Van Dale Lexicography lists for each entry ex-
plicitly one preferred translation which is considered the most commonly used
one. Replacing each query term with the preferred translation is a simple, but
possibly effective, approach to cross-language retrieval.

6.4.2 Pseudo frequencies

The Van Dale database also contains explicit information on the sense of possible
translations. Some Dutch head words carry over to the same English transla-



104 CHAPTER 6. CROSS-LANGUAGE INFORMATION RETRIEVAL

tion for different senses. For example the Dutch head word “jeugd” may be
translated to “youth” in three senses: the sense of ‘characteristic’, ‘time-frame’
and ‘persons’. The ‘persons’ sense has a synonym translation: “youngsters”.
As “youth” occurs in the dictionary under three senses and “youngsters” under
one sense, we assign “youth” a weight that is three times as high as the weight
for “youngsters”. The assumption made by weighting translations is that the
number of occurrences in the dictionary may serve as rough estimates of actual
frequencies in parallel corpora. In other words: the number of occurrences in
the dictionary serve as pseudo frequencies. Ideally, if the domain is limited and
parallel corpora on the domain are available, weights should be estimated from
actual data as described in the next section.

6.4.3 Frequencies from parallel corpora

The Twenty-One system contains documents on the domain of sustainable devel-
opment. Translation in Twenty-One is done using a general purpose dictionary
(Van Dale) and a general purpose MT-system (LOGOS), but these resources are
not very well suited for domain-specific jargon. Domain-specific jargon and its
translations are implicitly available in parallel corpora on sustainable develop-
ment. Translation pairs can be derived from parallel corpora using statistical
co-occurrence by so-called word alignment algorithms. Within the Twenty-One
project word alignment algorithms were developed that do the job in a fast and
reliable way (Hiemstra, De Jong, and Kraaij 1997; Hiemstra 1998b). Domain
specific translation lexicons were derived from Agenda 21, a UN-document on
sustainable development that is available in most of the European languages
including Dutch and English.

For the experiment, the automatically derived dictionary was merged with
the Van Dale dictionary in the following way. For each entry, the pseudo fre-
quencies and the real frequencies of the possible translations were added. Pseudo
frequencies are usually not higher than four or five, but the real frequencies in
the parallel corpus may be more than a thousand for frequent translation pairs.
Adding pseudo frequencies and real frequencies has the effect that for possible
translations that are frequent in the corpus the real frequencies will be impor-
tant, but for translations that are infrequent or missing the pseudo frequencies
will be important.

Translation pairs that have a frequency of one or two in the parallel corpus
may-be erroneously derived by the word alignment algorithm. If, however, such
an infrequent translation pair is also listed in the machine readable dictionary,
then the pair was probably correct. Therefore we added a bonus frequency of
three to each possible translation that is both in the corpus and in Van Dale.

6.4.4 Context for disambiguation

The techniques introduced so far do not resemble techniques that are actually
used in machine translation systems. Traditionally, disambiguation in machine
translation systems is based on (syntactic) context of words. In this section



6.4. HEURISTICS AND STATISTICS FOR DISAMBIGUATION 105

a statistical algorithm is introduced that tries to translate the request words
in context. The algorithm uses candidate noun phrases extracted from the
document base to disambiguate the query. Noun phrases were extracted using
the standard tools as used in the Twenty-One system: the Xerox morphological
tools and the TNO parser. The noun phrases were sorted and then counted,
resulting in a list of unique phrases with frequency of occurrence.

The introduction of noun phrases (or any multi-word expression) in the
translation process leads to two types of ambiguity: sense ambiguity and struc-
tural ambiguity. Figure 6.4 gives an example of the French translation chart

-

tiers monde guerre mondiale

troisième monde guerre
tiers mondiale bataille

terre

third world war

Figure 6.4: Translation chart of “third world war”

of the English noun phrase “third world war”. Each word in this noun phrase
can have several translations, which are displayed in the bottom cells of the
chart, the so-called sense ambiguity. According to a list of French noun phrases
there may be two candidate multi-word translations: tiers monde for the En-
glish noun phrase “third world” and guerre mondiale for “world war”. These
candidate translations are displayed in the upper cells of the chart. Because
the internal structure of noun phrases was not available for the translation pro-
cess, a full noun phrase can be translated by decomposing it in several ways.
For example “third world war” can be split up in the separate translation of
either “third world” and “war” or in the separate translation of “third” and
“world war”. The most probable decomposition can be found using techniques
developed for stochastic grammars (Bod 1995). The probabilities of the parse
trees can be mapped into probabilities, or weights, of possible translations. A
more detailed description of the algorithm can be found in (Kraaij and Hiemstra
1998).

6.4.5 Manual disambiguation

The manual disambiguation of the dictionary output was done by a qualified
interpreter who also was a native speaker of English. She had access to the
Dutch version of the topics and to the English dictionary output consisting of
a number of possible translations per source language (Dutch) query word. For
each Dutch word, one of the possible English translations had to be chosen,
even if the correct translation was not one of them.



106 CHAPTER 6. CROSS-LANGUAGE INFORMATION RETRIEVAL

6.4.6 Other information

In the experiments described in this chapter we ignored one important source
of information: the multi-word entries in the Van Dale dictionaries. Multi-word
expressions like for instance “world war” are explicitly listed in the dictionary.
For the experiments described in this chapter we only used word-by-word trans-
lations using the single word entries. Multi-word entries might be used in future
evaluations in combination with the extensions for proximity searching intro-
duced in section 4.8.

6.5 Experimental setup and results

In section 6.3 we identified three methods for query translation: using one trans-
lation per query term, using an unstructured query of all translations per source
language query term, and using a structured query of all translations per source
language query term. Each method is assigned a number 1, 2 or 3. In sec-
tion 6.4 five sources of information were identified that may be used by these
methods: dictionary preference, pseudo frequencies, parallel corpora, context
in noun phrases and human expertise. Given the five information sources we
identified seven (two unstructured query experiments were done both with and
without normalisation) retrieval experiments or “runs” which are listed in ta-
ble 6.1. Each experiment is labelled with a letter from a to g. The combinations

run name technique to weight translations / pick the best translation

run ?a no weights used / dictionary preferred translation.
run ?b weight by pseudo frequencies.
run ?c normalise weights of possible translations (run?a)
run ?d weight by normalised pseudo frequencies
run ?e normalised ’real’ frequencies estimated from the parallel

Agenda 21 corpus.
run ?f weight by using noun phrases from documents (including

normalisation)
run ?g disambiguation by a human expert

Table 6.1: Disambiguation methods

of seven information sources and three methods define a total number of 21
possible experiments. After removing combinations that are redundant or not
informative 15 experiments remain.

In the remainder of this section we will report the results of 15 experiments on
the TREC cross-language task test collection (Braschler et al. 1999) topics 1-24.
The Dutch topics were used to search the English documents. Experiments were
compared by the average precision over ranks of relevant documents, average
precision in short. Additionally, the result of each experiment will be compared



6.5. EXPERIMENTAL SETUP AND RESULTS 107

with the result of a monolingual base line run, which is the result of queries based
on the English version of the TREC topics. The monolingual run performs at an
average precision of 0.372.1 All experiments were done with the experimental
language models retrieval engine developed at the University of Twente.

6.5.1 One translation runs

Table 6.2 lists the results of the one translation runs. Normalisation of transla-
tion weights is not useful for picking the best translation. Therefore the table
does not list run1c and run1d. (run1d would give exactly the same results as
run1b.)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

pr
ec

is
io

n

recall

dictionary preferred (1a)
select by pseudo frequencies (1b)

select by frequencies from parallel corpus (1e)
noun phrase disambiguation (1f)

manually disambiguated (1g)

Figure 6.5: Recall-precision plots of one-translation experiments

Not surprisingly, the manually disambiguated run outperforms the auto-
matic runs. Translation ambiguity and missing terminology are the two primary
sources of cross-language retrieval error (Hull and Grefenstette 1996), so it is
hypothesised that the loss of performance is due to missing terminology and
possibly errors in the translation scripts. If the average precision measure is
used for comparison between two runs, then the manually disambiguated run
performs at 78 % of the monolingual base line. This might be seen as an up-
per bound on what is possible using a one-translation approach on the TREC

cross-language collection. Average precision results are listed in table 6.2
The best automatic run is the run using corpus frequencies run1e. This

is a surprise, because a relatively small corpus was used on the domain of the
Twenty-One demonstrator which is sustainable development. Inspection of the
topics however learns us that a lot of topics discuss international problems like
air pollution, combating AIDS, etc., which fall directly in the domain of sustain-
able development. The dictionary preferred run run1a performs reasonable well.

1The results differ from the results reported in (Hiemstra and De Jong 1999), which only
used the 21 topics that were available at the time of TREC-6.



108 CHAPTER 6. CROSS-LANGUAGE INFORMATION RETRIEVAL

run precision at document: average relative to
10 30 100 precision baseline

run 1a 0.330 0.262 0.169 0.246 66 %
run 1b 0.291 0.253 0.147 0.211 57 %
run 1e 0.365 0.300 0.178 0.258 69 %
run 1f 0.348 0.286 0.175 0.247 66 %
run 1g 0.404 0.336 0.214 0.292 78 %

Table 6.2: Results of one-translation experiments

The run using context from noun phrases run1f performs only a little better.
Pseudo frequencies run1b are less useful for identifying the correct translation.

6.5.2 Unstructured query runs

All unstructured query runs use the translation probabilities from the different
translation and disambiguation modules, except for run run2a and run2b which
use translation frequencies instead of probabilities. Table 6.5.2 lists the results
of the unstructured query runs using all possible translations of each word in
the request.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

pr
ec

is
io

n

recall

unweighted (2a)
weight by pseudo frequencies (2b)

normalised weights (2c)
normalised pseudo frequencies (2d)

normalised frequencies from parallel corpus (2e)
weight by occurrences in noun phrases from document collection (2f)

Figure 6.6: Recall-precision plots of unstructured query experiments

A first important thing to notice is that the normalisation of the term weights
is a prerequisite for good performance if all possible translations per source lan-
guage query term are used in an unstructured query. Not using the normalisa-
tion, as done in run2a and run2b will drop performance to a disappointing 40
to 45 % of the monolingual base line. More surprisingly, the pseudo frequency
run run2d and the real frequency run run2e now perform almost equally well



6.5. EXPERIMENTAL SETUP AND RESULTS 109

and both approach the upper bound on what is possible with the one transla-
tion approach (run1g). Although the pseudo frequencies are not very useful for
identifying the best translation, they seem to be as realistic as real frequencies
if used for estimating the translation probabilities

run precision at document: average relative to
10 30 100 precision baseline

run 2a 0.300 0.240 0.167 0.169 45 %
run 2b 0.291 0.228 0.138 0.151 40 %
run 2c 0.378 0.320 0.196 0.249 67 %
run 2d 0.404 0.352 0.214 0.285 77 %
run 2e 0.426 0.354 0.213 0.281 75 %
run 2f 0.378 0.315 0.204 0.254 68 %

Table 6.3: Results of unstructured query experiments

Pairwise comparison with the one translation experiments by the use of aver-
age precision shows the following. If the identical methods are compared, that
is a comparison of parallel corpus runs, noun phrase runs, etc., then none of
the differences between the one-translation experiments and the unstructured
queries experiment is statistically significant. Details can be found in the ap-
pendix.

6.5.3 Structured query runs

Table 6.4 lists the results of the structured query runs. Normalisation of term
weights is implicit in the structured query, so run3a and run3b will give exactly
the same results as run3c and run3d respectively.

The four runs do not differ as much in performance as their unstructured
equivalents, which suggests that the structured queries are more robust than
the unstructured queries. Again, the pseudo frequency run run3d and the real
frequency run run3e perform almost equally well. Table 6.4 shows that three out
of four runs perform better than the manually disambiguated one-translation
run run1g.

Pairwise comparison with the corresponding one-translation experiments
shows the following. All structured query runs outperform the correspond-
ing one-translation runs that use identical methods for disambiguation. The
differences between the pseudo frequencies experiments (run1b vs. run3d) and
the parallel corpus experiments (run1e vs. run3e) are statistically significant
at the 5 % level. The differences between dictionary preferred and unweighted
structured queries is not significant (run1a vs. run3c). The difference between
the noun phrase runs is also not significant (run1f vs. run3f).

Pairwise comparison of the structured query experiments with their corre-
sponding unstructured query experiments shows the following. All structured



110 CHAPTER 6. CROSS-LANGUAGE INFORMATION RETRIEVAL

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

pr
ec

is
io

n

recall

unweighted (3a/3c)
weight by pseudo frequencies (3b/3d)

weight by frequencies from parallel corpus (3e)
weight by occurrences in noun phrases from document collection (3f)

Figure 6.7: Recall-precision plots of structured query experiments

run precision at document: average relative to
10 30 100 precision baseline

run 3c 0.396 0.354 0.226 0.289 78 %
run 3d 0.444 0.361 0.231 0.307 82 %
run 3e 0.439 0.362 0.229 0.309 83 %
run 3f 0.422 0.354 0.225 0.298 80 %

Table 6.4: Results of structured query experiments

query runs outperform their corresponding unstructured runs. The unweighted
experiments (run?c) and the parallel corpus experiments (run?e) differ signif-
icantly at the 5 % level. The differences between the pseudo frequency experi-
ments and the noun phrase experiments are not significant.

Pairwise comparison of the structured query experiments with the manually
disambiguated experiment shows that none of the differences is statistically
significant. Details can be found in table C.5 of the appendix.

6.5.4 Some post-hoc experiments

Some post-hoc experiments were done to see how structured queries, without the
use of translation probabilities, perform if the p-norm model is used. The results
of this experiment should be compared to the language model-based experiment
run 3c, which also does not use translation probabilities. For the p-norm model,
p = 2 and Ltu weights were used, a combination that was relatively successful
in the manually formulated Boolean queries experiment. A second monolingual
experiment base 2 was done using the vector space model with Lnu.ltu weights



6.5. EXPERIMENTAL SETUP AND RESULTS 111

for fair comparison.
A second unrelated experiment run 3r was done that uses the relevant docu-

ment to estimate relevance weights and translation probabilities retrospectively
using the EM-algorithm for structured queries.

run precision at document: average relative to
10 30 100 precision baseline

base 2 (Lnu.ltu) 0.496 0.393 0.252 0.329 -
run 3p (p-norm Ltu p=2) 0.252 0.217 0.164 0.159 48 %

run 3r (LM retrosp. relw.) 0.561 0.417 0.264 0.377 101 %

Table 6.5: Results of post-hoc structured query experiments

The p-norm experiment shows that the p-norm model cannot cope with
structured queries that are generated automatically by a translation module.
Its performance is only 48 % of the Lnu.ltu base line which reaches an average
precision of 0.329. The difference between the language model-based structured
query run, that does not use translation probabilities (run 3c) is significant at
the 1 % level.

