

Using Language to Gain Control

of Enterprise Architecture

Gary F. Simons, Leon A. Kappelman, & John A. Zachman

Gary F. Simons, Ph.D.

Chief Research Officer

SIL International

7500 W. Camp Wisdom Rd. Dallas, TX 75236

Leon A. Kappelman, Ph.D. (CONTACT AUTHOR)

Professor of Information Systems Director Emeritus, IS Research Center

Founding chair, SIM Enterprise Architecture Working Group

College of Business, University of North Texas

1155 Union Circle #305249, Denton, Texas 76203-5017

John A. Zachman

Zachman International

15954 Jackson Creek Pkwy, Ste B463

Monument, CO 80132 U.S.A.

 An earlier version of this manuscript appears in The SIM Guide to Enterprise Architecture, Leon A.

Kappelman, editor, CRC Press, NY, NY 2010

Using Language to Gain Control of Enterprise Architecture
On the Verge of Major Business Re-Engineering

Gary F. Simons, Leon A. Kappelman, & John A. Zachman

“Insanity is doing the same thing over and over again and

expecting different results.” — Albert Einstein

Seven years ago the senior leadership at SIL International (see Chart 1), a not-for-

profit whose purpose is to facilitate language-based development among the peoples of the

world, determined that it was time to build an integrated Enterprise Information System.

There were three precipitating factors: mission critical IT systems were almost twenty years

old and on the verge of obsolescence, their landscape was dotted with dozens of silo systems,

and commitments to new strategic directions demanded significant business re-engineering.

John Zachman made a site visit to help launch an enterprise architecture initiative.

SIL learned from him that architecture (see Chart 2) is the age-old discipline that makes it

possible for humankind to construct complex systems. If an organization wants to build

something that is highly complex in such a way that what the builder builds is aligned with

what the owner actually has in mind (whether it be a skyscraper, an airplane, or an

information system), then it needs a designer to create a complete set of blueprints to which

all the stakeholders agree and against which all will work.

Chart 1: What is SIL International?

! SIL is a not-for-profit, academic, faith-

based organization committed to the

empowerment of indigenous

communities worldwide through

language development efforts.

! SIL is focused on the role of language

and culture in effective development.

! By facilitating language-based

development, SIL International serves

the peoples of the world through

research, translation, and literacy.

! Since its founding in 1934 SIL has

worked in 1,800 languages, in 70

countries, and grown to a team of 5,000

from 60 countries.

Perhaps even more important in this age of increasingly rapid change is that

architecture is the discipline that makes it possible for an organization to maintain a highly

complex system once it is operational. Before the functioning building or airplane or

information system can safely, efficiently, and effectively be changed, it is necessary for the

owner, designer, and builder to first make the changes on the blueprints and come to

agreement that the proposed changes will achieve what the owner wants and can be

implemented by the builder.

Nothing So Practical As Good Theory

“In the case of information and communication technologies …

investments in associated intangible capital … are quite

important indeed.” — Federal Reserve Chairman Ben

Bernanke (MIT commencement, June 2006)

The Zachman Framework for Enterprise Architecture (see Chart 3 and Figure 1)

seemed to offer a good theory for what the blueprints of an enterprise should look like:

primitive models (see Chart 4) in each of the cells formed by the intersection of rows for

stakeholder perspectives (e.g., owner, designer, builder) with columns for interrogative

abstractions (i.e., what, how, where, who, when, why).

As the SIL leadership set out to re-engineer the organization, they were inspired by

Zachman’s vision of an enterprise under control through a complete set of aligned blueprints.

In an application of social psychologist Kurt Lewin’s famous maxim, “There is nothing so

practical as a good theory,” they saw the practical value of the Zachman Framework and

Chart 2: What is Architecture?

Architecture is the set of descriptive

representations that are required in order to create an

object. Architecture is also the baseline for changing

the object once it is created, IF you retain the

descriptive representations used in its creation and IF

you ensure that the descriptive representations are

always maintained consistent with the created object

(i.e., the instantiation). The Roman Coliseum is not

architecture, it is the result of architecture, an

implementation.

If the object you are trying to create is so simple

that you can see it at a glance in its entirety and

remember all at one time how all of its components fit

together at excruciating levels of detail, you don’t

need architecture. You can “wing it” and see if it

works. It is only when the object you are trying to

create is complex to the extent that you can’t see and

remember all the details of the implementation at

once, and only when you want to accommodate on-

going change to the instantiated object, that

architecture is imperative.

(Zachman 1987, 2001, 2007)

adopted it as their working theory. Conversely, there is nothing so good for the development

of theory as good application in practice, and Zachman with his associate Stan Locke entered

into a relationship with SIL to help SIL put theory into practice while SIL helped them refine

theory through practice. Following Kotter’s
i
 eight-stage process for managing major

change, SIL formed a VP-level guidance team chaired by the Associate Executive Director

for Administration. Trained and advised by Locke, this team has met regularly since 2000 to

guide the process of architecting a re-engineered enterprise.

