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Abstract

Advances in sequencing technologies have made studying biological processes with genomics, 
transcriptomics, and proteomics commonplace. As a result, this suite of increasingly integrated 
techniques is well positioned to study drug delivery, a process that is influenced by many 
biomolecules working in concert. Here we describe how omics-based approaches can be used to 
study the vast nanomaterial chemical space as well as the biological factors that affect the safety, 
toxicity, and efficacy of nanotechnologies. We focus on the generation and analysis of large 
datasets, describing methods to interpret them. We also describe how these datasets have been 
applied to nanomaterials to date. Finally, we propose new ways sequencing datasets can answer 
fundamental questions in nanotechnology-based drug delivery.

A2. Drug delivery is a complex process involving many biomolecules

Biological processes are carefully regulated. For example, proliferation is not governed by a 
single master gene. Instead, it is influenced by post-translational modifications, transcription 
factor binding sites, RNAs, proteins, lipids, carbohydrates, and combinations thereof1. The 
same is true for cell death2, metabolism3, and endocytosis4. This biological complexity is 
critical to cell function. However, complexity makes it difficult to deconvolute how 
individual biomolecules contribute to a phenotype. The scale of biological systems makes 
this problem more difficult. As an example, the human genome consists of approximately 
20,000 protein coding genes that interact with one another dynamically and in response to 
environmental cues. Even if we ignore the approximate 98% of the human genome that does 
not encode protein-coding genes5, the complexity of the genome is a universal problem for 
the biomedical field6. Nanomedicine delivery is a complex process regulated by the body7. 
Successful in vivo drug delivery requires a nanoparticle to protect the drug from 
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degradation, avoid the systemic immune system, avoid clearance organs, enter the desired 
tissue, select the right cell type within a complex tissue microenvironment and - if the drug 
requires cytoplasmic delivery - gain access to the cytoplasm without degrading in an 
organelle (Figure 1A). At each step the nanomedicine must overcome defenses that have 
evolved to sequester and degrade foreign materials; this makes drug delivery inefficient. For 
example, a lipid nanoparticle (LNP) that delivers small interfering RNA (siRNA) to 
hepatocytes in mice, non-human primates, and humans8 was used to ask an important 
question: if a LNP carrying siRNA reaches the endosome of a target cell in vivo, what 
percentage of the siRNA accesses the cytoplasm? This LNP only released 2% of its siRNA 
into the cytoplasm9. Recognizing these inefficiencies, clinical advances in nanotechnology 
research8, 10–13 are impressive. However, despite these advances, leaders have called for 
changes to the way nanotechnologies are studied or described14–16. Our experience supports 
these calls for change.

Nanomedicines have untapped potential, in large part because they are still difficult to 
design a priori, and like all drugs17, are affected by biological interactions that are hard to 
study. However, developments in next-generation sequencing technologies (NGS) are 
allowing biologists to answer questions on an entirely new scale (Figure 1B). Although the 
definition of ‘big data’ varies18, the ability to generate and analyze large biomedical datasets 
could help study fundamental nanotechnology questions. Namely, how does nanoscale 
chemical structure influence drug delivery in vivo? And, which biological pathways govern 
nanoparticle delivery in vivo?

Over 40 years of work has resulted in a substantial body of knowledge19 describing 
interactions between nanotechnology and biomolecules. For example, evidence shows that 
the high surface area to volume ratio of nanoparticles makes it thermodynamically likely20 

that diverse molecules will bind nanoparticles after they are administered21. The 
composition of this ‘corona’ changes with time22 and local environment20, 23. These 
interactions alter how nanoparticles engage the immune system or target cell24. In one 
example, a LNP was bound by serum apolipoprotein E (ApoE), which increased delivery to 
hepatocytes, which were the target cell type25. In another, the protein corona blocked 
interactions between transferrin-targeted nanoparticles and receptors on the cell surface, 
thereby reducing delivery24. We also know that physical barriers influence nanoparticle 
delivery. Cationic nanoparticles can be disassembled by the renal anionic basement 
membrane26, and nanoparticles inefficiently access healthy brain parenchyma due to the 
blood brain barrier27. By contrast, nanoparticles access hepatocytes easily due to porous 
endothelial cells, discontinuous basement membranes in hepatic sinusoids27, and slowed 
blood flow that increases nanoparticle extravasation28.