Retrospective relevance weighting for structured queries reaches an average
precision of 0.377, which outperforms the language model’s monolingual base
line. Note that some queries miss vital translations. If translations are better,
retrospective relevance weighting might be much better than the monolingual
baseline (Hiemstra, Kraaij, Pohlmann, and Westerveld 2000). As said in chapter
5, the results of retrospective relevance weighting are of theoretical interest only:
the algorithm does what it was designed for.

6.5.5 Pool validation

Judgements for the cross-language task are probably not as complete as the
judgements for the other TREC tasks because of the relatively small number of
participants. For topics 1-24 of the cross-language collection, the judgements
were done on a per-language basis. Of the 19 judged runs, only 6 were runs on
the English collection that was used for the experiments in this chapter. For the
official TREC-6 cross-language task runs, each run that contributed to the pool
was evaluated both with (standard evaluation) and without the relevant docu-
ments that the run uniquely contributed to the pool. The difference between
the two evaluations will give an idea of how reliable the collections are for future
work. The comparison shows that on average, an unjudged run will have 0.022
higher average precision after judging. The standard deviation of the differences
between judged and unjudged runs is more than half of the mean, indicating
considerable variation among runs. Details of the pool validation experiment
can be found in table C.9 of the appendix. The same experiment on the TREC-7
CLIR pool shows similar results. Note that if the systems are ordered by their



112 CHAPTER 6. CROSS-LANGUAGE INFORMATION RETRIEVAL

performance, the order after judging is different from the order before judging.
This suggests that some caution has to be taken on the results reported in this
chapter.

6.6 Discussion

The experiments in this chapter have shown that the structured query experi-
ments consistently outperform the automatic one-translation runs and the un-
structured query runs for a number of different disambiguation methods. There
is some evidence that the differences are significant, for instance from the ex-
periments that use the frequencies from the parallel corpus. Structured queries
also consistently outperform the experiment that uses manual disambiguation of
the translation output. None of these differences is significant, but it suggests
that no automatic explicit disambiguation method could possibly outperform
the method introduced in this book.

Unfortunately, differences between methods are hard to detect because of
the relatively small number of topics that was used for this evaluation. Also,
the collection might be less reliable than the main TREC collection because of
the relatively small number of official participants. It is therefore desirable to
redo this evaluation on another test collection using a reasonable amount of
topics.

In several early publications on cross-language retrieval (Hull and Grefen-
stette 1996; Kraaij 1997; Oard and Dorr 1996) it is hypothesised that the doc-
ument translation approach to cross-language retrieval leads to better retrieval
performance than the query translation approach because there is more context
available in documents for lexical disambiguation. Of course, lexical disam-
biguation is easier if there is more context available, but the results suggest
that lexical disambiguation is not essential for good retrieval performance. In
fact, table 6.4 shows that the best performing runs simply use all possible trans-
lations. The results of the manually disambiguated run suggest that not much
can be gained by putting a lot of effort in explicit disambiguation of possible
translations. By using the statistical translation model of information retrieval,
disambiguation is done implicitly during searching. This suggests that the hy-
pothesis that document translation leads to better retrieval performance than
query translation might not be true after all: further research is needed on this
topic.



Chapter 7

Adaptive Information
Filtering

This chapter reports on the evaluation of a prototype adaptive filtering system.
The main question this chapter tries to answer is whether it is possible to im-
prove upon a base line system by using the relevance weighting algorithm of the
information retrieval language model. Section 7.1 briefly introduces adaptive
filtering systems. Section 7.2 introduces the prototype adaptive filtering system.
Finally, section 7.3 reports of the evaluation results.

7.1 Introduction

Today, most people can be reached anytime, anywhere. We have mobile tele-
phones, voice mail, short message service (SMS), facsimile, electronic mail, etc.,
etc. Some people get completely lost in information space, especially if one
adds keeping up with news groups, the world wide web, newspapers, radio,
and television. Some researchers suggest that overload of information may lead
to psychological and physical problems, called information fatigue syndrome
or information stress (Wurman 1989). As a possible solution to information
stress, adaptive information filtering systems actively disseminate personalised
information to the user.

7.1.1 Filtering systems

When a document is received by the filtering system, it is matched against a user
profile. A user profile is the query of information filtering systems:1 it contains
information about the user’s interests. Once the user has entered her profile,
the filtering system can do its work. In contrast to queries that are entered
in information retrieval systems, the profile remains relatively stable, whereas

1At any place where this chapter mentions “profile” one might read “query” and vice versa.

113



114 CHAPTER 7. ADAPTIVE INFORMATION FILTERING

the collection is dynamic. Documents come in one at a time or in relatively
small batches. If a received document matches the profile with a score that is
higher than a certain threshold, the user is notified. Users are able to control
the filtering process by giving feedback to the system, which uses the user’s
feedback to adapt the profile and the threshold. Positive feedback will result in
more documents on the subject of the received document and negative feedback
will result in less documents, thereby minimising the chance of information
stress.

The design of an adaptive filtering system raises three important problems
(Ekkelenkamp, Kraaij, and Van Leeuwen 1999): firstly, how to set the initial
threshold, secondly how to adapt the threshold and thirdly, how to adapt the
user profile. Setting the thresholds probably has the greater impact on per-
ceived performance (Zhai et al. 1999). Once the threshold algorithms perform
satisfactory, it is hard to improve upon the performance by query reweighting.
Although this chapter reports on some work on the development of the threshold
algorithms, the main objective of this chapter is the evaluation of the relevance
weighting algorithm introduced in section 4.4.2. It is hypothesised that a base
line filtering system, that uses the language model matching algorithm and an
adaptive thresholding algorithm, can be improved significantly by the use of the
relevance weighting algorithm.

7.1.2 The utility of a filtering system

Filtering systems either show an incoming document to the user, or not. The
output of a filtering system is not a ranked list of documents, but simply a set of
unordered documents. In principle, the system could therefore be evaluated by
using the simple set-based definitions of precision and recall without the need to
average them over e.g. document cut-offs. However, precision and recall do not
capture the fact that the filtering system should keep the number of selected
documents as small as possible. Compare for instance a filtering system that
shows the user one non-relevant document a week, with a filtering system that
shows the user 100 non-relevant documents a week. If both systems are not able
to select any relevant documents, for instance because there were no relevant
documents that week, they both get zero precision. Surely the former system
does a much better job than the latter system (Hull 1999). As an alternative,
the following two utility measures will be used.

LF1 = 3 r − 2 (n−r) r : number of relevant documents selected
n : number of documents selected

LF2 = 3 r − (n−r) R : total number of relevant documents

The utility measures LF1 and LF2 assign a value or cost to each document,
based on whether it is relevant or not. The first measure represents a user
for which a relevant selected document has a value of 3, and a non-relevant
selected document has a cost of 2. This user needs to see at least 2 relevant
documents in each 5 selected. If not, the utility will become negative and we



7.2. A PROTOTYPE ADAPTIVE FILTERING SYSTEM 115

might imagine the user suffering from information stress. The second measure
represents a user whose costs of reading a non-relevant document are twice as
low. Two versions of the prototype system will be tested, one optimised for LF1

and one optimised for LF2. The systems will be evaluated by the measures for
which they are optimised. The higher the utility score of a system for a user
profile, the better the system is performing. The two-tailed sign test will be
used to test if the differences between methods are significant at the 5 % level
(see appendix A).

The remainder of this chapter is organised as follows. Section 7.2 describes
the prototype adaptive filtering system. The evaluation method and the sys-
tem’s results are described in section 7.3.

7.2 A prototype adaptive filtering system

A prototype adaptive filtering system was built using the experimental language
models retrieval engine which was also used for the cross-language experiments.
The evaluation was part of the official TREC-8 adaptive filtering task.

7.2.1 The background corpus

As adaptive filtering systems receive the documents in a sequence, global infor-
mation on terms, like document frequencies or collection frequencies, will not
be available to the system. Initial document frequencies for term weighting
are therefore collected from a background corpus. The background corpus is a
set of documents that is available during system development. If possible, the
background corpus should contain documents that are similar to the documents
stream that is to be filtered. By using the document frequencies of the back-
ground corpus, the system can use the language model’s retrieval algorithms
as introduced in section 4. Whenever a document is received, the document
frequencies of the terms that occur in the document are increased by one. This
way, the document frequencies will more and more reflect the document stream,
and zero document frequencies are avoided.

7.2.2 Setting the initial threshold

The new model’s retrieval algorithm assigns to each incoming document the
probability that the document’s language model generates the user profile. For
ranking this is sufficient, but for binary selection of a document the question
“when is the probability high enough?” needs to be answered. One way to
answer this question is to relate the probability of sampling the profile from a
document to the probability that the profile is the result of a random sample
from the entire collection. Profiles that have a high probability of being sampled
from the collection (i.e. profiles with common words), should receive a higher
initial threshold than profiles with a low probability of being sampled from the
collection (i.e. profiles with uncommon words). The probability that a profile



116 CHAPTER 7. ADAPTIVE INFORMATION FILTERING

T1, T2, · · · , Tn of length n is sampled from the collection might be defined as
follows.

P (T1 = t1, T2 = t2, · · · , Tn = tn) =
n∏

i=1

df(ti)∑
t df(t)

(7.1)

Initially only documents that generate the profile with a much higher probability
than equation 7.1 should be selected. The initial threshold might be set to select
documents with probabilities that are more than 100,000 times higher than the
probability of random selection. This value was found empirically on a different
collection. A value of 100,000 does not result in a very high threshold, because
words that appear only once in a large background corpus will receive a very
small probability compared to the probability of a matching term.

After rewriting the probability measures to their corresponding vector prod-
uct weighting algorithms (see section 4.7), the document frequencies in the initial
threshold disappear. The vector product threshold that corresponds with the
decision above is threshold = n log(1 / (1−λi))+ c, where c = log(100,000). This
shows an interesting feature of the initial threshold. In its vector product form,
the threshold is related to the importance weights λi. High initial importance
weights result in a high initial threshold. Importance weights are initialised to
λi = 0.5 and re-estimated after feedback from the user.

7.2.3 Threshold adaptation

The threshold adaptation algorithm is the part of the system that uses the
utility functions to optimise its performance. It was simply decided to aim just
below the optimum utility given the scores of the documents that were selected
by the system. Updating was done as follows.

1. Recompute the scores of all selected documents (because of changed doc-
ument frequencies and changed relevance weights);

2. recompute the initial threshold (because of changed relevance weights λi)
and add it to the selected documents as if it were a non-relevant document;

3. rank the selected documents by their new scores and find the maximum
utility max by walking down the ranked list;

4. the new threshold will be the score of the lowest ranked document that has
a utility of max−3 when optimising for LF1 and max−1 when optimising
for LF2.

As long as the system does not find any relevant document, it will increase
its threshold quite fast. In general, it will never lower its threshold again,
although this might happen in practice because changed document frequencies
and importance weights sometimes change the ranking of selected documents.

7.2.4 Relevance weighting of query terms

Initially, when no information on relevant documents is available, each term
in the profile will get the same importance weight λi = 0.5. So, initially we



7.3. EXPERIMENTAL RESULTS 117

assume that the profile is best explained if on average half of the profile terms
is sampled from relevant documents and the other half is sampled from the
updated background corpus frequencies. If a relevant document is available,
it might be possible to explain the profile better. The EM-algorithm for re-
estimation of importance weights λi will make sure that terms that occur often
in the relevant documents that are selected so far, get a high importance weight
λi. Profile terms that do not occur (often) in the relevant documents are more
likely to be sampled from the updated background corpus frequencies and get
a low importance weight λi.

7.3 Experimental results

This section describes a controlled experiment that emulates the stream of in-
coming documents and the user’s feedback.

7.3.1 Evaluation setup

The 1992, 1993 and 1994 editions of the Financial Times were used to emulate
a three year long document stream. The collection contains 204,790 documents,
which corresponds to about 187 documents a day. The Financial Times is
a subset of the TREC collection, which makes it possible to use topics 351-
400 to build profiles that represent the profiles of 50 users. The prototype
adaptive filtering system now processes the collection in chronological order.
Each document is matched against the profiles of the 50 hypothetical users. If
the score exceeds the threshold of a profile, the document is sent to the user who
will give feedback to the system: either relevant or non-relevant. The feedback is
emulated by using the TREC relevance judgements. The system is only allowed
to use judgements of documents that were sent to the user, emulating the fact
that users can only give feedback on documents that were sent to them. The
prototype system processes the three year document stream in about 20 hours,
so one system could in theory process over 1,000 times as many documents for
50 users in real time.

For the background corpus, the ’87 to ’91 editions of the Wall Street Journal
were used. Later editions of the Wall Street Journal were not used because
this data would not have been available in a real world application. The topics
and The Financial Times documents were stemmed using the Porter stemmer
and stopped using the Smart stop-list which was augmented with some domain-
specific stop words like “document” and “relevant”. The topic’s title, narrative
and description were used to build the initial profile. The controlled language
fields of the Financial Times test collection were not used. We did not process
the incoming documents in chunks. That is, document frequencies were updated
for each incoming document; a binary decision was made directly for each in-
coming document; selected documents were immediately checked for relevance;
thresholds and profiles were immediately updated after the relevance assess-
ments. Unjudged documents were assumed to be not relevant. All selected



118 CHAPTER 7. ADAPTIVE INFORMATION FILTERING

documents were saved for future updating of thresholds and query profiles.

7.3.2 Results

Six different strategies were applied: three optimised for LF1 and three op-
timised for LF2. For both utility functions the same three experiments were
done.

1. A baseline run that only uses the initial threshold setting and threshold
adaptation routines;

2. the same run as 1, but with relevance weighting of profile terms;
3. the same run as 1, but using a very high initial threshold.