Chart 3: What is the Framework for Enterprise Architecture?

The Framework for Enterprise Architecture (the “Zachman Framework”, see Figure 1)

is simply a schema, a classification scheme for descriptive representations of objects with

enterprise names on the descriptions. It is represented in two dimensions as a table or

matrix consisting of six columns and five rows. The schema is “normalized” so that no

one fact can show up in more than one cell.

The columns (nicknamed “one” through “six” from left to right) answer the six

interrogatives — what, how, where, who, when, and why, respectively — and correspond

to the universal set of descriptive representations for describing any and all complex

industrial products (industry-specific variations in terminology notwithstanding): Bills of

Materials, Functional Specifications, Drawings, Operating Instructions, Timing Diagrams,

and Design Objectives. These are termed “abstractions” in the sense that out of the total

set of relevant descriptive characteristics of the object, we “abstract” one of them at a time

for producing a formal, explicit, description.

The rows (nicknamed from top to bottom “one” through “five”) represent the set of

descriptions labeled “perspectives” in the sense that each abstraction is created for

different audiences: visionaries or planners, executives or owners, architects or designers,

engineers or builders, and implementers or sub-contractors respectively. Each of the six

abstractions has five different manifestations depending upon the perspective of the

intended audience for whom it is created. These are the industrial product equivalents of

Scoping Boundaries (“Concepts Package”), Requirements, Schematics (Engineering

descriptions), Blueprints (Manufacturing Engineering descriptions), and Tooling

configurations; and these correspond to the enterprise equivalents of boundary or scope,

business model, logical model, physical or technology model, and tooling configurations.

Enterprise Architecture is the total set of intersections between the abstractions and

the perspectives that constitutes the total set of descriptive representations relevant for

describing an enterprise: And the ENTERPRISE itself is the implementation, the

instantiation, the end result of doing Enterprise Architecture, and is depicted in the

framework as row six.

(Zachman 1987, 2001, 2007; Zachman & Sowa 1992)

Architecture Out of Control

“The problem with communication ... is the illusion that it has

been accomplished.” — George Bernard Shaw

SIL enjoyed excellent buy-in and participation by senior leadership and IT staff, and

found that Zachman’s framework was a powerful tool for helping conceptualize what they

were doing. But SIL also found that they lacked the tools to deliver all the blueprints. Only

in Zachman’s leftmost column one of the framework (i.e., data) did they succeed in creating

formal blueprints. The entity-relationship diagrams
ii
 commonly used by database designers

are compatible with Zachman’s notion of a primitive thing-relationship-thing model. Thus

SIL was able to achieve alignment and control in column one by using a popular entity-

relationship modeling tool. But SIL found nothing comparable for the other five columns

(process, location, organization, timing, and motivation).

Figure 1: The Zachman Framework for Enterprise Architecture

e.g. DATA

ENTERPRISE ARCHITECTURE - A FRAMEWORK

Builder

SCOPE
(CONTEXTUAL)

MODEL
(CONCEPTUAL)

ENTERPRISE

Designer

SYSTEM

MODEL
(LOGICAL)

TECHNOLOGY

MODEL
(PHYSICAL)

DETAILED
REPRESEN-
 TATIONS
(OUT-OF-
 CONTEXT)

Sub-
Contractor

FUNCTIONING

ENTERPRISE

DATA FUNCTION NETWORK

e.g. Data Definition

Ent = Field
Reln = Address

e.g. Physical Data Model

Ent = Segment/Table/etc.

Reln = Pointer/Key/etc.

e.g. Logical Data Model

Ent = Data Entity

Reln = Data Relationship

e.g. Semantic Model

Ent = Business Entity

Reln = Business Relationship

List of Things Important

to the Business

ENTITY = Class of
Business Thing

List of Processes the

Business Performs

Function = Class of

Business Process

e.g. Application Architecture

I/O = User Views
Proc .= Application Function

e.g. System Design

I/O = Data Elements/Sets

Proc.= Computer Function

e.g. Program

I/O = Control Block
Proc.= Language Stmt

e.g. FUNCTION

e.g. Business Process Model

Proc. = Business Process

I/O = Business Resources

List of Locations in which
 the Business Operates

Node = Major Business
Location

e.g. Business Logistics
 System

Node = Business Location

Link = Business Linkage

e.g. Distributed System

Node = I/S Function
(Processor, Storage, etc)
Link = Line Characteristics

e.g. Technology Architecture

Node = Hardware/System
Software

Link = Line Specifications

e.g. Network Architecture

Node = Addresses
Link = Protocols

e.g. NETWORK

Architecture

Planner

Owner

Builder

ENTERPRISE
MODEL

(CONCEPTUAL)