We also understand that specific genes can affect nanoparticle delivery (Figure 2). Most 
studies to date have identified genes that alter nanoparticle or nucleic acid endocytosis in 
vitro9, 29–32. In a recent example, authors manipulated cells with small molecules that 
manipulated genes, then administered LNPs carrying mRNA. The authors found that small 
molecule drugs altered mRNA delivery; some drugs improved mRNA delivery, whereas 
others reduced it33. Publications have also studied how genes alter nanoparticle delivery in 
vivo. These results suggest that specific genes can alter systemic nanoparticle 

Paunovska et al. Page 2

Adv Mater. Author manuscript; available in PMC 2019 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pharmacokinetics, biodistribution34, and endocytosis25. For example, Bertrand et al. 
quantified how nanoparticles with high (or low) amounts of poly(ethylene glycol) (PEG) 
circulated in genetic knockout mice. They found that the low-density lipoprotein receptor 
(LDLR) played a dominant role in nanoparticle clearance, irrespective of PEG content35. In 
a second example, it was found that Caveolin 1, a gene that is critical for caveolin-mediated 
endocytosis, was needed for LNPs to enter endothelial cells and liver macrophages, but was 
not important for delivery to hepatocytes, or macrophages in other tissues36. These results 
suggest that inhibiting caveolin signaling may retarget nanoparticles in vivo. Separate 
studies have found that genes related to mRNA translation33, lysosome formation and 
maturation37, and anti-viral immune response38 can also alter nanoparticle delivery. Finally, 
systemic physiology can alter delivery. For example, delivery to non-tumor organs varied 
when nanoparticles were administered to healthy and tumor-bearing mice39. Similarly, the 
administration of the anti-malarial drug Chloroquine reduced nanoparticle uptake by 
macrophages40, and nanoparticles delivering rapamycin can increase the tolerability of 
biologics41 in mice and non-human primates.

Finally, it is accepted that the interactions between nanomedicines and different molecules 
vary with nanoparticle chemical composition42, shape43, and size44. Given that specific 
genes, systemic physiology, and nanomedicine chemical structure come together to dictate 
nanomedicine behavior, many interesting questions remain unanswered. For example, 
whether there are master regulatory genes that affect many types of nanoparticles; if there is 
a ‘p53 for nanoparticle delivery’, it has not been identified. Luckily, complexity is a 
biological norm, and new sequencing technologies are well positioned to help us study 
interactions between nanomaterials and the body.

A3. Studying the nano-bio interface using next generation sequencing

Next generation sequencing approaches enable single cell and multiomic analyses

A suite of technologies based on high-throughput NGS have been created and validated. All 
of these are driven by advances in sequencing-by-synthesis, which allows scientists to 
characterize millions of molecules at the same time. These omics techniques, referred to as 
“sequence census” methods, can examine the genome (DNA), transcriptome (RNA), and 
epigenome (DNA modifications). All exploit the fact that DNA sequences can function as a 
digital substrate that is easily counted45.

These technologies have evolved rapidly. Soon after NGS was reported, scientists designed 
ways to sequence DNA46, and later, RNA47, from single cells. Advances in single cell 
required specific advances in acquiring and analyzing data. In particular, when acquiring 
single cell RNA-seq (scRNA-seq) data, it is important to understand ‘drop-out’, an effect 
wherein datasets contain many genes with no expression. By developing standardized 
methodologies to overcome drop-out, single cell techniques have enabled targeted RNA48–49 