The high initial threshold experiments were done to check whether a very con-
servative threshold algorithm could possibly be more beneficial than a query
reweighting technique. These two experiments were done using the TNO re-
trieval engine under slightly different conditions. The TNO system used the
AP News wire data as the background corpus to estimate the initial document
frequencies from and a somewhat different stop list. The slightly different con-
ditions did not change the big picture of the evaluation results. The two runs
will not be used for pair-wise comparisons.

run LF1 LF2 prec. recall

LF1 optimised -9.30 4.86 0.242 0.240
LF1 optimised; profile reweighting -7.28 7.10 0.243 0.251
LF1 optimised; high initial threshold -1.20 2.46 0.216 0.105
LF2 optimised -12.96 4.80 0.232 0.254
LF2 optimised; profile reweighting -9.12 6.60 0.237 0.254
LF2 optimised; high initial threshold -5.54 1.34 0.199 0.127

Table 7.1: Adaptive filtering results averaged over topics

Table 7.1 lists the evaluation results of the runs using four evaluation mea-
sures: LF1, LF2, precision and recall averaged over topics. The utility scores
reported are averaged over the 50 test profiles. Precision and recall were aver-
aged over the profiles by assigning 0 % recall to topics with no relevant doc-
uments and assigning 0 % precision to topics with empty retrieved sets. De-
spite the potential problems with the precision and recall measures, they are
reported as well because precision and recall serve easy comparison with the
experiments reported in previous chapters. Also, precision and especially recall
contain valuable information about the size of the selected sets, which is not
explicitly provided by the utility measures.

Both baseline runs show a consistent improvement in the average utility,
average precision and average recall after relevance weighting of query terms.
The improvements are not significant according to the sign test. Interestingly,
query reweighting has a different impact on the two systems. It causes improved
recall for the LF1 system and improved precision for the LF2 system: The



7.4. DISCUSSION 119

LF1 system selected 5 % more documents after query reweighting, but the LF2

system selected 8 % less documents.
The high initial threshold runs show different behaviour. When optimising

for LF1 (run 1p), the performance in terms of average utility improves consid-
erably. At the same time, the performance in terms of precision and recall goes
down. When optimising for LF2, a high initial threshold results in a system
with lower performance than the baseline in terms of average utility, precision
and recall. The high initial threshold experiments reveal a problem with the
LF1 utility. For this measure, it is plain too hard to build a system that does
not perform below zero utility on average. Scoring negatively on utility means
that the user would prefer to use no system at all. Interestingly, the high initial
threshold for the LF1 system did not select any document for 22 out of 50 topics.
It improved its utility at the cost of precision and recall and by doing so it came
pretty close to no system at all.

7.4 Discussion

A comparison between the systems with and without relevance weighting using
the sign test does not detect a significant difference on the utility score. The
Differences in both precision and recall are also not significant. This does not
mean that the methods are not different, but just that the sign test was not
able to detect it. For both utility measures, the relevance weighting algorithm
improved the performance of the base line system in terms of utility, precision
and recall. A very conservative threshold algorithm is only beneficial in terms
of utility, if the system performs below the level that is acceptable for the user.
In future experiments, further improvements might be possible from structured
initial profiles that are built by expanding each term with synonyms and other
related variants. In this case relevance reweighting might be able to select the
right variant from each group of synonyms.



120 CHAPTER 7. ADAPTIVE INFORMATION FILTERING



Chapter 8

Conclusions

This chapter concludes this book by answering the three research questions in-
troduced in chapter 1 and by summarising the evaluation results. Section 8.1
summarises the contributions of this thesis to information retrieval theory by
summarising the application of statistical language models to term weighting,
relevance feedback and structured queries. Section 8.2 summarises the model’s
implications for the formulation of structured queries from natural language
search statements. Section 8.3 reports on the results of a practical comparison
of a language model-based system with systems based on some well-established
models, and on the evaluation of two prototype retrieval systems.

8.1 Contributions to IR theory

This section summarises the answers to the first research question that was
introduced in chapter 1: How to apply the theory of statistical language models
to three classical problems of information retrieval modelling: term weighting,
relevance feedback and structured queries?

8.1.1 The basic model and term weighting

A basic model of information retrieval has been introduced that defines the
matching process of retrieval systems. For each document in the collection, a
language model defines the typical language use that belongs to that document.
The probability that the document’s language model generated the user query,
is used to rank the documents. The probability mechanism that generates the
query, explicitly distinguishes important terms and unimportant terms. The
probability of an important term is defined by the probability of drawing the
term at random from the document. The probability of an unimportant term is
defined by the probability of drawing the term at random from the collection.
Assuming that the query terms are independent, there is a term weighting
algorithm that assigns zero weight to non-matching terms.

121



122 CHAPTER 8. CONCLUSIONS

Conclusion 1 A tf .idf term weighting algorithm can be derived from a formal
model of information retrieval.

The algorithm uses tf .idf weighting if document frequencies are used to specify
the probabilities of the unimportant terms. Note that the derivation of a term
weighting algorithm from a theory is stronger than the motivation of a term
weighting algorithm from a theory. That is, if a term weighting algorithm is
derived from a formal model then it can be motivated by that model, but moti-
vation does not imply derivation. The tf .idf term weighting algorithms have for
instance been motivated by the 2-Poisson model (Robertson and Walker 1994)
and by information theoretic measures (Aizawa 2000), but by following these
motivations many tf .idf measures seem reasonable, including the algorithms
that perform badly in experimental settings.

8.1.2 Importance of query terms and relevance feedback

The probability mechanism that defines how a query is generated from a doc-
ument leaves one unknown parameter for each query term. The parameter is
associated with the binary event “importance of a query term”.

Conclusion 2 The probability of the importance of a query term is a value of
the usefulness of a term to retrieve relevant documents.

The probability of the importance of a query term is called the ‘importance
of a term’, or the ‘importance weight’ in this book. The weight does not de-
pend directly on the number of occurrences of the term in the collection, and
can be used to model the following four seemingly unrelated issues in informa-
tion retrieval: stop words, mandatory terms, coordination level rankings, and
relevance weighting of query terms.

Conclusion 3 Traditional removal of a stop term from the query can be mod-
elled by assuming that the importance of the term is 0.

For the well-established models of information retrieval, stop word removal is
something that is specified outside the model, not within the model itself.

Conclusion 4 A term that is mandatory in the retrieved documents, can be
modelled by assuming that the importance of the term is 1.

If the importance of a term is 1, then all documents that do not contain the
term will be assigned zero probability. Modelling of mandatory terms is not
possible in the well-established models.

Conclusion 5 If the average importance of the terms in a query is close to 1,
then the system obeys the conditions of coordination level retrieval.

Coordination level ranking is a partial ranking in which documents that contain
k query terms are always ranked above documents containing k−1 query terms.
User studies have shown that users prefer coordination level rankings over rank-
ings that do not obey the conditions of coordination level ranking, especially if



8.1. CONTRIBUTIONS TO IR THEORY 123

short queries are used. Ranking by coordination level gives the user easy insight
in why a certain document is ranked above another.

Conclusion 6 A relevance weighting algorithm has been developed that esti-
mates new values for the importance weights from examples of relevant docu-
ments.

The presented EM-algorithm provides maximum likelihood estimates for the
importance weights that optimise the models of the relevant documents. The
algorithm optimises the joint probability of the query and each known relevant
document, assuming independence between the relevant documents.

This thesis did not suggest a query expansion method, like e.g. the rele-
vance feedback method described in section 2.3.2, for the language model-based
system. There is however nothing that prevents the development of such an
algorithm. Query expansion methods were developed for language model-based
systems by Miller et al. (1999) and Ng (2000).

8.1.3 The extended model and structured queries

A second model of information retrieval has been introduced that is an exten-
sion of the basic model of the matching process. The extended model adds a
statistical translation step to the basic model. The statistical translation step
can be looked upon as a model of the query formulation process. In practice,
the system uses the translation model and the matching model as two separate
steps. If a request is entered, the system first uses the translation model to
hypothesise for each word in the request the terms that might have generated
it. This results in a structured query that represents all queries that might have
generated the request. In the second step, the system uses the basic model for
each document to calculate the probability that the document generated any of
the queries represented by the structured query.

Conclusion 7 The extended retrieval model provides a way to process struc-
tured queries in conjunctive normal form, where the original query (the request)
forms the conjunctive query and the possible translations of each term form the
disjunctive parts.

Conclusion 8 For each indexing strategy that unambiguously converts words
in documents to index terms, there is a corresponding query formulation strategy
for structured queries that produces the exact same retrieval results, if collection
frequencies are used for the probabilities of unimportant terms.

Unambiguously means that each word is converted deterministically to one, and
only one term as e.g. done by converting words to lower case or as done by a
stemmer. So, there is a strategy to morphological generation that generates
structured queries that produce the exact same results as the use of a stemmer
during indexing and automatic query formulation.



124 CHAPTER 8. CONCLUSIONS

Conclusion 9 A relevance weighting algorithm has been developed for struc-
tured queries that estimates new values for the importance weights and the
translation probabilities from examples of relevant documents.

The presented relevance weighting algorithm optimises the models of the rele-
vant documents by providing maximum likelihood estimates of the importance
weights and the translation probabilities.

8.1.4 Hidden Markov models and Bayesian networks

Much of the theory underlying the information retrieval models, like for in-
stance the use of the EM-algorithm to estimate the unknown parameters, was
developed for hidden Markov models and Bayesian networks. This thesis briefly
presents the language model-based system using the hidden Markov model for-
malism and using the Bayesian network formalism.

Conclusion 10 The basic model and the extended model can be presented as
hidden Markov models.

Conclusion 11 The basic model and the extended model can be presented as
Bayesian networks.

Miller, Leek, and Schwartz (1999) introduced a language model-based retrieval
system using hidden Markov models. This thesis added a hidden Markov pre-
sentation for the extended retrieval model. More interesting from a historic
point of view is the presentation as a Bayesian network. Bayesian networks
for information retrieval were introduced by Turtle and Croft (1991). The two
approaches share the fact that they infer the probability of the query from the
hypothesis that the document is relevant. The language model-based Bayesian
network has the following advantages over the traditional Bayesian networks for
information retrieval. It does not use approximate link matrices, it does not
need an additional term weighting algorithm, and it provides a way to train the
model from examples of relevant documents.

8.2 Automatic query formulation

This section summarises the answers to the second research question: How
to apply the theory of statistical language models to the automatic formulation
of structured queries from natural language search statements? To master the
automatic formulation of structured queries, it should be clear how to model
advanced free text search facilities intended for manual query formulation.

8.2.1 Advanced search facilities for free text

Some of the solutions to advanced search facilities for manual query formulation
were already introduced in the previous section. Conclusion 4 introduced a way
to model mandatory terms. Conclusion 8 implies that wildcards can be modelled



8.2. AUTOMATIC QUERY FORMULATION 125

by treating the terms that match the wildcarded term as possible translations
of this term. Similarly, a synonym operator can be modelled by treating the
terms it relates as possible translations of an unknown term. Boolean-structured
queries can the processed if they are automatically converted to the conjunctive
normal form.

Conclusion 12 Dependency operators can be modelled by introducing three
levels of importance, a level for unimportant terms, a level for the importance
of the single terms, and a level for the importance of the dependency relation.

Dependency relations are used to combine information from different sources.
For instance, additional information may be provided by the position informa-
tion in the index, or by the field information in the index. If the index contains
position information, then terms can be related by these positions. A proximity
operator uses the relative position of terms in documents to specify a search for
two related words. Bigram probabilities can be used for the adjacency of terms
(Miller, Leek, and Schwartz 1999; Song and Croft 1999). Similar probabilities
can be used for other proximity operators. Terms might also depend on a cer-
tain record field. A record field or document field is a part of the document that
can be searched separately, like for instance the title or the abstract.

8.2.2 Natural language processing

Natural language processing technology has always played an important role
in information retrieval. Usually natural language processing modules are used
for query formulation and indexing. This thesis shows how these modules can
be used during query formulation only, leading to much more flexible informa-
tion retrieval systems. Stemming is probably the most popular example of the
application of natural language processing technology to information retrieval.
According to conclusion 8, a stemmed query on a stemmed index results in
the exact same ranking of documents as a structured query using the stem’s
morphological variants on an index that is not stemmed. This mathematical
interpretation of stemming can be applied to many other linguistical tools that
analyse natural language text at the lexical level.

Conclusion 13 The statistical translation model can be used to integrate mod-
ules that analyse natural language at the lexical level.

There are a lot of examples of modules that analyse natural language at the
lexical level, many of which are already integrated in commercial systems. For
instance, edit distance (Baeza-Yates 1992) can be used to recover from type
errors or errors from optical character recognition; fuzzy matching algorithms
(De Heer 1979) or the soundex algorithm (Gadd 1988) can be used to recover
from spelling errors; morphological analysis can be used to match morphological
variants; ontologies as Wordnet (Miller et al. 1990) can be used to match
synonyms and related terms; translation can be used for cross-language retrieval,
etc. Degrees of matches from these modules, e.g. from the fuzzy matching
algorithm, can be used to hypothesise a translation probability.



126 CHAPTER 8. CONCLUSIONS

Conclusion 14 Dependency operators can be used to integrate modules that
analyse natural language at the syntactic level.

The dependency operators discussed in this thesis are proximity operators and
field search operators. Proximity operators provide a basic tool for the search of
phrases in documents. For instance, a noun phrase grammar might be used to
find phrases in the request which are used to search for documents that contain
the single terms adjacent or near to each other.

8.3 Evaluation results

This section summarises the answers to the third research question: What is
the performance of the language model-based approach compared to the perfor-
mance of well-established approaches? The language model-based algorithms
were compared to well-established algorithms on three standard tasks: ad-hoc
retrieval, retrospective relevance weighting and manually formulated Boolean-
structured queries. Two prototype retrieval systems were developed, a proto-
type cross-language retrieval system and a prototype adaptive filtering system.
The prototype systems evaluate respectively the language model’s approach to
automatic query formulation and the model’s approach to relevance weighting.

8.3.1 Retrieval performance on standard tasks

The language model-based algorithms were compared with some well-established
retrieval algorithms in a number of controlled experiments. Retrieval algorithms
were compared on three tasks: ad-hoc retrieval, retrospective relevance weight-
ing and manually formulated Boolean-structured queries.

Conclusion 15 On the ad-hoc task, the language model-based system outper-
forms four systems that use well-established retrieval algorithms. All differences
are significant, except for the difference with the BM25 algorithm for which there
is insufficient evidence to disprove the null hypothesis that both algorithms per-
form equally.

Conclusion 16 On the retrospective relevance weighting task, the language
model-based system outperforms the traditional probabilistic model and the
BM25 algorithm. The difference with the probabilistic model is significant.
There is insufficient evidence to disprove equal performance of the language
model-based system and the BM25 system.

Experimental results show that all three systems degrade the performance of
some queries. This seems rather alarming, considering that training data and
test data are the same for this task. The effect seems to be more severe for
the BM25 algorithm, of which the difference between the ad-hoc and relevance
weighting experiments is not significant at the 5 % level according to the sign
test. The system based on the traditional probabilistic model and the language



8.3. EVALUATION RESULTS 127

model-based system do show significant improvement after relevance weighting
of query terms.