Designer

SYSTEM
MODEL

(LOGICAL)

TECHNOLOGY
MODEL

(PHYSICAL)

DETAILED
REPRESEN-

TATIONS
(OUT-OF

CONTEXT)

Sub-
Contractor

FUNCTIONING

MOTIVATIONTIMEPEOPLE

e.g. Rule Specification

End = Sub-condition

Means = Step

e.g. Rule Design

End = Condition

Means = Action

e.g., Business Rule Model

End = Structural Assertion
Means =Action Assertion

End = Business Objective

Means = Business Strategy

List of Business Goals/Strat

Ends/Means=Major Bus. Goal/
Critical Success Factor

List of Events Significant

Time = Major Business Event

e.g. Processing Structure

Cycle = Processing Cycle
Time = System Event

e.g. Control Structure

Cycle = Component Cycle

Time = Execute

e.g. Timing Definition

Cycle = Machine Cycle
Time = Interrupt

e.g. SCHEDULE

e.g. Master Schedule

Time = Business Event

Cycle = Business Cycle

List of Organizations

People = Major Organizations

e.g. Work Flow Model

People = Organization Unit

Work = Work Product

e.g. Human Interface

People = Role
Work = Deliverable

e.g. Presentation Architecture

People = User

Work = Screen Format

e.g. Security Architecture

People = Identity
Work = Job

e.g. ORGANIZATION

Planner

Owner

to the BusinessImportant to the Business

What How Where Who When Why

John A. Zachman, Zachman International (810) 231-0531

SCOPE
(CONTEXTUAL)

Architecture

e.g. STRATEGY
ENTERPRISE

e.g. Business Plan

TM

THE ENTERPRISE INSTANTIATION

THE ENTERPRISE ARCHITECTURE

e.g. DATA

ENTERPRISE ARCHITECTURE - A FRAMEWORK

Builder

SCOPE
(CONTEXTUAL)

MODEL
(CONCEPTUAL)

ENTERPRISE

Designer

SYSTEM

MODEL
(LOGICAL)

TECHNOLOGY

MODEL
(PHYSICAL)

DETAILED
REPRESEN-
 TATIONS
(OUT-OF-
 CONTEXT)

Sub-
Contractor

FUNCTIONING

ENTERPRISE

DATA FUNCTION NETWORK

e.g. Data Definition

Ent = Field
Reln = Address

e.g. Physical Data Model

Ent = Segment/Table/etc.

Reln = Pointer/Key/etc.

e.g. Logical Data Model

Ent = Data Entity

Reln = Data Relationship

e.g. Semantic Model

Ent = Business Entity

Reln = Business Relationship

List of Things Important

to the Business

ENTITY = Class of
Business Thing

List of Processes the

Business Performs

Function = Class of

Business Process

e.g. Application Architecture

I/O = User Views
Proc .= Application Function

e.g. System Design

I/O = Data Elements/Sets

Proc.= Computer Function

e.g. Program

I/O = Control Block
Proc.= Language Stmt

e.g. FUNCTION

e.g. Business Process Model

Proc. = Business Process

I/O = Business Resources

List of Locations in which
 the Business Operates

Node = Major Business
Location

e.g. Business Logistics
 System

Node = Business Location

Link = Business Linkage

e.g. Distributed System

Node = I/S Function
(Processor, Storage, etc)
Link = Line Characteristics

e.g. Technology Architecture

Node = Hardware/System
Software

Link = Line Specifications

e.g. Network Architecture

Node = Addresses
Link = Protocols

e.g. NETWORK

Architecture

Planner

Owner

Builder

ENTERPRISE
MODEL

(CONCEPTUAL)

Designer

SYSTEM
MODEL

(LOGICAL)

TECHNOLOGY
MODEL

(PHYSICAL)

DETAILED
REPRESEN-

TATIONS
(OUT-OF

CONTEXT)

Sub-
Contractor

FUNCTIONING

MOTIVATIONTIMEPEOPLE

e.g. Rule Specification

End = Sub-condition

Means = Step

e.g. Rule Design

End = Condition

Means = Action

e.g., Business Rule Model

End = Structural Assertion
Means =Action Assertion

End = Business Objective

Means = Business Strategy

List of Business Goals/Strat

Ends/Means=Major Bus. Goal/
Critical Success Factor

List of Events Significant

Time = Major Business Event

e.g. Processing Structure

Cycle = Processing Cycle
Time = System Event

e.g. Control Structure

Cycle = Component Cycle

Time = Execute

e.g. Timing Definition

Cycle = Machine Cycle
Time = Interrupt

e.g. SCHEDULE

e.g. Master Schedule

Time = Business Event

Cycle = Business Cycle

List of Organizations

People = Major Organizations

e.g. Work Flow Model

People = Organization Unit

Work = Work Product

e.g. Human Interface

People = Role
Work = Deliverable

e.g. Presentation Architecture

People = User

Work = Screen Format

e.g. Security Architecture

People = Identity
Work = Job

e.g. ORGANIZATION

Planner

Owner

to the BusinessImportant to the Business

What How Where Who When Why

John A. Zachman, Zachman International (810) 231-0531

SCOPE
(CONTEXTUAL)