and whole transcriptome50–51 analysis. By sequencing RNA from single cells, scientists 
improved their fundamental understanding in many fields of biology, examining everything 
from the diversity of microbial ecosystems to the intratumor heterogeneity and clonal 
evolution of human cancer52–53. As an example, scRNA-seq studies have been used to 
differentiate subclasses of a given cell type (e.g. neurons54–56, or immune cells57–59), or 
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study heterogeneous cell responses to a given biological stimulus60. In one representative 
example, Villani et al. performed unbiased scRNA-seq on 2400 peripheral blood 
mononuclear cells. By analyzing the subsequent gene expression data, they identified new 
subtypes of dendritic cells and monocytes in human blood, enabling more accurate immune 
monitoring in disease57. In order to generate these single cell data, authors combined an 
experimental and computational strategy to identify discriminative surface markers in 
clusters of cells that were similar to each other. They isolated the cells using these markers 
and validated the identity of these inferred subtypes using scRNA-seq. In order to ensure the 
data were robust, the authors corroborated their findings by analyzing peripheral blood 
mononuclear cells from ten independent healthy individuals. Although scRNA-seq 
approaches are not frequently used to study cellular response to nanomaterials, we are 
optimistic this approach will be important to the nanomedicine field for 2 reasons. First, 
scRNA-seq is now easy to use. In fact, there is an ongoing effort called the ‘Human Cell 
Atlas’ that aims to perform scRNA-sequencing on as many cell types as possible61. Second, 
in the papers cited above, authors found that a collection of cells thought to be homogenous 
exhibit a high degree of genetic and functional heterogeneity. These data suggest that gene 
expression and subsequent cell function, even within a given cell type, exists on a spectrum. 
These approaches could similarly reveal subtypes of immune cells that readily interact with 
nanomaterials. By studying the different gene expression profiles in immune cells that do (or 
do not) respond to nanotechnology, master regulatory genes that trigger immune responses 
to nanomaterials or promote effective endosomal release may be identified.

More recently, the integration of diverse platforms (multiomics) has begun. In these 
examples, large scale analysis of multiple biomolecules is performed62–64. One key aspect 
of multiomic data generation is the fact that scientists must (i) process cells and (ii) design 
sequencing pipelines that allows several datasets to be acquired. In one example, scientists 
measured the genomic copy-number variations, transcriptome and DNA methylome of 25 
single cancer cells. The authors were able to acquire these multiomic data using a gentle 
lysis procedure that dismantled the cellular membrane of an individual cell while keeping 
the nucleus intact. This preserved nucleus was used as a substrate for single cell DNA 
methylomic analysis, while the cytoplasmic lysate was used to acquire transcriptomic 
information from the same cell. They identified two distinct subpopulations within these 
cells and showed the transcriptomic heterogeneity within each subpopulation65 affected cell 
function. In another example, scientists used NGS to concurrently measure transcriptomic 
and epigenomic data, in order to evaluate the mechanisms of neurodegeneration in 
Alzheimer’s disease, and how the environment and the genome act through different cell 
types66. Once again, the authors used a novel experimental approach to acquire the data; 
more specifically, the authors performed in parallel chromatin immunoprecipitation and 
RNA sequencing on harvested mouse hippocampus. This allowed seven different epigenetic 
modifications that mark distinct functional chromatin states and the corresponding changes 
in gene expression to be analyzed simultaneously. By profiling transcriptional and chromatin 
state dynamics, they found that immune-cell-specific enhancer regions and response genes 
were more accessible to transcription factors, suggesting the pathogenic capacity of the 
immune system in Alzheimer’s disease. A coordinated decrease in synaptic plasticity genes 
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was also found, linking these multiomic readouts to a potential mechanism of disease 
progression.

The coupling of protein mass spectrometry to genomics, known as proteogenomics67–68, is 
another new class of technologies to generate multiomic datasets. Although mass 
spectrometry has analytical limitations69, these are being addressed. To date, 
proteogenomics has been applied to traditional biological problems. For example, scientists 
characterized human colon and rectal cancer67; using proteogenomics, the authors identified 
4 subtypes of diffuse gastric cancers, associated with proliferation, immune response, 
metabolism, and invasion, respectively70. However, through these studies, best practices 
have been established that provide a framework to characterize protein-nanomaterial 
interactions. Thus, proteogenomics has the potential to be applied to the protein corona and 
other interactions between nanomaterials and proteins.