It has been noted for other applications of language models, for instance
for part-of-speech tagging (Elworthy 1994), that EM re-estimation sometimes
degrades performance if training data and test data are the same. The problem
might be related to the the maximum likelihood criterion that underlies the
EM-algorithm (Jelinek 1997, page 72). The maximum likelihood criterion is
not directly related to the aim of maximising the probability of relevance and
so it does not necessarily lead to it. In practice, the performance gain is as good
as the performance gain of the traditional model and better than the BM25
algorithm.

Conclusion 17 On the manually formulated Boolean-structured query task,
the language model-based system outperforms two versions of the p-norm model.
The differences with both versions are significant at the 5 % level.

Not much can be gained with the special treatment of Boolean operators. Both
the language model-based system and the p-norm system using Ltu weights
do not show significant improvement of structured queries when compared to
unstructured versions of the same queries.

8.3.2 Cross-language information retrieval

Three approaches to cross-language retrieval were compared in this task: ex-
plicit disambiguation of the translation output, the use of unstructured queries,
and the use of structured queries. For each of the three approaches, different
disambiguation and translation strategies were tried.

Conclusion 18 Given a resource for automatic translation, structured queries
outperform explicit disambiguation methods and unstructured queries. There is
some evidence that the differences between structured queries and explicit dis-
ambiguation, and the differences between structured queries and unstructured
queries are statistically significant.

If translation probabilities are estimated from parallel corpora, then the differ-
ence between structured queries and explicit disambiguation and the difference
between structured queries and unstructured queries is statistically significant.
Interestingly, queries that were explicitly disambiguated by a human translator
do not outperform the structured queries. This suggests that explicit disam-
biguation, as done by e.g. machine translation systems, is not necessarily a
sensible approach to cross-language information retrieval.

8.3.3 Adaptive information filtering

Two adaptive filtering systems were compared in this experiment. One system
only uses a threshold adaptation algorithm. The other system uses the same
threshold adaptation algorithm, but also uses the relevance feedback algorithm



128 CHAPTER 8. CONCLUSIONS

for the re-estimation of importance weights. The two systems were compared
on two different tasks.

Conclusion 19 Relevance weighting of query terms improves the average util-
ity of the prototype adaptive filtering system on both tasks. There is however
insufficient evidence to disprove equal performance of the two systems.

The experiment shows that examples of relevant documents can be used to
predict the importance of query terms in future relevant documents.

8.4 Discussion and recommendations for future
research

The language model-based approach to information retrieval presented in this
thesis provides a complete theory of information retrieval, covering topics like
ranking, structured queries, relevance feedback, stop words, mandatory terms,
coordination level ranking, tf .idf weighting, stemming, translation, extended
Boolean searching, proximity searching, and record field searching. There are
four reasons to prefer the language model-based approach over one of the well-
established models of ranked information retrieval. Firstly, the language model-
based approach provides methods for term weighting, relevance feedback and
structured queries, whereas none of the existing models covers both relevance
feedback and structured queries. Secondly, the language model-based approach
models the matching process and the query formulation process, whereas the
existing models only define the matching process. Thirdly, the language model-
based approach provides ways to define proximity and field search, which are
not provided by the well-established models. The fourth reason for preferring
the language model-based approach is that the language model-based system
performs as well as, or better than, the well-established retrieval models and
algorithms in controlled experiments. Future research should emphasise the ap-
plication of the language model-based theory, and search for the best ways to
apply the language-model based theory to various information retrieval prob-
lems.

8.4.1 Development of a query language

The experiments reported in this thesis were done without a well-defined query
language. Instead, query structure, importance weights and translation proba-
bilities were encoded by a number of different ad-hoc schemes. For the devel-
opment of a serious prototype system and for future experiments, an extensible
query language is essential (see e.g. Broglio, Callan, and Croft 1994). Such a
query language would define a syntax in which highly structured queries can
be easily expressed, thereby facilitating easy integration of natural language
processing modules and easy experimentation.



8.4. DISCUSSION AND RECOMMENDATIONS 129

8.4.2 Experimentation

This thesis reported on two systematic evaluations in which different values of
parameters were tried to find the values for which the system performs best.
The first systematic exploration was done on the Cranfield collection, to find
the best system setting and the best value of the average importance of query
terms λ for the ad-hoc task. The second exploration was done on the TREC

cross-language collection, to find the best query translation method for cross-
language retrieval. These two experiments should be repeated respectively on a
collection that is much bigger than the Cranfield collection, and on a collection
for which more queries are available.

Similar experiments should be done for other tasks as well. The best value of
the average importance of query terms λ that was experimentally found in the
Cranfield collection for the ad-hoc task, was used in the manually formulated
Boolean-structured query task and in the cross-language retrieval task. On these
tasks, the values might be suboptimal.

Many more interesting experiments are suggested in this thesis. For in-
stance the application of proximity operators, the combination of information
from different record fields, and the application of any of the natural language
processing modules mentioned above.

8.4.3 Linguistically motivated document representations

The algorithms presented in this thesis can be used on simple indexes for free
text retrieval. An indexing strategy that is sufficient would identify words in free
text and put them, possibly with position and field information, in the index.
This raises the following question: Will the theory presented in this thesis be
useful if more complex document representations are available? Examples of
more complex document representations are head-modifier pairs (Strzalkowski
1995; Kraaij and Pohlmann 1998), index expressions (Bruza and Van der Weide
1992), and representations based on structured ontologies (Van Bakel 1998).
These document representations are linguistically motivated and can be derived
by part-of-speech taggers and parsers. Conclusion 14, which was motivated
by the use of position information, suggests that the the use of linguistically
motivated document representations might be an interesting way to continue
the research into the use of language models for information retrieval.



130 CHAPTER 8. CONCLUSIONS



Appendix A

Evaluation methodology

This appendix explains the main assumptions and background of the applied
evaluation methodology. Section A.1 introduces three main ingredients of a
meaningful information retrieval experiment: a test collection, a measure of
the effectiveness of the search and a test to determine statistical significance
between methods. The remaining sections address each of the three ingredients.

A.1 Introduction

Evaluation of a retrieval system is concerned with how well the system is satisfy-
ing users, not just in individual cases, but collectively, for all actual and potential
users in the community (Tague-Sutcliffe 1996). Although some aspects of re-
trieval systems can be evaluated without consulting the user, ultimately some
actual or potential users have to be subjects in a controlled information retrieval
experiment. Doing an evaluation involving real people is not only a costly job,
it is also difficult to control and therefore hard to replicate. For this reason,
methods have been developed to design unbiased test collections. These test
collections are created by consulting potential users, but once they are created
they can be used to evaluate information retrieval systems without the need to
consult the users during further evaluations. If a test collection is available, a
new retrieval method can be evaluated by comparing it to some well-established
methods in a controlled experiment. Hull (1993) mentions the following three
ingredients of a controlled information retrieval experiment.

1. A information retrieval test collection, consisting of documents, requests
and relevance judgements.

2. One or more suitable evaluation measures that assign values to the effec-
tiveness of the search.

3. A statistical methodology that determines whether the observed differ-
ences in performance between the methods investigated are statistically
significant.

131



132 APPENDIX A. EVALUATION METHODOLOGY

Test collections consist of a large number of documents, a number of requests,
and relevance judgements (“the right answers”). Test collections, and the as-
sumptions underlying relevance are described in section A.2. The effectiveness
of the search is usually measured by the combination of precision and recall.
Precision is defined by the fraction of the retrieved documents that is actually
relevant. Recall is defined by the fraction of the relevant documents that is
actually retrieved.

precision =
r

n
r : number of relevant documents retrieved

n : number of documents retrieved
recall =

r

R
R : total number of relevant documents

For the evaluation of ranked retrieval system, precision and recall have to be
averaged somehow over the ranked lists. Section A.3 describes three of these ap-
proaches. Section A.4 addresses three significance tests, each with its advantages
and disadvantages. Finally, section A.5 concludes this chapter by summarising
the followed procedure.

A.2 Test collections

Information retrieval test collections consist of three distinct parts: the docu-
ments, the requests and the relevance judgements or “the right answers”. To-
day’s standard test collections are constructed in the Text Retrieval Conferences,
TREC in the following. When constructing a test collection, relevance judge-
ments are the most difficult to control. Users that participate in the evaluation
should be carefully instructed on how to do the judgements. Also, the docu-
ments that are to be judged should be carefully selected, because it is impossible
to judge all documents if the collection is very large.

A.2.1 TREC

The TREC collections are designed by the United States National Institute of
Standards and Technology. The TREC collections that are used in this book
consist of newspaper and newswire data. For a standard TREC evaluation,
usually 50 requests are used, which are called “topics” in TREC. Figure A.1
shows a sample topic (Voorhees and Harman 2000).

A.2.2 Assumptions about relevance

In chapter 1, the relevance of a document is defined by its usefulness for sat-
isfying the user’s information need according to the user’s subjective opinion.
That being said, it is good to realise that while relevance is a key notion in in-
formation science, it is also the subject of ever-lasting debates and controversies
(Saracevic 1975; Mizzaro 1997). There are many aspects to relevance that are
problematic for the evaluation of retrieval systems. To name a few, relevance of
a document may be:



A.2. TEST COLLECTIONS 133

<num> Number: 409

<title> legal, Pan Am, 103

<desc> Description:

What legal actions have resulted from the destruction

of Pan Am Flight 103 over Lockerbie, Scotland, on

December 21, 1988?

<narr> Narrative:

Documents describing any charges, claims, or fines

presented to or imposed by any court or tribunal are

relevant, but documents that discuss charges made in

diplomatic jousting are not relevant.

Figure A.1: An example TREC topic

judged on a scale a document might for instance be not useful, somewhat
useful, fairly useful, very useful and totally useful to a user;

dependent on time a document that is useful to the user today, might no
longer be useful to the user later on;

dependent on other retrieved documents a user that walks down a rank-
ed list might for instance find a document further down the list not useful,
because it covers the exact same information as the top ranked document,
whereas it would have been useful if the top ranked document was not
retrieved;

multifaceted the usefulness of a document might be determined by topicality,
credibility, specificity, exhaustiveness, accuracy, recency, clarity, etc.

For the test collection that are used in the evaluations in this book it is as-
sumed that relevance is a dichotomous decision, that does not depend on other
retrieved documents. The judges that did the relevance assessments were in-
structed to do their judgements based on these assumptions. They had to make
a binary decision on each document, even if they were in great doubt and they
did not let information from other documents influence their decisions. Similar
assumptions about relevance are made by some retrieval models, for instance
the language models presented in chapter 4, and by the probabilistic model and
the inference network models presented in chapter 2.

A.2.3 The document judgements pool

To measure the recall of a system (see section A.3 on evaluation measures be-
low), the total number of relevant documents for a topic has to be known.
Ideally, subjects in TREC should therefore read and judge every document in
the collection for a topic. Unfortunately this is humanly speaking impossible,



134 APPENDIX A. EVALUATION METHODOLOGY

since for example the TREC-8 main collection consists of over half a million
documents. As a result, test collections have to be constructed by judging only
a sample of the documents for each topic. The sample is constructed for each
topic as follows. Of each participating system, the top 100 documents retrieved
determine the pool. Duplicate documents are removed from the pool and the
remaining documents are sorted randomly, e.g. by their document identifiers.
The resulting list is judged by the TREC subjects for relevance. The subjects do
not know which documents were retrieved by which system, nor do they know
whether a document has a high or a low ranking in one or more of the runs.

The pooling method will inevitably miss some of the relevant documents.
So, in practice, TREC evaluations will only determine an upper bound on re-
call. Recent studies have shown that although additional searches might reveal
additional relevant documents this is not likely to change the relative perfor-
mance of the systems compared to each other (Buckley and Voorhees 2000). For
the cross-language retrieval experiments similar tests were done for the pool of
the TREC cross-language collections, to see how reliable the evaluation results
are.

A.3 Evaluation measures

If relevance is binary valued then retrieval performance is usually measured by
the combination of precision and recall. If the retrieval system makes a binary
decision as well, that is, if the system either retrieves documents or not, without
ranking them, then precision and recall are measured by fixed proportions. The
overall system performance is determined by averaging precision and recall over
a sufficiently large number of requests.

If the system ranks the documents in decreasing order of some document
score, then the precision and recall measures should somehow be averaged over
the number of documents retrieved. Several average precision and average recall
measures have been suggested that model the behaviour of a user walking down
a ranked list of documents. The idea is to give a number of evaluation measures
for different types of users. At one end of the spectrum is the user that is
satisfied with any relevant document, for instance a user that searches a web
page on last nights football results. At the other end of the spectrum is the user
that is only satisfied with most or all of the relevant documents, for instance a
lawyer searching for jurisprudence. In TREC three different evaluation measures
are used: precision at fixed levels of recall, precision at fixed points in the ranked
list and the average precision over the ranks of relevant documents.

A.3.1 Precision at fixed recall levels

For this evaluation a number of fixed recall levels are chosen, for instance 10
levels: {0.1, 0.2, · · · , 1.0}. The levels correspond to users that are satisfied if they
find respectively 10 %, 20 %,· · ·, 100 % of the relevant documents. For each of
these levels the corresponding precision is determined by averaging the precision



A.3. EVALUATION MEASURES 135

on that level over the topics. The resulting precision points are often visualised
in a recall-precision graph. Figure A.2 shows an example. The graph shows
the typical behaviour of information retrieval systems. Increasing the recall of
a search implies decreasing the precision of the search. Or, by walking down
a ranked list in search for more relevant documents, the chance to encounter
nonrelevant documents will grow faster than the chance to encounter of relevant
documents.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

pr
ec

is
io

n

recall

Figure A.2: Example recall-precision graph

In practice, the levels of recall might not correspond with natural recall
levels. For instance, if the total number of relevant documents R is 3, then the
natural recall levels are 0.33, 0.67 and 1.0. Other recall levels are determined by
using interpolation. A simple but often used interpolation method determines
the precision at recall level l by the maximum precision at all points larger
than l. For example, if the three relevant documents were retrieved at rank
4, 9 and 20, then the precision at recall points 0.0, · · · , 0.3 is 0.25, at 0.4, 0.50
and 0.6 the precision is 0.22 and at 0.7, · · · , 1.0 the precision is 0.15 (Harman
1995). Interpolation might also be used to determine the precision at recall
0.0, resulting in a total of 11 recall levels. Sometimes one average measure, the
so-called 11 points interpolated average precision, is calculate by averaging the
average precision values over the 11 recall points.