Architecture

e.g. STRATEGY
ENTERPRISE

e.g. Business Plan

TM

THE ENTERPRISE INSTANTIATION

THE ENTERPRISE ARCHITECTURE

It turns out that existing modeling techniques, although useful for other purposes,

were not well suited since they did not produce primitive models for the single normalized

cells of Zachman’s framework. Rather, they produced composite models combining

elements from multiple rows or columns of the framework. An obvious alternative would be

to use a general drawing program to simply draw the models. SIL tried this, but it did not

work. Unlike the entity-relationship tool which was inherently compatible with the Zachman

metamodel for column one and thus could not generate anything but a compatible model no

matter who used it, a general drawing program is unconstrained and cannot guarantee

conformity with the framework or consistency between practitioners.

Another advantage of the entity-relationship tool was that it is based on a single

underlying knowledge structure that kept the owner, designer, and builder views of the

blueprints in alignment. With the general drawing tool, however, once drawings were

created, it was virtually impossible to keep them maintained and aligned. In order to give

guidance to system builders, some models were described in documents and spreadsheets

rather than diagrams, but these were similarly unconstrained and subject to all the same

Chart 4: Primitive and Composite Models: Why

things go bump in the night.

A “primitive” model is a model in one variable—

the combination of one abstraction with one

perspective — that is an artifact specific to one cell of

the Zachman Framework. It is the raw material for

doing engineering and architecture.

In contrast, a “composite” model is comprised of

more than one abstraction and/or more than one

perspective. Implementations are the instantiation of

composite, multi-variable models. Implementations

are manufacturing, the creation of the end result. An

instantiation, by definition is a composite. An

enterprise, an information system, and a computer

program are instantiations and therefore composites.

The question turns out to be, how did you create

the implementation instance? Was it engineered

(architected) from primitive models or did you simply

create the implementation ad hoc (i.e., it was

implemented but NOT architected with primitives)? If

you are not creating “enterprise-wide” primitives, you

risk creating implementations that will not integrate

into the enterprise as a whole. You can manufacture

parts of the whole iteratively and incrementally;

however, they must be engineered to fit together or

they are not likely to fit together (be aligned or easily

integrated). Enterprise-wide integration and

alignment do not happen by accident. They must be

engineered (architected).

(Zachman 1987, 2001, 2007)

shortcomings. For the lack of tools to handle the models in columns two through six, five

sixths of SIL’s architecture was out of control.

Enterprise Architecture as a Language Problem

“In the beginning was the Word.” — John 1:1 (King James Bible)

Why didn’t the drawing approach work? Modeling is about expressing ideas, not

about drawing pictures. Thus the solution to the modeling problem is even older than

architecture — the age-old discipline that makes it possible for humans to express ideas with

precision is language. Language is the source of our ability to create, our power to wield

ideas, and our freedom to build a better future. Ironically, language achieves this freedom by

conventionalizing a strong set of constraints on how words and sentences can be formed.

Paradoxically, language uses constraints to unleash freedom of expression. Consider that in

any one language all the possible speech sounds are constrained to a relatively small subset

that are actually used, syllable patterns constrain the combinations of sounds that could

possibly be words, conventional associations of meaning constrain which of those sequences

actually are words, and rules of grammar constrain the order in which words combine to

express larger thoughts.

By analogy, in order to unleash the creativity, power, and freedom that are the

promise of enterprise architecture, an enterprise needs to employ a constrained language for

enterprise modeling. The metamodels of the Zachman Framework are too generic to support

detailed engineering. This is by design since the framework is a classification system, not a

methodology. In order to develop a methodology appropriate for its own use, an enterprise

needs to adapt the framework to its specific context by adding both detail and constraint to

Zachman’s generic standard for enterprise architecture. The Enterprise Architecture

Standards
iii

 define the notion of an elaboration of the framework. The allowed elaborations

are:

● Alias a standard thing or relationship.

● Add named subtypes of standard things and relationships.

● Name the supported integrations between columns.

● Add named attributes to a type of thing or relationship or integration.

Such elaborations of the metamodels do not violate the standard framework as long as they

follow a dumb-down rule that states, “When the elaborations are backed out of an elaborated

model, the result must be a model that conforms to the standard metamodel.”