Although multiomics approaches have not – to date – been applied to nanomaterials, these 
techniques permit scientists to characterize complex cellular responses71–72. It is therefore 
very likely that multiomics can help elucidate how cells respond to nanomaterials.

Transcriptomics can uncover how cells respond to nanoparticles

In contrast with multiomics, transcriptomics has already been used to interpret the complex 
effects that nanomaterials and biomaterials have on gene expression. There are a number of 
recent examples of the nanotechnology field taking advantage of transcriptomics, both in 
vitro and in vivo. Carrow et al. recently used RNA-seq to identify more than 4000 genes 
whose RNA expression changed when human mesenchymal stem cells (hMSCs) interacted 
with nanosilicates73. Notably, they found that particular signaling pathways were 
upregulated, including the stress-responsive and surface receptor-mediated mitogen-
activated protein kinase (MAPK) pathways. The authors also characterized a number of 
biophysical and biochemical cellular behavior and found that nanosilicates promote stem 
cell osteochondral differentiation. In particular, by analyzing changes in genes that are part 
of biological pathways related to osteogenesis, researchers saw that hMSCs exposed to 
nanosilicates tended to favor bone and cartilage lineages. They found that genes such as 
cartilage oligomeric matrix protein, aggrecan, and collagen type I α1 chain were up-
regulated; these genes are characteristic of osteochondral differentiation. Taken together, 
these data suggest that proliferation and differentiation pathways were influenced by 
nanomaterials. As another example, Feliu et al. utilized primary human bronchial epithelial 
cells to show that cationic dendrimers caused significant changes in gene expression, even at 
doses that did not lead to acute or overt signs of cytotoxicity74. After administering a dose of 
0.1 μM PAMAM dendrimers – which translates to a dose of roughly 1.4 μg / mL in vitro – to 
these cells, they found that the expression of 203 genes changed. Interestingly, by 
performing gene ontology enrichment analysis, the authors found that many of these genes 
were part of pathways related to cell division and cell cycle regulation. The authors created 
network diagrams to visualize predicted impacts on downstream pathways after upregulation 
and downregulation of specific genes. These results are important, given that many studies 
rely on overt assays to screen for nanoparticle toxicity. The results may also have 
implications for tumor-targeted nanoparticles, since tumor growth can be driven by aberrant 
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cell division and cell cycle regulation. In another example, Lucafò et al. reported the 
interaction of fullerenes with human MCF7 tumor cells showing that they cause a time-
dependent alteration of gene expression, arresting cell cycle progression and promoting the 
entry in G0 phase75. By performing whole-transcriptome RNA-seq analysis on cells exposed 
to fullerenes, the authors found that mTOR signaling, which regulates cell growth and 
proliferation, was inhibited while genes upstream of TGF-β, important for cell remodeling 
and adhesion, were upregulated – suggesting that nanoparticles can alter cell cycle 
regulation. In addition, Gliga et al. showed that cerium oxide nanoparticles negatively affect 
neuronal differentiation and interfere with cytoskeletal organization in the murine cell line 
C17.2, which can be used as a model for developmental neural stem cells76. Cerium oxide 
nanoparticles were known to show cytoprotective effects. However, by analyzing gene 
expression using RNA sequencing this study found that the expression of at least 795 genes 
changed over a 7 day period after C17.2 cells were exposed to nanoceria. Changes in gene 
expression were compared to changes elicited with a common anti-oxidant, N-
acetylcysteine, and samarium-doped nanoceria, which has previously been shown to have 
lower antioxidant activity than nanoceria alone. Notably, the authors found that nanoceria 
inhibited neuronal stem cell differentiation extensively, compared to N-acetylcysteine and 
samarium-doped nanoceria, when they analyzed the genes that were changed, illustrating 
that antioxidant properties were not necessarily beneficial in all cases. In Chlamydomonas 
reinhardtii, a model organism, authors found that exposure to four different commonly used 
metal nanoparticles – nano-Ag, nano-TiO2, nano-ZnO, and CdTe/CdS quantum dots (QD) – 
had both similar and relatively distinct effects on the transcriptome. More specifically, Zn, 
QD and Ti based nanoparticles had upregulation and / or downregulation of similar genes, 
whereas Ag elicited an opposite transcriptional response in Chlamydomonas reinhardtii 
when compared to the other three nanoparticles. Notably, some of the changes included 
potential proteasome inhibition which could suggest interest as a cancer chemotherapy 
agent77. Also in C. reinhardtii, Beauvais-Flück et al. showed that up to 4784 transcripts were 
dysregulated when exposed to subnanomolar methyl-mercury even after two hours. Genes 
involved in cell motility, nutrition, and photosynthesis were among the main regulated 
transcripts highlighting the tolerance mechanisms for microalgae at sublethal methyl-
mercury concentrations78. Finally, additional evidence that nanoparticles alter genome-wide 
gene expression has been found in vivo; engineered iron sulfide nanoparticles were shown to 
cause substantial gene expression alterations in pathways related to immune and 
inflammatory responses, detoxification, oxidative stress and DNA repair and damage, in 
adult zebrafish79. These results illustrate that major transcriptional changes can be tracked in 
vivo when an organism is exposed to a nanoparticle. These examples are complemented by 
evidence suggesting the composition, size, or shape of a biomaterial potentiates the cellular 
response to that material80. Studies that record the cellular response to biomaterials have 
been collated in the Compendium for Biomaterial Transcriptomics (cBiT)81, a collection of 
transcriptional profiles of cells after biomaterial exposure; this resource will likely continue 
to become even more valuable as more data become available.