A.3.2 Precision at fixed points in the ranked list

Recall is not necessarily a good measure of user equivalence. For instance if one
query has 20 relevant documents while another has 200. A recall of 50 % would
be a reasonable goal in the first case, but unmanageable for most users in the
second case (Hull 1993). A more user oriented method would simply choose a
number of fixed points in the ranked list, for instance 9 points at: 5, 10, 15, 20,
30, 100, 200, 500 and 1000 documents retrieved. These points correspond with



136 APPENDIX A. EVALUATION METHODOLOGY

users that are willing to read 5, 10, 15, etc. documents of a search. For each
of these points in the ranked list, the precision is determined by averaging the
precision on that level over the topics. Similarly, the average recall might be
computed for each the points. A potential problem with these measures however
is that, although precision and recall theoretically range between 0 and 1, they
are often restricted to a small fraction of the range for many cut-off points. For
instance, if the total number of relevant documents R = 3, then the precision at
10 will be 0.33 at maximum. One point of special interest from this perspective
is the precision at R documents retrieved. At this point the average precision
and average recall do range between 0 and 1. Furthermore, precision and recall
are by definition equal at this point. The R-precision value is the precision at
each (different) R averaged over the topics (Harman 1995).

A.3.3 Average precision over ranks of relevant documents

The average precision measure is a single value that is determined for each topic
and then averaged over the topics. The measure corresponds with a user that
walks down a ranked list of documents that will only stop after he / she has
found a certain number of relevant documents. The measure is the average of the
precision calculated at the rank of each relevant document retrieved. Relevant
documents that are not retrieved are assigned a precision value of zero. For the
example above where the three relevant documents are retrieved at ranks 4, 9
and 20, the average precision would be computed as (0.25 + 0.22 + 0.15)/3 =
0.21. This measure has the advantages that it does not need the interpolation
method and that it uses the full range between 0 and 1 (Harman 1995).

A.4 Significance tests

Simply citing percentages improvements of one method over another is helpful,
but it does not tell if the improvements were in fact due to differences of the
two methods. Instead, differences between two methods might simply be due
to random variation in the performance, that is, the difference might occur by
chance even if the two methods perform equally well. To make significance
testing of the differences applicable, a reasonable amount of queries is needed.
When evaluation measures are averaged over a number of queries, one can obtain
an estimate of the error associated with the measure. (Hull 1993).

Significance tests are designed to disprove the null hypothesis H0. For re-
trieval experiments, the null hypothesis will be that there is no difference be-
tween method A and method B. The idea is to show that, given the data,
the null hypothesis is indefensible, because it leads to an implausible low prob-
ability. Rejecting H0 implies accepting the alternative hypothesis H1. The
alternative hypothesis for the retrieval experiments will be that either method
A consistently outperforms method B, or method B consistently outperforms
method A.

A test statistic is a function of the data. It should have the following two



A.5. CONCLUSION 137

properties. Firstly, it should behave differently under H0 than under H1. Sec-
ondly, it should be possible to calculate its probability distribution under H0.
For information retrieval, there is usually much more variation in the perfor-
mance per query than in the performance per system. Therefore, the test statis-
tics used are paired tests which are based on the performance differences between
the two systems for each query. The methods assume that the performance dif-
ferences consist of a mean difference µ and an error εi for each query i, where
the errors are independent. The null hypothesis is that µ = 0. The following
three paired tests have been used in the Smart retrieval experiments (Salton
and McGill 1983, page 171).

the paired t-test assumes that errors are normally distributed. Under H0,
the distribution is Student’s t with #queries− 1 degrees of freedom.

the paired Wilcoxon’s signed ranks test is a non-parametric test that as-
sumes that errors come from a continuous distribution that is symmetric
around 0. The statistic uses the ranks of the absolute differences instead
of the differences themselves.

the paired sign test is a non-parametric test only uses the sign of the dif-
ferences between method A and B for each query. The test statistic is
the number of times that the least frequent sign occurs. It assumes equal
probability of positive and negative errors. Under H0, the distribution is
binomial.

So, in order to use the t-test the errors must be normally distributed, and in
order to use Wilcoxon’s test the errors have to be continuous. However, precision
and recall are discrete and bounded and therefore neither normally distributed
nor continuous. The average of a reasonable number of discrete measures, like
the average precision measure presented in section A.3.3, might behave similar to
continuous measures and approximate the normal distribution quite well. Before
the tests can be applied, the researcher has to make a qualitative judgement of
the data, to check if indeed the normality assumption is reasonable (Hull 1993).
If not, the sign test can be used as an alternative. For the experiments in
this book, the sign test was used without checking the conditions for the other
tests, following Van Rijsbergen (1979) who argues that only the sign test can
be considered valid for information retrieval experiments.

A.5 Conclusion

The evaluation procedure used in chapter 5 uses the TREC test collections and
follows the evaluation methods used in TREC. The three methods to average
precision and recall over the ranked list of documents are all used in this book.
As in TREC, the principle measure to compare two methods is the average
precision over the ranks of relevant documents as presented in section A.3.3.
The sign-test is used for the pair-wise comparison of two different approaches.



138 APPENDIX A. EVALUATION METHODOLOGY



Appendix B

Coordination level ranking

Coordination level ranking is a partial ranking of the documents such that
documents that match k query terms are always ranked above documents that
match k − 1 query terms. Assuming that each term has the same importance
weight λ, assuming a uniform document prior (equation 4.3) and using the
presence weighting algorithms, the requirement is the following:

k log
(
1 + m λ

1−λ

)
> (k − 1) log

(
1 + n λ

1−λ

)
The left-hand side of the inequality is the matching score of a document that
contains k query terms. The right-hand side of the inequality is the matching
score of a document that contains k − 1 query terms. In the inequality, m and
n (n, m > 0) are tf .idf weights of the matching terms as introduced in section
4.7.1. For the simplicity of the proof, m is taken as the minumum of the tf .idf
values of the k matching terms of the document on the left-hand side, and n is
taken as the maximum of the tf .idf values of the k − 1 matching terms of the
document on the right-hand side. Proofing coordination level ranking for the
extreme values of m and n will proof coordination level ranking for practical
cases in which the tf .idf values differ per matching term. Coordination level
ranking might not be fulfilled if n � m.

For k = 1, the right-hand side is zero, and the inequality is true if λ > 0, no
matter what the values of m and n are. If k > 1, the k’s might be moved to the
left-hand side of the inequality and the rest to the right-hand side, resulting in:

k

k − 1
>

log
(
1 + n λ

1−λ

)
log

(
1 + m λ

1−λ

)
The right-hand side of the inequality will go to 1 if λ approaches 1. So in the
limiting case, the inequality will be true, because k / (k−1) > 1 for any bounded

139



140 APPENDIX B. COORDINATION LEVEL RANKING

k > 1. Now we only have to show that for any fixed m and n:

lim
λ→1

log
(
1 + n λ

1−λ

)
log

(
1 + m λ

1−λ

) = 1

This can be shown as follows.

log
(
1 + n λ

1−λ

)
log

(
1 + m λ

1−λ

) =
log

(
1−λ+nλ

1−λ

)
log

(
1−λ+mλ

1−λ

) =
log(1−λ+nλ)− log(1−λ)
log(1−λ+mλ)− log(1−λ)

Divding the numerator and the denominator by − log(1− λ) results in:

=
1− log(1−λ+nλ)

log(1−λ)

1− log(1−λ+mλ)
log(1−λ)

which will in fact approach 1 if λ approaches 1, because limλ→1 log(1−λ+nλ) =
log n, limλ→1 log(1− λ + mλ) = log m, and limλ→1 log(1− λ) = ∞.



Appendix C

Raw evaluation results

run 1 : original tf.idf with cosine normalisation (tfc.tfc)
run 2 : traditional probabilistic model
run 3 : traditional probabilistic model, retrospective relevance weighting
run 4 : Lnu.ltu weighting
run 5 : BM25 weighting
run 6 : BM25, retrospective relevance weighting
run 7 : language model, version 4
run 8 : language model, version 4, retrospective relevance weighting

+ : significant at 5 % level
++ : significant at 1 % level

Sign test on average precision values:

run 1 vs. run 2 -
run 1 vs. run 4 ++
run 2 vs. run 5 ++
run 4 vs. run 5 ++
run 4 vs. run 7 ++
run 5 vs. run 7 -

run 3 vs. run 6 ++
run 3 vs. run 8 ++
run 6 vs. run 8 -

run 2 vs. run 3 ++
run 5 vs. run 6 -
run 7 vs. run 8 ++

Table C.1: Significance tests of ad-hoc and rel. weighting TREC topics 301-350

141



142 APPENDIX C. RAW EVALUATION RESULTS

run 1 : original tf.idf with cosine normalisation (tfc.tfc)
run 2 : traditional probabilistic model
run 3 : traditional probabilistic model, retrospective relevance weighting
run 4 : Lnu.ltu weighting
run 5 : BM25 weighting
run 6 : BM25, retrospective relevance weighting
run 7 : language model, version 4
run 8 : language model, version 4, retrospective relevance weighting

run: 1 2 3 4 5 6 7 8

Precision averages at recall values:

0.0 0.4996 0.4563 0.4872 0.7637 0.7658 0.8100 0.7377 0.7974
0.1 0.2819 0.3135 0.3491 0.4685 0.5314 0.5722 0.5359 0.5905
0.2 0.2114 0.2467 0.2931 0.3651 0.4149 0.4523 0.4280 0.4712
0.3 0.1771 0.2300 0.2665 0.3028 0.3456 0.3795 0.3611 0.4068
0.4 0.1418 0.2032 0.2333 0.2657 0.2912 0.3243 0.2990 0.3366
0.5 0.1001 0.1851 0.2084 0.2265 0.2566 0.2726 0.2647 0.2829
0.6 0.0736 0.1516 0.1798 0.1520 0.1943 0.2286 0.2223 0.2488
0.7 0.0421 0.1061 0.1426 0.1053 0.1519 0.1632 0.1729 0.1906
0.8 0.0258 0.0785 0.1203 0.0647 0.0902 0.1131 0.1285 0.1466
0.9 0.0159 0.0593 0.0912 0.0298 0.0508 0.0679 0.0975 0.1138
1.0 0.0057 0.0322 0.0388 0.0120 0.0172 0.0316 0.0355 0.0424

Average precision:
0.1260 0.1647 0.1976 0.2287 0.2612 0.2888 0.2767 0.3105

Precision averages at document cut-off values:

5 0.2920 0.2520 0.2720 0.5200 0.5400 0.6080 0.5480 0.5800
10 0.2400 0.2480 0.2680 0.4500 0.4840 0.5260 0.4940 0.5500
15 0.2307 0.2280 0.2587 0.4147 0.4453 0.4827 0.4547 0.4973
20 0.2120 0.2070 0.2430 0.3890 0.4110 0.4430 0.4200 0.4570
30 0.1867 0.1867 0.2167 0.3447 0.3660 0.4000 0.3847 0.4100

100 0.1222 0.1532 0.1716 0.2140 0.2338 0.2576 0.2354 0.2598
200 0.0910 0.1213 0.1335 0.1538 0.1636 0.1833 0.1675 0.1835
500 0.0582 0.0799 0.0844 0.0893 0.0953 0.1059 0.0991 0.1080

1000 0.0391 0.0491 0.0538 0.0555 0.0579 0.0635 0.0607 0.0656

R-precision:
0.1731 0.2009 0.2464 0.2818 0.3028 0.3326 0.3182 0.3490

Table C.2: Ad-hoc and relevance weighting results on TREC topics 401-450



143

run 1 : p-norm model, tfc weights, p = 1
run 2 : p-norm model, tfc weights, p = 2
run 3 : p-norm model, Ltu weights, p = 1
run 4 : p-norm model, Ltu weights, p = 2
run 5 : language model, ignoring query structure
run 6 : language model

+ : significant at 5 % level
++ : significant at 1 % level

Sign test on average precision values:

run 1 vs. run 2 ++
run 3 vs. run 4 -
run 5 vs. run 6 -

run 2 vs. run 4 ++
run 2 vs. run 6 ++
run 4 vs. run 6 -

Table C.3: Significance tests of Boolean-structured queries TREC topics 301-350



144 APPENDIX C. RAW EVALUATION RESULTS

run 1 : p-norm model, tfc weights, p = 1
run 2 : p-norm model, tfc weights, p = 2
run 3 : p-norm model, Ltu weights, p = 1
run 4 : p-norm model, Ltu weights, p = 2
run 5 : language model, ignoring query structure
run 6 : language model

run: 1 2 3 4 5 6

Precision averages at recall values:

0.0 0.4706 0.5706 0.4983 0.6550 0.6832 0.6482
0.1 0.2730 0.3231 0.3743 0.4079 0.4795 0.4867
0.2 0.1621 0.1927 0.3096 0.3164 0.4007 0.4140
0.3 0.0921 0.1279 0.2433 0.2458 0.3017 0.3348
0.4 0.0737 0.0972 0.1710 0.1920 0.2538 0.2793
0.5 0.0404 0.0573 0.1308 0.1565 0.2060 0.2322
0.6 0.0276 0.0239 0.0820 0.1155 0.1645 0.1844
0.7 0.0198 0.0165 0.0490 0.0860 0.1206 0.1367
0.8 0.0139 0.0114 0.0306 0.0614 0.0763 0.0897
0.9 0.0073 0.0068 0.0161 0.0277 0.0426 0.0635
1.0 0.0039 0.0036 0.0092 0.0230 0.0300 0.0429

Average precision:

0.0843 0.1020 0.1564 0.1823 0.2241 0.2435

Precision averages at document cut-off values:
5 0.2560 0.3320 0.3280 0.3920 0.4440 0.4200

10 0.2220 0.2860 0.2760 0.3660 0.3980 0.3720
15 0.1907 0.2413 0.2560 0.3333 0.3533 0.3520
20 0.1670 0.2130 0.2520 0.2970 0.3310 0.3350
30 0.1400 0.1713 0.2233 0.2600 0.3027 0.2920

100 0.0884 0.1032 0.1470 0.1800 0.1850 0.1878
200 0.0685 0.0746 0.1129 0.1307 0.1357 0.1348
500 0.0467 0.0483 0.0704 0.0782 0.0804 0.0791

1000 0.0323 0.0332 0.0467 0.0502 0.0509 0.0503

R-precision:

0.1089 0.1371 0.1951 0.2260 0.2702 0.2814

Table C.4: Results of Boolean-structured queries on TREC topics 301-350



145

run 1a : one translation, dictionary preferred
run 1b : one translation, select by pseudo frequencies
run 1e : one translation, select by frequencies from parallel corpus
run 1f : one translation, noun phrase disambiguation
run 1g : one translation, manually disambiguated

run 2a : unstructered queries, unweighted
run 2b : unstructered queries, weight by pseudo frequencies
run 2c : unstructered queries, normalised weights
run 2d : unstructered queries, normalised pseudo frequencies
run 2e : unstructered queries, normalised frequencies from parallel corpus
run 2f : unstructered queries, normalised noun phrase occurrences in doc. collection

run 3c : structured queries, unweighted
run 3d : structured queries, weight by pseudo frequencies
run 3e : structured queries, weight by frequencies from parallel corpus
run 3f : structured queries, weight by noun phrase occurrences in doc. collection
run 3p : structured queries, p-norm model p = 2, Ltu weighting

+ : significant at 5 % level
++ : significant at 1 % level

Sign test on average precision values:

run 1a vs. run 2a -
run 1b vs. run 2b -
run 1a vs. run 2c -
run 1b vs. run 2d -
run 1e vs. run 2e -
run 1f vs. run 2f -

run 1a vs. run 3c -
run 1b vs. run 3d +
run 1e vs. run 3e +
run 1f vs. run 3f -

run 2c vs. run 3c +
run 2d vs. run 3d -
run 2e vs. run 3e +
run 2f vs. run 3f -

run 1g vs. run 3c -
run 1g vs. run 3d -
run 1g vs. run 3e -
run 1g vs. run 3f -

run 3p vs. run 3c ++

Table C.5: Significance tests of cross-language runs TREC CLIR topics 1-24



146 APPENDIX C. RAW EVALUATION RESULTS

base : monolingual run (base-line)
run 1a : dictionary preferred
run 1b : select by pseudo frequencies
run 1e : select by frequencies from parallel corpus
run 1f : noun phrase disambiguation
run 1g : manually disambiguated

run: base 1a 1b 1e 1f 1g

Precision averages at recall values:

0.0 0.7284 0.5388 0.4673 0.6053 0.5069 0.6165
0.1 0.5885 0.3885 0.3361 0.4751 0.3846 0.4891
0.2 0.5295 0.3343 0.3139 0.3815 0.3427 0.4171
0.3 0.4818 0.3105 0.2831 0.3140 0.3203 0.3679
0.4 0.4503 0.2804 0.2493 0.2793 0.2957 0.3341
0.5 0.3831 0.2544 0.2011 0.2625 0.2490 0.2929
0.6 0.3419 0.2345 0.1876 0.2347 0.2333 0.2579
0.7 0.2892 0.1966 0.1633 0.1835 0.2025 0.2226
0.8 0.2409 0.1736 0.1374 0.1513 0.1779 0.1985
0.9 0.1735 0.1052 0.0903 0.1111 0.1018 0.1315
1.0 0.0513 0.0462 0.0462 0.0455 0.0461 0.0480

Average precision:

0.3723 0.2455 0.2112 0.2583 0.2474 0.2917

Precision averages at document cut-off values:
5 0.5217 0.3652 0.2957 0.3739 0.3565 0.4261

10 0.4913 0.3304 0.2913 0.3652 0.3478 0.4043
15 0.4667 0.3014 0.2899 0.3710 0.3304 0.4058
20 0.4630 0.2957 0.2717 0.3500 0.3130 0.3674
30 0.4348 0.2623 0.2536 0.3000 0.2855 0.3362

100 0.2896 0.1691 0.1470 0.1778 0.1748 0.2135
200 0.1837 0.1130 0.1033 0.1139 0.1170 0.1398
500 0.0914 0.0615 0.0570 0.0630 0.0648 0.0781

1000 0.0503 0.0348 0.0330 0.0388 0.0371 0.0447

R-precision:

0.3861 0.2632 0.2199 0.2841 0.2578 0.3213

Table C.6: Baseline and one translation experiments TREC CLIR topics 1-24



147

run 2a : unweighted
run 2b : weight by pseudo frequencies
run 2c : normalised weights
run 2d : normalised pseudo frequencies
run 2e : normalised frequencies from parallel corpus
run 2f : weight by occurrences in noun phrases from doc. collection

run: 2a 2b 2c 2d 2e 2f

Precision averages at recall values:

0.0 0.5492 0.4800 0.6124 0.6547 0.6032 0.5451
0.1 0.3154 0.3373 0.4272 0.4898 0.5289 0.4064
0.2 0.2517 0.2635 0.3553 0.4058 0.4410 0.3589
0.3 0.2217 0.2205 0.2946 0.3435 0.3465 0.3047
0.4 0.1919 0.1768 0.2571 0.2935 0.3075 0.2730
0.5 0.1586 0.1321 0.2389 0.2673 0.2778 0.2362
0.6 0.1328 0.1023 0.2160 0.2433 0.2348 0.2267
0.7 0.1062 0.0653 0.1934 0.2240 0.1977 0.2031
0.8 0.0822 0.0388 0.1592 0.1838 0.1641 0.1710
0.9 0.0510 0.0257 0.1178 0.1379 0.1181 0.1292
1.0 0.0223 0.0128 0.0572 0.0569 0.0496 0.0534

Average precision:

0.1691 0.1507 0.2490 0.2849 0.2807 0.2537

Precision averages at document cut-off values:
5 0.3478 0.2957 0.4435 0.4783 0.4522 0.4261

10 0.3000 0.2913 0.3783 0.4043 0.4261 0.3783
15 0.2783 0.2899 0.3623 0.3942 0.4116 0.3565
20 0.2652 0.2565 0.3609 0.3891 0.3761 0.3457
30 0.2406 0.2275 0.3203 0.3522 0.3536 0.3145

100 0.1665 0.1383 0.1961 0.2143 0.2130 0.2039
200 0.1139 0.0904 0.1309 0.1417 0.1393 0.1393
500 0.0623 0.0542 0.0677 0.0730 0.0754 0.0740

1000 0.0377 0.0337 0.0395 0.0413 0.0435 0.0413

R-precision:

0.1862 0.1905 0.2660 0.2982 0.3068 0.2719

Table C.7: Results of unstructured queries TREC CLIR topics 1-24



148 APPENDIX C. RAW EVALUATION RESULTS

run 3c : unweighted
run 3d : weight by pseudo frequencies
run 3e : weight by frequencies from parallel corpus
run 3f : weight by noun phrase occurrences in doc. collection

base 2 : monolingual run using Lnu.ltu
run 3p : structured queries using p-norm, Ltu weights p = 2
run 3r : retrospective relevance weighting for structured queries

run: 3c 3d 3e 3f base 2 3p 3r

Precision averages at recall values:

0.0 0.5957 0.6445 0.6163 0.5966 0.7192 0.5317 0.7750
0.1 0.5203 0.5536 0.5302 0.5047 0.5983 0.3112 0.6294
0.2 0.4065 0.4581 0.4580 0.4430 0.5243 0.2608 0.5781
0.3 0.3472 0.3543 0.3841 0.3552 0.4660 0.2236 0.5101
0.4 0.3147 0.3298 0.3441 0.3268 0.3997 0.1768 0.4309
0.5 0.2773 0.3016 0.2983 0.2967 0.3108 0.1374 0.3624
0.6 0.2512 0.2614 0.2629 0.2587 0.2561 0.1180 0.3228
0.7 0.2203 0.2248 0.2240 0.2204 0.2192 0.0840 0.2789
0.8 0.1886 0.1894 0.1967 0.1921 0.1730 0.0660 0.2369
0.9 0.1507 0.1553 0.1463 0.1536 0.0952 0.0244 0.1639
1.0 0.0566 0.0628 0.0556 0.0601 0.0098 0.0055 0.0666

Average precision:

0.2891 0.3066 0.3094 0.2978 0.3289 0.1593 0.3772

Precision averages at document cut-off values:

5 0.4174 0.4783 0.4522 0.4174 0.5304 0.2870 0.5826
10 0.3957 0.4435 0.4391 0.4217 0.4957 0.2522 0.5609
15 0.3913 0.4203 0.4203 0.4261 0.4638 0.2493 0.4899
20 0.3783 0.4000 0.3913 0.4022 0.4457 0.2348 0.4696
30 0.3536 0.3609 0.3623 0.3536 0.3928 0.2174 0.4174

100 0.2257 0.2313 0.2287 0.2248 0.2522 0.1635 0.2635
200 0.1530 0.1561 0.1550 0.1511 0.1693 0.1152 0.1737
500 0.0805 0.0814 0.0821 0.0780 0.0892 0.0663 0.0910

1000 0.0448 0.0455 0.0469 0.0433 0.0502 0.0388 0.0502

R-precision:

0.3104 0.3159 0.3198 0.3119 0.3511 0.1865 0.3987

Table C.8: Results of structured queries TREC CLIR topics 1-24



149

run name average precision difference unique
unjudged judged rel.

97lsiLEE 0.0933 0.1041 0.0108 11.6 % 48
Cor6EEsc 0.3755 0.3910 0.0155 4.1 % 62
ETHee1 0.3299 0.3669 0.0370 11.2 % 160
INQ4xl1 0.2391 0.2457 0.0066 2.8 % 40
TNOee 0.2332 0.2537 0.0205 8.8 % 83
XRCECLE2EM 0.3752 0.4172 0.0420 11.2 % 165

max: 0.0420 11.6 % 165
mean: 0.0221 8.3 % 93

standard deviation: 0.0144 3.9 % 56

Table C.9: TREC-6 CLIR English pool validation

run name average precision difference unique
unjudged judged rel.

98EITdes 0.1919 0.1962 0.0043 2.2 % 45
98EITful 0.2514 0.2767 0.0253 10.1 % 159
98EITtit 0.1807 0.1841 0.0034 1.9 % 27
BKYCL7AG 0.2345 0.2406 0.0061 2.6 % 44
BKYCL7AI 0.2012 0.2184 0.0172 8.6 % 120
BKYCL7ME 0.3111 0.3391 0.0280 9.0 % 164
RaliDicAPf2e 0.1405 0.1687 0.0282 20.1 % 176
TW1E2EF 0.1425 0.1569 0.0144 10.1 % 107
ceat7f2 0.1808 0.2319 0.0511 28.3 % 293
ibmcl7al 0.2939 0.3168 0.0229 7.8 % 135
lanl982 0.0296 0.0487 0.0191 64.5 % 140
tno7ddp 0.2174 0.2382 0.0208 9.6 % 152
tno7edpx 0.2551 0.2846 0.0295 11.6 % 109
umdxeof 0.1448 0.1610 0.0162 11.2 % 140

max: 0.0511 64.5 % 293
mean: 0.0205 14.1 % 129

standard deviation: 0.0124 16.1 % 67

Table C.10: TREC-7 CLIR pool validation (four languages)



150 APPENDIX C. RAW EVALUATION RESULTS



Bibliography

Aizawa, A. (2000). The feature quantity: An information theoretic perspec-
tive of tfidf-like measures. In ACM Conference on Research and Develop-
ment in Information Retrieval (SIGIR), pp. 104–111.

Allan, J., J. Callan, F. F. Feng, and D. Malin (2000). Inquery and TREC-
8. In Proceedings of the eighth Text Retrieval Conference TREC-8, NIST
Special Publication 500-246, pp. 637–644.

AltaVista (1996). Main page. http://www.altavista.com

Baeza-Yates, R. A. (1992). Introduction to data structures and algorithms
related to information retrieval. In W. B. Frakes and R. A. Baeza-Yates
(Eds.), Information Retrieval: Data Structures & Algorithms, pp. 13–27.
Prentice-Hall.

Baeza-Yates, R. A. and B. Ribeiro-Neto (1999). Modern Information Re-
trieval. Addison-Wesley.

Bakel, B. van (1998). Modern classical indexing: a linguistic contribution to
knowledge-based IR. In 21st ACM Conference on Research and Develop-
ment in Information Retrieval (SIGIR), pp. 333–334.

Ballesteros, L. and W. B. Croft (1998). Resolving ambiguity for cross-
language retrieval. In Proceedings of the 21st ACM SIGIR Conference
Research and Development in Information Retrieval (SIGIR’98), pp. 64–
71.

Belkin, N. J. and W. B. Croft (1987). Retrieval techniques. Annual Review
of Information Science and Technology 22, pp. 109–145.

Bengio, Y. (1999). Markovian models for sequential data. Neural Computing
Surveys 2, 129–162. http://www.icsi.berkeley.edu/˜jagota/NCS/

Berger, A. and J. Lafferty (1999). Information retrieval as statistical trans-
lation. In Proceedings of the 22nd ACM Conference on Research and De-
velopment in Information Retrieval (SIGIR’99), pp. 222–229.

Bod, R. (1995). Enriching Linguistics with Statistics: Performance Models for
Natural Language. Ph.D. Thesis, Department of Linguistics, Universiteit
van Amsterdam.

151



152 BIBLIOGRAPHY

Bookstein, A. and D. R. Swanson (1974). Probabilistic models for automatic
indexing. Journal of the American Society for Information Science 25 (5),
313–318.

Braschler, M., J. Krause, C. Peters, and P. Schäuble (1999). Cross-language
information retrieval (CLIR) track overview. In Proceedings of the seventh
Text Retrieval Conference (TREC-7).

Brenner, E. H. (1996). Beyond Boolean: New Approaches to Information
Retrieval. National Federation of Abstracting and Information Services.

Broglio, J., J. P. Callan, and W. B. Croft (1994). Inquery system overview.
In M. Kaufmann (Ed.), Proceedings of the TIPSTER Text Program
(Phase I), pp. 40–48.

Broglio, J., J. P. Callan, W. B. Croft, and D. W. Nachbar (1995). Document
retrieval and routing using the Inquery system. In Proceedings of the third
Text Retrieval Conference TREC-3, pp. 29–38.

Brown, P. F., J. C. Cocke, S. A. D. Pietra, V. J. D. Pietra, F. Jelinek, J. D.
Lafferty, R. L. Mercer, and P. S. Roossin (1990). A statistical approach
to machine translation. Computational Linguistics 16 (2), 79–85.

Bruza, P. D. and T. van der Weide (1992). Stratified hypermedia structures
for information disclosure. The Computer Journal 35 (3), 208–220.

Buckley, C., J. Allan, and G. Salton (1994). Automatic routing and ad-hoc
retrieval using Smart. In Proceedings of the second Text Retrieval Confer-
ence TREC-2, pp. 45–55.

Buckley, C. and E. M. Voorhees (2000). Evaluating evaluation measure sta-
bility. In ACM Conference on Research and Development in Information
Retrieval (SIGIR), pp. 33–40.