GEM: A Language for Enterprise Modeling

“Obedience to a law which we prescribe to ourselves is liberty.” —

Jean-Jacques Rousseau (The Social Contract, 1762)

To gain control of their enterprise architecture SIL created GEM — a system for

Generic Enterprise Modeling. The complete system consists of a methodology, a repository,

and a workbench, but at the center of all these is a language that is formally an elaboration of

the Zachman Framework metamodel as defined in the Enterprise Architecture Standards.
iv

The GEM language is implemented as an application of XML. By analogy to a

programming language, the architect writes XML source code to express the semantics

(owner view) and logic (designer view) of a system — including things, relationships,

integrations, transformations, added detail, and prose definitions. The system compiles the

XML source into the graphic primitive models for each cell of the framework. The system

also compiles the XML source into “textual models” for each cell — HTML documents that

provide human-readable descriptions.

For example, Figure 2 shows a fragment from the owner-level process model (that is,

the intersection of Row Two and Column Two) for the subsystem that maintains and

produces Ethnologue: Languages of the World.
v
 The Ethnologue is a 1,272-page reference

book published by SIL that catalogs all known languages of the present-day world. Now in

its fifteenth edition, the Ethnologue identifies 6,912 living languages, both spoken and

signed.

In the GEM language, each type of thing and relationship used in the primitive thing-

relationship-thing models has its own XML element. For example, the fragment in Figure 2

illustrates two kinds of things in the owner-level process model, <inventory> representing

a process for maintaining an inventory of data entities and <publication> representing a

process for producing a publication. These are two kinds of processes that recur in SIL’s

enterprise, so Zachman’s generic notion of a Row Two process has been elaborated by

defining these two subtypes. Each thing element has an ID attribute, which provides a unique

identifier that can be used as the target of relationships. Each thing element also contains a

<name> and <description> element for human-readable documentation. The XML

element for a relationship is embedded in the thing it originates from and contains an IDREF

attribute that expresses the unique identifier of the thing that is the target of the relationship.

In Figure 2, <fedBy> is an example of a relationship. The instance <fedBy

process=”c2.WorldLang”/> is embedded in the Ethnologue Edition process and points

to the World Language Inventory process. It is therefore a formal statement of the fact, “The

Ethnologue Edition publication process is fed by the output of the World Language Inventory

Figure 2: An example of GEM language source code

<columnTwo>

 <businessProcesses>

 <inventory id=”c2.WorldLang”>

 <name>World Language Inventory</name>

 <description>The process that maintains

 the most up-to-date information about

 the existence and status of every

 known language.</description>

 </inventory>

 <publication id=”c2.edition”>

 <name>Ethnologue Edition</name>

 <description>The process that produces

 a particular, published edition of the

 catalog of all known living languages

 of the world.</description>

 <fedBy process=”c2.WorldLang”/>

 <fedBy process=”c2.LangMaps”/>

 <producedAt location="c3.HQ"/>

 <timing cycle="c5.Edition"/>

 </publication>

 ...

 </businessProcesses>

 ...

</columnTwo>

process.” Figure 3 shows the graphic representation of this model that is generated by GEM

from the source fragment in Figure 2.

Relationships between things in different columns are called integrations and are

expressed in the same way. In Figure 2, <producedAt> integrates the process to the thing

in the Column Three model that represents the location where it is produced and <timing>

integrates the process to the thing in the Column Five model that represents the timing cycle

for the process. Figure 4 shows the textual model generated by GEM for the

<publication> element in Figure 2. It is an HTML document in which the targets of the

relationships and integrations are active links to the definition of the referenced thing. This

example illustrates an important feature of the GEM language, namely, that the reverse

relationships and integrations are never expressed explicitly in the XML source code, but

always inferred by the compiler that generates the textual model, thus avoiding redundancy

and the potential for update anomaly. For instance, in Figure 4, the “Produced by” and

“Consumed by” integrations were actually expressed in the source code of the Column Four

model and the “Motivation” integration was actually expressed in the source code of the

Column Six model.

Figure 5 summarizes the coverage of GEM for modeling the owner (Row Two)

perspective. This represents about one-third of the GEM language; the remainder is for

modeling the things, relationships, and integrations of the designer perspective (Row Three),

plus further details like attributes of data entities and states of timing cycles that are needed

to fully specify the logical design of a subsystem. The rows of the table in Figure 5

correspond to the six columns of the Zachman Framework (labeled C1 through C6). The

Figure 3: The graphic model generated from Figure 2

Figure 4: The textual model generated from Figure 2

Ethnologue Edition

A publication process. The process that produces a

particular, published edition of the catalog of all known living

languages of the world.