As demonstrated by the studies above, best practices for RNA-seq data generation and gene 
expression analysis are established82. The first step is to clearly define a biological question. 
One simple test case would be ‘What RNAs are affected by a given nanomaterial, and can 
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the RNAs identify a specific cellular signaling cascade that responds to that nanomaterial?’. 
Second, extract the cellular RNA and convert it to a countable pool of complementary DNA 
(cDNA) via reverse transcription using polydT or random hexamers using standard kits. 
Third, sequence this pool of DNA using NGS. Fourth, perform quality control analyses on 
the data in order to statistically correct biases that arise during sample preparation or 
sequencing. Fifth, analyze the ‘clean’ data using an appropriate bioinformatics pipeline, 
thereby identifying genes with up- or down-regulated expression in response to the 
nanomaterial82. Sixth, use network analysis or cell ontology based approaches to understand 
whether alterations in gene expression can identify cellular pathways altered by the 
nanomaterial. Finally, once pathways are identified, it is feasible to make predictions about 
how the nanomaterial will affect the cellular phenotype (cell growth, death, toxicity, etc.).

A4 Methods to analyze large datasets appropriately

As the output from sequencing platforms reaches the order of terabytes (and billions of 
sequencing reads), it will be increasingly important to visualize and interpret the data related 
to biomaterials using best practices. Here we describe common issues faced when 
interpreting data sets of this size, as well as ways to ensure the data interpretation is 
appropriate82–83. One important consideration when analyzing large data sets is 
dimensionality. For example, some transcriptomic studies can have 20,000 dimensions; each 
dimension is the expression of a gene. Given that visualizing data on 20,000 axes is not 
feasible, datasets are reduced to a smaller number of dimensions so they can be visualized 
(Figure 3A). High-dimensional objects are replotted in a low-dimensional map; individual 
objects are represented by a point, and objects that behave similarly are ‘clustered’ nearby. 
In addition to making data easier to interpret visually, reducing dimensionality can be used 
to identify important variables in a complex, multivariable experiment.