Chowdhury, G. G. (1998). Introduction to modern information retrieval. John
Wiley & Sons.

Church, K. W. and W. A. Gale (1999). Inverse document frequency: a mea-
sure of deviation from Poisson. In A. et al. (Ed.), NLP using Very Large
Corpora. Kluwer Academic Publishers.

Clarke, C. L. A., G. V. Cormack, and E. A. Tudhope (1997). Relevance
ranking for one to three term queries. In Proceedings of RIAO’97, pp.
388–400.

Croft, W. B. (1993). Knowledge-based and statistical approaches to text re-
trieval. IEEE Expert 8 (2), 8–12.

Croft, W. B. and D. J. Harper (1979). Using probabilistic models of document
retrieval without relevance information. Journal of Documentation 35 (4),
285–295.

Cutting, D., J. Kupiec, J. Pedersen, and P. Sibun (1992). A practical part-
of-speech tagger. In Proceedings of Applied Natural Language Processing,
pp. 133–140.



BIBLIOGRAPHY 153

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood
from incomplete data via the em-algorithm plus discussions on the paper.
Journal of the Royal Statistical Society 39 (B), 1–38.

Ekkelenkamp, R., W. Kraaij, and D. van Leeuwen (1999). TNO TREC-7 site
report: SDR and filtering. In Proceedings of the seventh Text Retrieval
Conference, TREC-7, pp. 519–526. NIST Special Publication 500-242.

Elworthy, D. (1994). Does Baum-Welch re-estimation help taggers? In Pro-
ceedings of the 4th ACL Conference on Applied Natural Language Pro-
cessing (ANLP-94), pp. 53–58.

Fuhr, N. and C. Buckley (1991). A probabilistic learning approach for docu-
ment indexing. ACM Transactions on Information Systems 9, 223–248.

Fuhr, N. (1992). Probabilistic models in information retrieval. The Computer
Journal 35 (3), 243–255.

Fuhr, N. (1995). Probabilistic datalog: A logic for powerful retrieval methods.
In Proceedings of the 18th ACM Conference on Research and Development
in Information Retrieval (SIGIR’95), pp. 282–290.

Gadd, T. N. (1988). Fishing fore werds: Phonetic retrieval of written text in
information retrieval systems. Program 22 (3), 222–237.

Geerts, G. and C. A. den Boon (Eds.) (1999). Van Dale groot woordenboek
der Nederlandse taal. Van Dale Lexicografie BV.

Gey, F. C. (1994). Inferring probability of relevance using the method of lo-
gistic regression. In Proceedings of the 17th ACM Conference on Research
and Development in Information Retrieval (SIGIR’94), pp. 222–231.

Greiff, W. R., W. B. Croft, and H. R. Turtle (1997). Computationally
tractable probabilistic modeling of boolean operators. In Proceedings of
the 20th ACM Conference on Research and Development in Information
Retrieval (SIGIR’97), pp. 119–128.

Harman, D. K. (1991). How effective is suffixing? Journal of the American
Society for Information Science 42 (1), 7–15.

Harman, D. K. (1992). Ranking algorithms. In W. B. Frakes and R. Baeza-
Yates (Eds.), Information Retrieval: Data Structures & Algorithms, pp.
363–392. Prentice Hall.

Harman, D. K. (1995). Evaluation techniques and measures. In Proceedings
of the third Text Retrieval Conference TREC-3, pp. A5–A13.

Harman, D. K., E. Fox, and Baeza-Yates (1988). Inverted files. In W. B.
Frakes and R. Baeza-Yates (Eds.), Information Retrieval: Data Structures
and Algorithms, pp. 28–43. Prentice Hall.

Harter, S. P. (1975). An algorithm for probabilistic indexing. Journal of the
American Society for Information Science 26 (4), 280–289.

Hawking, D. and P. Thistlewaite (1996). Relevance weighting using dis-
tance between term occurrences. Technical Report TR-CS-96-08, The
Australian National University. http://cs.anu.edu.au/techreports/



154 BIBLIOGRAPHY

Heckerman, D. E. (1991). Probabilistic Similarity Networks. MIT Press.

Heer, T. de (1979). Quasi comprehension on natural language simulated by
means of information traces. Information Processing & Management 15,
89–98.

Hiemstra, D. (1998a). A linguistically motivated probabilistic model of in-
formation retrieval. In Proceedings of the Second European Conference
on Research and Advanced Technology for Digital Libraries (ECDL), pp.
569–584.

Hiemstra, D. (1998b). Multilingual domain modeling in Twenty-One: auto-
matic creation of a bi-directional translation lexicon from a parallel corpus.
In P. A. Coppen, H. van Halteren, and L. Teunissen (Eds.), Proceedings
of eighth CLIN meeting, pp. 41–58.

Hiemstra, D. (2000). A probabilistic justification for using tf.idf term
weighting in information retrieval. International Journal on Digital Li-
braries 3 (2), 131–139.

Hiemstra, D. and F. M. G. de Jong (1998). Cross-language retrieval in
Twenty-One: using one, some or all possible translations? In Proceed-
ings of the 14th Twente Workshop on Language Technology (TWLT-14),
pp. 19–26.

Hiemstra, D. and F. M. G. de Jong (1999). Disambiguation strategies for
cross-language information retrieval. In Proceedings of the third European
Conference on Research and Advanced Technology for Digital Libraries
(ECDL), pp. 274–293.

Hiemstra, D., F. M. G. de Jong, and W. Kraaij (1997). A domain specific
lexicon acquisition tool for cross-language information retrieval. In Pro-
ceedings of RIAO’97 Conference on Computer-Assisted Searching on the
Internet, pp. 255–266.

Hiemstra, D. and A. P. de Vries (2000). Relating the new language models
of information retrieval to the traditional retrieval models. Technical Re-
port TR-CTIT-00-09, Centre for Telematics and Information Technology.
http://www.ub.utwente.nl/webdocs/ctit/1/00000022.pdf

Hiemstra, D. and W. Kraaij (1999). Twenty-One at TREC-7: Ad-hoc and
cross-language track. In Proceedings of the seventh Text Retrieval Confer-
ence TREC-7, pp. 227–238. NIST Special Publication 500-242.

Hiemstra, D., W. Kraaij, R. Pohlmann, and T. Westerveld (2000). Twenty-
one at clef: Translation resources, merging strategies and relevance feed-
back. In Proceedings of the 1st Workshop on Cross-Language Information
Retrieval and Evaluation (CLEF-1), (in press).

Hotbot (1995). Main page. http://www.hotbot.com

Huibers, T. W. C. (1996). An Axiomatic Theory for Information Retrieval.
Ph.D. thesis, Department of Computer Science, Utrecht University.



BIBLIOGRAPHY 155

Hull, D. (1993). Using statistical testing in the evaluation of retrieval ex-
periments. In Proceedings of the 16th ACM Conference on Research and
Development in Information Retrieval (SIGIR’93), pp. 329–338.

Hull, D. (1999). The TREC-7 filter track: Description and analysis. In Pro-
ceedings of the seventh Text Retrieval Conference, TREC-7, pp. 33–56.
NIST Special Publication 500-242.

Hull, D. A. and G. Grefenstette (1996). A dictionary-based approach
to multilingual information retrieval. In Proceedings of the 19th ACM
SIGIR Conference on Research and Development in Information Retrieval
(SIGIR’96), pp. 49–57.

Jelinek, F. (1997). Statistical Methods for Speech Recognition. MIT Press.

Jong, F. M. G. de, J. L. Gauvain, D. Hiemstra, and K. Netter (2000).
Language-based multimedia information retrieval. In Proceedings of RIAO
2000 Conference on Content-based multimedia information access.

Jordan, M. I. (Ed.) (1998). Learning in Graphical Models. Kluwer Academic
Press.

Kekäläinen, J. (1999). The effects of query complexity, expansion and struc-
ture on retrieval performance in probabilistic text retrieval. Ph.D. thesis,
Department of Information Studies, University of Tampere.

Kowalski, G. (1997). Information Retrieval Systems: Theory and Implemen-
tation. Kluwer Academic Publishers.

Kraaij, W. (1997). Multilingual functionality in the Twenty-One project. In
AAAI Symposium on Cross-Language Text and Speech Retrieval. Ameri-
can Association for Artificial Intelligence.

Kraaij, W. and D. Hiemstra (1998). Cross-language retrieval with the Twenty-
One system. In E. Voorhees and D. Harman (Eds.), Proceedings of the 6th
Text Retrieval Conference TREC-6, pp. 753–761. NIST Special Publica-
tion 500-240.

Kraaij, W. and R. Pohlmann (1996). Viewing stemming as recall enhance-
ment. In Proceedings of the 19th ACM Conference on Research and De-
velopment in Information Retrieval (SIGIR’96), pp. 40–48.

Kraaij, W. and R. Pohlmann (1998). Comparing the effect of syntactic vs.
statistical phrase index strategies for Dutch. In Proceedings of the Second
European Conference on Research and Advanced Technology for Digital
Libraries (ECDL), pp. 605–617.

Kraaij, W. and R. Pohlmann (2001). Using Language Technology for Infor-
mation Retrieval. Ph.D. thesis, Faculty of Linguistics, Utrecht University.
(to appear).

Kraaij, W., R. Pohlmann, and D. Hiemstra (2000). Twenty-One at TREC-8:
using language technology for information retrieval. In Proceedings of the
eighth Text Retrieval Conference, TREC-8, pp. 285–300. NIST Special
Publication 500-246.



156 BIBLIOGRAPHY

Krause, P. J. (1998). Learning probabilistic networks. Technical report,
Philips Research Laboratories. http://www.auai.org/auai-tutes.html

Lawrence, S. and C. L. Giles (1999). Accessibility of information on the web.
Nature 400, 107–109.

Lee, J. H. (1995). Analyzing the effectiveness of extended boolean models
in information retrieval. Technical Report TR95-1501, Cornell University.
http://cs-tr.cs.cornell.edu/

Losada, D. E. and A. Barreiro (1999). Using a belief revision operator for
document ranking in extended boolean models. In Proceedings of the 22nd
ACM Conference on Research and Development in Information Retrieval
(SIGIR’99), pp. 66–73.

Lovins, J. B. (1968). Development of a stemming algorithm. Mechanical
Translation and Computational Linguistics 11 (1-2), 22–31.

Luhn, H. P. (1957). A statistical approach to mechanised encoding and
searching of literary information. IBM Journal of Research and Devel-
opment 1 (4), 309–317.

Manning, C. and H. Schütze (1999). Foundations of Statistical Natural Lan-
guage Processing. MIT Press.

Margulis, E. L. (1993). Modelling documents with multiple Poisson distribu-
tions. Information Processing and Management 29, 215–227.

Maron, M. E. and J. L. Kuhns (1960). On relevance, probabilistic index-
ing and information retrieval. Journal of the Association for Computing
Machinery 7, 216–244.

McEliece, R. and S. M. Aji (2000). The generalized distributive law. IEEE
Transactions in Information Theory , (in press).

McEliece, R., D. J. C. MacKay, and J. F. Cheng (1998). Turbo decoding
as an instance of Pearl’s belief propagation algorithm. IEEE Journal on
Selected Areas in Communication 16 (2), 140–152.

Miller, D. R. H., T. Leek, and R. M. Schwartz (1999). A hidden Markov model
information retrieval system. In Proceedings of the 22nd ACM Conference
on Research and Development in Information Retrieval (SIGIR’99), pp.
214–221.

Miller, G. A., R. Beckwith, C. Fellbaum, D. Gross, and K. J. Miller (1990). In-
troduction to wordnet: an on-line lexical database. International Journal
of Lexicography 3 (4), 235–312.

Mish F. C. et al. (Ed.) (1983). Webster’s Ninth New Collegiate Dictionary.
Merriam-Webster Inc.

Mitra, M., C. Buckley, A. Singhal, and C. Cardie (1997). An analysis of
statistical and syntactic phrases. In Proceedings of the RIAO’97, pp. 200–
216.



BIBLIOGRAPHY 157

Mizzaro, S. (1997). Relevance: The whole story. Journal of the American
Society for Information Science 48 (9), 810–832.

Mood, A. M. and F. A. Graybill (1963). Introduction to the Theory of Statis-
tics, Second edition. McGraw-Hill.

Mooers, C. N. (1950). Information retrieval viewed as temporal signaling. In
Proceedings of the International Congress of Mathematicians, Volume 1,
pp. 572–573.

Ng, K. (2000). A maximum likelihood ratio information retrieval model. In
Proceedings of the eighth Text Retrieval Conference, TREC-8. NIST Spe-
cial Publication 500-246, pp. 483–492.

Oard, D. W. (1998). A comparative study of query and document transla-
tion for cross-language information retrieval. In Proceedings of the Third
Conference of the Association for Machine Translation in the Americas
(AMTA).

Oard, D. W. and B. J. Dorr (1996). A survey of multilingual text re-
trieval. Technical report UMIACS-TR-96-19, University of Maryland.
http://www.ee.umd.edu/medlab/mlir/mlir.html

Paice, C. P. (1984). Soft evaluation of boolean search queries in informa-
tion retrieval systems. Information Technology: Research and Develop-
ment 3 (1), 33–42.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann.

Pirkola, A. (1998). The effects of query structure and dictionary setups in
dictionary-based cross-language information retrieval. In 21st ACM Con-
ference on Research and Development in Information Retrieval (SIGIR),
pp. 55–63.

Ponte, J. M. and W. B. Croft (1998). A language modeling approach to infor-
mation retrieval. In Proceedings of the 21st ACM Conference on Research
and Development in Information Retrieval (SIGIR’98).

Porter, M. F. (1980). An algorithm for suffix stripping. Program 14, 130–137.

Rabiner, L. R. (1990). A tutorial on hidden Markov models and selected
applications in speech recognition. In A. Waibel and K. F. Lee (Eds.),
Readings in speech recognition, pp. 267–296. Morgan Kaufmann.

Rajashekar, T. B. and W. B. Croft (1995). Combining automatic and manual
index representations in probabilistic retrieval. Journal of the American
Society for Information Science 46 (4), 272–283.

Rasmussen, E. M. (1999). Libraries and bibliographical systems. In R. A.
Baeza-Yates and B. Ribeiro-Neto (Eds.), Modern Information Retrieval,
pp. 397–413. Addison-Wesley.

Ribeiro, B. A. N. and R. Muntz (1996). A belief network model for ir. In
Proceedings of the 19th ACM Conference on Research and Development
in Information Retrieval (SIGIR’96), pp. 252–260.