Relationships

Fed by: Language Map Inventory

Fed by: World Language Inventory

Integrations

Produced at: International Headquarters

Consumed by: Public

Produced by: VP Academic Affairs Office

Timing: Ethnologue Edition Cycle

Motivation: Publish Ethnologue

contents of the table cells list the XML elements for expressing things, relationships, and

integrations in the given framework column. The latter entries also identify the column that is

the target for the integration. The entries in the integration column that are in italics are for

the implicit reverse integrations that are generated by the compiler.

The XML elements listed in Figure 5 can be likened to the vocabulary of the GEM

language. From these “words” it is possible to construct sentences like, “Object X

associatedWith Object Y” and “Inventory Z tracks Object X.” An XML DTD (Document

Type Definition) along with a Schematron schema defines the grammar of the language (that

is, the constraints on how the possible words can be combined to create valid sentences). For

instance, the schema prevents a sentence like “Inventory Z tracks Site W” since the object of

tracks must be a Column One thing.

The Repository of Enterprise Models

 “Any fool can make things bigger, more complex, and more

violent. It takes a touch of genius — and a lot of courage — to

move in the opposite direction.” — Albert Einstein

Figure 5: GEM vocabulary for Row Two models

 Things Relationships Integrations

C1 object
association

hasAssociations
associatedWith

hasMembers
hasStructure

Tracked in C2
Model for C4

Motivation is C6

C2 inventory
publication

fedBy tracks C1
producedAt C3

hasTiming C5
Produced by C4

Consumed by C4

Motivation is C6

C3 site linkedTo Produced here C2
Located here C4

Motivation is C6

C4 orgUnit administeredBy modeledAs C1
produces C2

consumes C2

locatedAt C3

Monitors C5
Motivation is C6

C5 businessCycle spawns
intersects

monitoredBy C4
Timing for C2
Motivation is C5

C6 goal
objective

meansFor reasonFor C1,
 C2,C3,C4,C5

Modeling an entire enterprise and then managing how its models change over time is

a huge task. GEM supports enterprise-wide modeling in two critical ways. First, the

complete enterprise (which is too big to handle in one model) is divided into numerous

subsystems (each of which is of a manageable size). A subsystem represents a focused set of

business functions that falls under the stewardship of a single vice president who “owns” the

subsystem on behalf of the enterprise. A GEM source file describes the architecture of just

one of those subsystems. Individual subsystem models may reference elements defined in

other subsystem models. In this way, the collection of subsystem models is knit into a single

contiguous enterprise model and an internal web application allows all stakeholders to

browse the set of subsystem models as an integrated whole.

Second, a single subsystem model may simultaneously describe the subsystem at

various points in the history of its development. Each subsystem declares a set of stages in a

build sequence and each thing and relationship is assigned to the stage in which it is added to

(and in some cases dropped from) the subsystem. A request to change the functioning

enterprise is made by specifying a new stage in the build sequence of the affected subsystem.

Each stage passes through a development life cycle with the following states: proposed,

planned for implementation, in development, in quality assurance testing, and in production.

The XML source files for all of the subsystems are stored in a single repository

managed by Subversion — an open-source revision control system. Figure 6 shows the

home page of the dynamic web application SIL has developed for providing a user interface

to the repository of enterprise models, and shows all of the subsystems (which are limited to

a selection of eight to reduce the size of the graphic) as well as the entire enterprise. The left-

hand column names the subsystems that have been modeled; they are grouped under

headings for the corporate officer who is steward for the model. The numbers on the right-

hand side are rough metrics giving the number of things defined in the models for each

column. The five columns in the middle of the page give links for navigating to the models

themselves; if the subsystem has at least one build-sequence stage in the named life-cycle

state, then the link is dark and active. The repository application (by adding and dropping

model elements based on the life-cycle state of the build sequence stages) is able to display

the models for each subsystem in each of the possible life-cycle states. This helps the

enterprise to visualize, discuss, and manage change.

Figure 7 is a screenshot showing the result of clicking on the “Development” state

link for the Ethnologue subsystem that appears in Figure 6. The body of the page contains 35

links, each of which produces a different view of information in the single GEM language

source file. The application is built with Apache Cocoon — an open-source web application

framework that uses pipelines of XSLT scripts to transform the XML source file on-the-fly

into the requested textual and graphic displays. The top half of the screen gives links to

displays that summarize the models over all the columns of the Zachman Framework. The

bottom half of the screen gives links to the individual cell models for the top three rows of

the Zachman Framework. These are the rows that deal with the ideas that lie behind the

subsystem before it is transformed into a technology solution. These are the models that are

used by executive leaders and the staff sections they manage. This repository application is

aimed at these users; another application, the GEM Workbench, is aimed at IT staff and

encompasses all the rows of the Zachman Framework.

Figure 6: The GEM Repository of Enterprise Models

Figure 8 shows the first page of the HTML document generated as a result of clicking

the “model” link in Row Two and Column Two. It illustrates the content from Figure 4 in its

full context. Each of the eighteen “list” and “model” links in the bottom half of Figure 7

generates a comparable document. The G icons in the second and third rows are also links;

they generate the graphic form of the primitive cell model.

Figure 7: Framework for the Ethnologue System in Development State

Figure 9 shows all six of the graphic models generated for Row Two of the

development state of the Ethnologue subsystem. These graphs are created by transforming

the XML source model into a graph specification in the DOT graphic description language

which is then rendered on-the-fly by Graphviz — an open-source graph visualization

package.

Since the XML source file for one subsystem is able to make reference to an element

defined in another subsystem, the repository application is able to assemble the entire

enterprise model by aggregating the individual subsystem models. This is the effect of

clicking on the links for Complete Enterprise at the bottom of Figure 6. The result is a screen

comparable to Figure 7, but that generates the models for the entire enterprise by aggregating

the individual subsystem models. For example, Figure 10 shows the Row Three data model

for all the subsystems that are in production — in other words, it is the logical data model for

the Enterprise Information System as it is currently in production. The entities are defined in

eight different subsystems and the graphic color codes the entities by subsystem. This graph

brings to light a current deficiency in the state of development — the six subsystems on the

left side of the graph form a contiguous model, but the two subsystems on the right have yet

to be integrated with the rest of the enterprise.

Figure 8: A primitive cell model (as text)

Figure 9: All Six Primitive Cell Models for Row Two (as graphs)

Progress to Date

“In a time of drastic change it is the learners who inherit the

future. The learned usually find themselves equipped to live in

a world that no longer exists.” — Eric Hoffer

SIL’s efforts at re-engineering and creating an integrated Enterprise Information

System are a work in progress. Their enterprise architecture blueprints facilitate

communication among the staff of SIL so that the operational aspects of SIL that are

managed by those people, including IT, can be aligned. To date SIL’s repository holds

eighteen subsystem models and each falls under the stewardship of one of their vice

presidents. Originally, they had blueprints for only Column One (data models) of the

Zachman Framework. The impetus for developing GEM was to get the complete

architecture under control by developing blueprints for the other five columns as well.

Figure 10: The enterprise-wide Row Three data model

Figure 11 reports the progress to date in achieving this. This, as well as the entire

GEM development effort, represents the work product of a small team consisting of an

enterprise architect and a software engineer (both devoting less than half-time to the

endeavor), plus a few domain specialists who have learned to do the GEM modeling for

subsystems in their domain. The two rows of the table separate counts for the eight

subsystems that are now part of the in-production integrated Enterprise Information System

versus the ten that are in an earlier stage of planning or development. The second column in

the table gives a sense of the size of the effort by reporting the number of data entities in the

Column One models. (Note that a large number of the data entities for the subsystems in

production are within build-sequence stages that are not yet in production; this is why the

aggregated model in Figure 10 contains many fewer than 178 entities.) The remaining

columns show the progress toward modeling the enterprise in all columns of the Zachman

Framework: three-quarters of the subsystems are now modeled in two columns, just over half

in three columns, one-third in five columns, and only one-sixth in all six columns.

Considering that most enterprises today are fortunate to have even the single data

column fully architected, let alone enterprise-wide, SIL stands at the vanguard of what may

be a paradigm shift in how enterprises are managed. A change in thought and practice

perhaps as significant as those brought about in the Industrial Age by Frederick Taylor’s

“scientific management” and Joseph Juran’s “statistical quality control”.
vi

 And with their

enterprise architecture language, tools, methods, and process in place, and with significant

organizational learning and success already experienced, SIL’s pace and momentum are on

the rise.

Lessons Learned

“Someday, you’re going to wish you had all those models,

enterprise-wide, horizontally and vertically integrated, at an

excruciating level of detail.” — John Zachman

Even more than the benefits of creating new tools, processes, methods, innovations,

technologies, and intellectual capital while transforming their IT systems, SIL has learned

some critical and universal lessons. Lessons, perhaps even basic truths, which shed light not

only on the practice and value of enterprise architecture but also on some of the fundamental

causes of seemingly intractable issues in IT management, such as the perennial quest for

alignment.

Among these was the discovery that when the owner speaks directly with the builder

(skipping over the Row Three designer), the result is typically a localized stove-piped

Figure 11: Enterprise Architecture Progress and Control at SIL

GEM
subsystems

Data
entities

Modeled in at least n columns of
the Zachman Framework

2 3 4 5 6

In production 8 178 5 4 3 3 1

Not in production 10 248 9 6 3 3 2

Totals 18 426 14 10 6 6 3

As per cent 78% 56% 33% 33% 17%

solution that is not architecturally optimal and thus difficult and costly to integrate and

change. That is, the problem of immediate concern is solved but at the cost of adding more

complexity to the overall enterprise than was actually necessary. Regrettably, the lack of

staff that can function as Row Three architects has been a bottleneck in most of SIL’s

projects, and it appears this shortage of the architecturally skilled is widespread. Row Three

is a scarce but critical perspective.