158 BIBLIOGRAPHY

Rijsbergen, C. J. van (1979). Information Retrieval, second edition. Butter-
worths. http://www.dcs.gla.ac.uk/Keith/Preface.html

Rijsbergen, C. J. van (1986). A non-classical logic for information retrieval.
The Computer Journal 29 (6), 481–485.

Robertson, S. E. (1977). The probability ranking principle in IR. Journal of
Documentation 33 (4), 294–304.

Robertson, S. E. and K. Sparck-Jones (1976). Relevance weighting of search
terms. Journal of the American Society for Information Science 27, 129–
146.

Robertson, S. E., C. J. van Rijsbergen, and M. F. Porter (1981). Probabilistic
models of indexing and searching. In R. N. Oddy et al. (Eds.), Information
Retrieval Research, pp. 35–56. Butterworths.

Robertson, S. E. and S. Walker (1994). Some simple effective approximations
to the 2-Poisson model for probabilistic weighted retrieval. In Proceedings
of the 17th ACM Conference on Research and Development in Information
Retrieval (SIGIR’94), pp. 232–241.

Robertson, S. E. and S. Walker (1997). On relevance weights with little rel-
evance information. In Proceedings of the 20th ACM Conference on Re-
search and Development in Information Retrieval (SIGIR’97), pp. 16–24.

Robertson, S. E. and S. Walker (2000). Okapi/Keenbow at TREC-8. In Pro-
ceedings of the eighth Text Retrieval Conference TREC-8, NIST Special
Publication 500-246, pp. 151–162

Robertson, S. E., S. Walker, and M. Beaulieu (1999). Okapi at TREC-7: au-
tomatic ad hoc, filtering, vlc and interactive. In Proceedings of the seventh
Text Retrieval Conference, TREC-7, pp. 253–264. NIST Special Publica-
tion 500-242.

Rocchio, J. J. (1971). Relevance feedback in information retrieval. In
G. Salton (Ed.), The Smart Retrieval System: Experiments in Automatic
Document Processing, pp. 313–323. Prentice Hall.

Rose, D. E. and C. Stevens (1997). V-twin: A lightweight engine for inter-
active use. In E. M. Voorhees and D. K. Harman (Eds.), Proceedings of
the 5th Text Retrieval Conference TREC-5, pp. 279–290. NIST Special
Publication 500-238.

Sahami, M. (1999). Using Machine Learning to Improve Information Access.
Ph.D. thesis, Department of Computer Science, Stanford University.

Salton, G. (1971). The SMART retrieval system: Experiments in automatic
document processing. Prentice-Hall.

Salton, G. (1989). Automatic Text Processing. Addison-Wesley.

Salton, G. and C. Buckley (1988). Term-weighting approaches in automatic
text retrieval. Information Processing & Management 24 (5), 513–523.



BIBLIOGRAPHY 159

Salton, G., E. A. Fox, and H. Wu (1983). Extended boolean information
retrieval. Communications of the ACM 26 (11), 1022–1036.

Salton, G. and M. J. McGill (Eds.) (1983). Introduction to Modern Informa-
tion Retrieval. McGraw-Hill.

Salton, G. and C. S. Yang (1973). On the specification of term values in
automatic indexing. Jounral of Documentation 29 (4), 351–372.

Saracevic, T. (1975). Relevance: A review of and a framework for the thinking
on the notion in information science. Journal of the American Society for
Information Science 26, 321–343.

Savino, P. and F. Sebastiani (1998). Essential bibliography on multimedia
information retrieval, categorisation and filtering. In Slides of the 2nd Eu-
ropean Digital Libraries Conference Tutorial on Multimedia Information
Retrieval.

Schäuble, P. (1997). Multimedia Information Retrieval: Content-Based Infor-
mation Retrieval from Large Text and Audio Databases. Kluwer Academic
Publishers.

Schiettecatte, F. (1998). Document retrieval using the MPS information
server (a report on the TREC-6 experiment). In Proceedings of the 6th
Text Retrieval Conference TREC-6, pp. 477–488. NIST Special Publica-
tion 500-240.

Sebastiani, F. (1994). A probabilistic terminological logic for modelling infor-
mation retrieval. In Proceedings of the 17th ACM Conference on Research
and Development in Information Retrieval (SIGIR’94), pp. 122–130.

Shannon, C. E. (1948). A mathematical theory of communication. Bell System
Technical Journal 27, 379–423, 623–656.

Singhal, A., C. Buckley, and M. Mitra (1996). Pivoted document length nor-
malization. In Proceedings of the 19th ACM Conference on Research and
Development in Information Retrieval (SIGIR’96), pp. 21–29.

Smart (1994). ftp-site. ftp://ftp.cs.cornell.edu/pub/smart/

Song, F. and W. B. Croft (1999). A general language model for information
retrieval. In Proceedings of Eighth International Conference on Informa-
tion and Knowledge Management, CIKM’99.

Sparck-Jones, K. (1972). A statistical interpretation of term specifity and its
application in retrieval. Journal of Documentation 28 (1), 11–20.

Sparck-Jones, K., S. Walker, and S. E. Robertson (2000). A probabilistic
model of information retrieval: Development and comparative experi-
ments (part 1 and 2). Information Processing & Management 36 (6), 779–
840.

Strzalkowski, T. (1995). Natural language information retrieval. Information
Processing & Management 31 (3), 397–417.



160 BIBLIOGRAPHY

Tague-Sutcliffe, J. M. (1996). Some perspectives on the evaluation of informa-
tion retrieval systems. Journal of the American Society for Information
Science 47 (1), 1–3.

Turtle, H. and W. B. Croft (1991). Evaluation of an inference network-based
retrieval model. ACM Transactions on Information Systems 9 (3), 187–
222.

Turtle, H. R. (1991). Inference Networks for Document Retrieval. Ph.D.
thesis, Centre for Intelligent Information Retrieval, University of Mas-
sachusetts Amherst.

Turtle, H. R. and W. B. Croft (1992). A comparison of text retrieval models.
The Computer Journal 35 (3), 279–290.

Twenty-One (1998). Demonstrator. http://twentyone.tpd.tno.nl/21demomooi

Vickery, B. C. (1970). Techniques of Information Retrieval. Butterworths.

Voorhees, E. M. (2000). The TREC-8 question answering track report. In
Proceedings of the eighth Text REtrieval Conference (TREC-8), pp. 77–
82. NIST Special Publication 500-246.

Voorhees, E. M. and D. K. Harman (2000). Overview of the eighth text re-
trieval conference. In Proceedings of the eighth Text REtrieval Conference
(TREC-8), pp. 1–24. NIST Special Publication 500-246.

Vries, A. P. de (1999). Content and Multimedia Database Management Sys-
tems. Ph.D. thesis, Centre for Telematics and Information Technology,
University of Twente.

Vries, A. P. de and D. Hiemstra (2000). The Mirror DBMS at TREC. In
Proceedings of the eighth Text Retrieval Conference, TREC-8, pp. 725–
734. NIST Special Publication 500-246.

Wilkinson, R., J. Zobel, and R. Sacks-Davis (1996). Similarity measures for
short queries. In D. K. Harman (Ed.), Proceedings of the 4th Text Retrieval
Conference TREC-4, pp. 277–286. NIST Special Publication 500-236.

Witten, I. H., A. Moffat, and T. C. Bell (1994). Managing Gigabytes: Com-
pressing and Indexing Documents and Images. Van Nostrand Reinhold.

Wong, S. K. M. and Y. Y. Yao (1995). On modeling information retrieval with
probabilistic inference. ACM Transactions on Information Systems 13,
38–68.

Wurman, R. S. (1989). Information anxiety. Doubleday.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control 8, 338–353.

Zhai, C., P. Jansen, E. Stoica, N. Grot, and D. A. Evans (1999). Threshold
calibration in CLARIT adaptive filtering. In Proceedings of the seventh
Text Retrieval Conference, TREC-7, pp. 149–156. NIST Special Publica-
tion 500-242.



Index

2-Poisson model, 24, 25

adaptive filtering, 113
ADJ operator, 43
AND operator, 42

Bayesian network models, 26, 73
Boolean model, 12
Boolean operators, 42

compound splitting, 41
cosine measure, 15
cross-language retrieval, 97

Dice’s measure, 15
disambiguation, 98, 103
document translation, 97, 99

eliteness of terms, 25
exclusion operator, 46
extended Boolean model, 21, 23, 93

fields, 46
filtering, 113
fuzzy set model, 21

hidden Markov models, 70

idf weighting, 30
index translation, 97
indexing, 3
inference network model, 26
information filtering, 113
Inquery system, 33

Jaccard’s measure, 15

mandatory term operator, 46
matching, 4

model, 9, 10
2-Poisson, 24, 25
Bayesian networks, 26, 73
Boolean, 12
extended Boolean, 21, 23, 93
fuzzy set, 21
hidden Markov, 70
inference network, 26
p-norm, 23, 93
probabilistic, 18, 90, 91
vector space, 15

morphological normalisation, 39

NEAR operator, 43
NOT operator, 42

Okapi system, 34
operators

ADJ, 43
AND, 42
Boolean, 42–43
exclusion, 46
mandatory term, 46
NEAR, 43
NOT, 42
OR, 42
phrase, 46
proximity, 43
synonym, 46
wildcards, 44

OR operator, 42
overlap measure, 15

p-norm model, 23, 93
paraphrase problem, 6
phrase extraction, 40
phrase operator, 46

161



162 INDEX

phrases, 105
probabilistic model, 18, 90, 91
probabilistic weighting, 30
probability ranking principle, 18
profile, 113
proximity operator, 43

query, 3
query formulation, 3
query translation, 97, 99

regression, 33
relevance, 2
relevance feedback, 4, 91, 116

probabilistic model, 18, 91
Rocchio, 16

request, 4

search engine, 1
similarity criterion, 14
Smart system, 31
stemming, 39
stop words, 39
synonym operator, 46
synonyms, 41

term weighting
BM25, 34, 90, 91
idf, 30
Lnu.ltu, 33, 90
probabilistic, 30
regression, 33
tf.idf, 31–35, 77, 90

tf.idf weighting, 31–35, 77, 90
tokenisation, 38

utility, 114

vector space model, 15
Venn diagram, 12

wildcards, 44



Summary

Because of the world wide web, information retrieval systems are now used by
millions of untrained users all over the world. The search engines that perform
the information retrieval tasks, often retrieve thousands of potentially interest-
ing documents to a query. The documents should be ranked in decreasing order
of relevance in order to be useful to the user. This book describes a mathe-
matical model of information retrieval based on the use of statistical language
models. The approach uses simple document-based unigram models to compute
for each document the probability that it generates the query. This probabil-
ity is used to rank the documents. The study makes the following research
contributions.

• The development of a model that integrates term weighting, relevance
feedback and structured queries.

• The development of a model that supports multiple representations of a
request or information need by integrating a statistical translation model.

• The development of a model that supports multiple representations of
a document, for instance by allowing proximity searches or searches for
terms from a particular record field (e.g. a search for terms from the title).

• A mathematical interpretation of stop word removal and stemming.
• A mathematical interpretation of operators for mandatory terms, wild-

cards and synonyms.
• A practical comparison of a language model-based retrieval system with

similar systems that are based on well-established models and term weight-
ing algorithms in a controlled experiment.

• The application of the model to cross-language information retrieval and
adaptive information filtering, and the evaluation of two prototype systems
in a controlled experiment.

Experimental results on three standard tasks show that the language model-
based algorithms work as well as, or better than, today’s top-performing re-
trieval algorithms. The standard tasks investigated are ad-hoc retrieval (when
there are no previously retrieved documents to guide the search), retrospective
relevance weighting (find the optimum model for a given set of relevant docu-
ments), and ad-hoc retrieval using manually formulated Boolean queries. The
application to cross-language retrieval and adaptive filtering shows the practical
use of respectively structured queries, and relevance feedback.

163



Samenvatting

Door het wereldwijde web gebruiken tegenwoordig miljoenen ongetrainde ge-
bruikers over de gehele wereld informatiezoeksystemen. De zoekmachines die de
zoektaken uitvoeren leveren vaak duizenden documenten op die mogelijk interes-
sant zijn voor de gebruiker. De documenten dienen te worden geordend op rele-
vantie om bruikbaar te zijn voor de gebruiker. Dit boek beschrijft een wiskundig
model voor het zoeken van informatie dat gebaseerd is op statistische taalmo-
dellen. De aanpak gebruikt simpele document-gebaseerde unigrammodellen om
voor elk document de kans te berekenen dat het de zoekvraag genereert. Deze
kans wordt gebruikt om de documenten te ordenen. De studie levert de volgende
wetenschappelijke bijdragen.

• De ontwikkeling van een model waarbinnen termweging, relevantieterug-
koppeling en gestructureerde zoekvragen gëıntegreerd zijn.

• De ontwikkeling van een model dat meerdere representaties van een ver-
zoek of informatiebehoefte ondersteunt, door de integratie van een statis-
tisch vertaalmodel.

• De ontwikkeling van een model dat meerdere representaties van een do-
cument ondersteunt, bijvoorbeeld het zoeken naar in elkaars nabijheid
voorkomende termen of het zoeken naar termen die in een bepaald veld
voorkomen (bijv. het zoeken naar termen uit de titel).

• Een wiskundige verklaring voor het verwijderen van stopwoorden en het
herleiden van woorden tot de stam.

• Een wiskundige verklaring voor operatoren voor verplichte termen, jokers
en synoniemen.

• Een praktische vergelijking van een op taalmodellen gebaseerd zoeksys-
teem met vergelijkbare systemen die gebaseerd zijn op gevestigde modellen
en termwegingsalgoritmen in een gecontroleerd experiment.

• De toepassing van het model op zowel het zoeken in anderstalige informatie
als het adaptief filteren van informatie, en de evaluatie van twee prototype
systemen in een gecontroleerd experiment.

Experimentele resultaten op drie standaardtaken laten zien dat de algoritmen
die gebaseerd zijn op taalmodellen evengoed presteren als, of beter presteren
dan, de best-presterende systemen van vandaag. De onderzochte standaard-
taken zijn: ad-hoc zoeken (wanneer er nog geen eerder gevonden documenten
zijn om het zoeken richting te geven), terugkoppeling met terugwerkende kracht
(het vinden van een optimaal model voor een gegeven verzameling van relevante
documenten), en het ad-hoc zoeken met behulp van handmatig geformuleerde
Booleaanse zoekvragen. De toepassing op het zoeken naar anderstalige infor-
matie en het adaptief filteren van informatie laat het praktische gebruik van
respectievelijk gestructureerde zoekvragen en relevantieterugkoppeling zien.

164