The fact that someone has been successful as a software designer (Row Four) does

not mean they will be successful as an enterprise designer in Row Three. It takes someone

who can straddle the owner’s perspective in Row Two and the builder’s perspective in Row

Four — who can translate the owner’s view into a formal logical design that transcends any

particular technology for implementing it. Technology designers tend to push a Row Four

perspective into Row Three by solving the problem in terms of their preferred technology.

The GEM language is giving SIL a way to train people to function in the Row Three role

without getting drawn into the details of a Row Four technology solution.

Through GEM, SIL has also learned that having and maintaining “all those models”

is possible if they are automatically generated from a single source. When all the primitive

models are generated on demand from a single source they always stay synchronized and in

alignment, and enable the enterprise as implemented to be in alignment, In sum, SIL has

found that elaborating Zachman’s Enterprise Architecture Standards to create a custom

modeling language allows an enterprise to gain control of its architecture; but more

importantly, to gain control of the actual data, processes, technologies, people, and other

resources of which the architecture is a representation. Moreover, having a constrained

formal language allows novice modelers to be productive and ensures that all modelers

produce comparable results.

But more than all this, SIL has found that the most important result of their enterprise

architecture initiative was not the new Enterprise Information System (as they originally

thought it would be), but an enterprise change management process that will make it possible

for them to use their newly developed enterprise blueprints to manage the never ending cycle

of changes to the enterprise. In other words, enterprise architecture is the key to SIL

achieving the design objectives that keep nearly all IT managers up at night — alignment,

simplicity, flexibility, speed, and agility.

In order to ensure that this is the result, SIL’s EA leadership team recently assigned

their Chief Architect two new highest priorities: (1) developing a plan for finishing the

blueprints of all subsystems that are part of the in-production Enterprise Information System

(including reverse engineering the models for the legacy subsystems and third-party systems

that were integrated without blueprints), and (2) assisting the EA Program Manager to

specify an enterprise change management process that is based on managing the complete

blueprints.

Zachman’s theory remains confirmed by the practical experience of SIL International,

and SIL has realized tangible and intangible benefits as their enterprise architecture efforts

are helping them to bridge the chasm between strategy and implementation
vii

. SIL has found

that their architecture isn’t their organization any more than a map is the highway or the

blueprints the building. But like maps and blueprints, enterprise architecture is a tool to help

us efficiently and effectively get where we want to go, and to keep us from getting lost.

References

Chen, Peter P. (1976). “The Entity-Relationship Model: Toward a Unified View of Data,”

ACM Transactions on Database Systems, vol. 1, no. 1, pp. 9-36.

Gordon, Raymond G., Jr. (ed.) (2005). Ethnologue: Languages of the World, (15th edn.).

Dallas: SIL International. Web edition at: http://www.ethnologue.com.

Kappelman, Leon A. (2007). “Bridging the Chasm,” Architecture and Governance, vol. 3,

no. 2, http://www.architectureandgovernance.com/articles/09-lastword.asp.

Kotter, John P. (1996). Leading Change. Harvard Business School Press.

Ross, Jeanne (2003), “Creating a Strategic IT Architecture Competency: Learning in Stages,”

MISQ Executive, Volume 2, Issue 1.

Zachman, John A. (1987). “A Framework for Information Systems Architecture,” IBM

Systems Journal, vol. 26, no. 3, IBM Publication G321-5298.

http://www.zachman.com/resources/ea-articles-reference/49-1987-ibm-systems-

journal-a-framework-for-information-systems-architecture

Zachman, John A. (2001). The Zachman Framework for Enterprise Architecture: A Primer

for Enterprise Engineering and Manufacturing, Zachman International. (Out of Print)

Zachman, John A. (2006). “Enterprise Architecture Standards.” Zachman International.

Zachman, John A. (2007). “Architecture Is Architecture Is Architecture,“ EIMInsight, vol. 1,

no. 1, March, Enterprise Information Management Institute.

http://www.zachman.com/resources/ea-articles-reference/52-architecture-is-

architecture-is-architecture-by-john-a-zachman

Zachman, John A. and Sowa, J. F. (1992). “Extending and Formalizing the Framework for

Information Systems Architecture,” IBM Systems Journal, vol. 31, no. 3, IBM

Publication G321-5488. An earlier version of this manuscript appears in The SIM

Guide to Enterprise Architecture, Leon A. Kappelman, editor, CRC Press, NY, NY

2010. http://www.zachman.com/resources/ea-articles-reference/50-1992-ibm-

systems-journal-extending-and-formalizing-the-framework-for-information-systems-

architecture