PCA allows dimensionality reduction

Dimensionality reduction is often performed using principle component analysis 
(PCA)84–85. Put succinctly, PCA provides a statistical framework whereby the maximum 
amount of variance is captured with the lowest possible number of dimensions. In biological 
experiments, where there are usually many more observations than variables, the number of 
principle components (PCs) is the same as the number of variables. The PCs are sorted by 
their statistical importance. For example, suppose factors contributing to the cost of a car 
were studied by generating a dataset with the cost, size, brand, color, and number of wheels 
of different vehicles. Since all cars have 4 wheels, this variable will not contribute to the 
variance in car costs. However, the cost might matter, as might the brand, and these two 
factors co-vary. In this case, principal component 1 (PC1) would be the linear combination 
of variables that contributed the most amount to variance (e.g. PC1 = 4*cost + 2.4*brand 
+ 1.1*size + 0.3*color + 0.001*num. wheels). In this linear combination, the number of 
wheels negligibly contributes to the variance, and is therefore unimportant. Then, after 
factoring in PC1, a second set of relationships can be seen, where (for example) the size and 
color might co-vary: (e.g. PC2 = 2*size + 1.2*color + 0.7*brand + 0.1*cost + 0.001*num. 
wheels). Every factor contributes to each PC, but only the factors that explain a lot of the 
variance and are correlated have high weights for the same PC. In the case of studying 
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nanomaterial-biological interactions, the factors may be the sets of genes that are up or 
down-regulated in response to a specific nanomaterial. One important limitation to PCA 
however is that relationships between variables are often non-linear. In addition, PCA is 
usually specific for each dataset, making it difficult to compare PCs across studies. As a 
result, when considering whether a nanomaterial dataset can be analyzed with PCA, it is best 
to consult an expert in data analysis.

Even with these nuances, PCA can still be used effectively to reduce dimensionality. In 
biological applications, applying PCA to data with N variables will generate N PCs; if the 
first PC is responsible for a large percentage of the variance, the dimensionality of the 
dataset can be reduced by excluding PCs with much smaller contributions. PCA is 
commonly applied to biological datasets in order to identify experimental conditions that 
drive variance in gene expression85; in a typical gene expression profiling experiment, the 
first 5 PCs drive up to 50% of the variance, while the remainder explain just one or two 
percent of the variance and can be ignored. As a result, although nuances in the data can be 
lost during dimensionality reduction, the general structure of the dataset is preserved. As 
PCA is applied to nanomaterials, experiments will need to be designed in order to maximize 
the number of repetitions per observation. Another useful feature of PCA is that once the PC 
is identified, it can help identify what drives similarities among samples, and remove 
unimportant sources of variation. Supervised and algorithmic options for analyzing these 
factors are widely used in transcriptomics86–87, and therefore, should be applied to 
nanomaterial datasets.

Applicability of PCA to biological datasets

Currently, PCA is used in biology to answer questions related to (i) genetic differences 
between cell populations or (ii) gene importance when it comes to understanding a cellular 
response to specific stimuli. This can be closely related to nano-bio interactions, which 
would replace a normal biological stimulus (e.g., a cancer drug) with a nanomaterial, thus 
allowing scientists to probe mechanisms behind these interactions. However, since PCA is 
easy to perform, it can be applied to datasets inappropriately88. For instance, PCA is 
typically not useful when (i) the variance is somewhat evenly distributed among the 
principle components, and (ii) the dataset is small and the amount of variables and variance 
within the dataset is large. What constitutes an appropriately large nanomaterial dataset? As 
larger datasets are generated using nanotechnology, this question will need to be addressed. 
Once again, consulting with scientists who specialize in PCA will be important for 
nanomaterial labs. However, lessons from biological studies may help answer the question. 
It is generally accepted that biological studies with a large number of replicates can be 
analyzed with PCA, whereas studies with a small number of biological replicates (e.g., N=3 
or fewer), and therefore, relatively high experimental variability, cannot. As a control, 
biological replicates should cluster together. The larger the number of variables being 
analyzed, the more technical and biological replicates are required to make statistically 
powered statements about data. For biological, and nano-related applications, biological 
replicates should be strongly correlated. Minimizing biological variance within an 
experiment is also crucial to correct analysis of data. For example, when analyzing 
nanoparticle delivery data, it will be necessary to separate cells that had ‘low’, ‘medium’, 
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and ‘high’ levels of delivery, in order to obtain interpretable data. Given that the absolute 
values of low, medium, and high can vary with the type of drug being delivered, 
nanotechnologists will need to provide the rationale for their selection clearly. The 
advantages and limitations of PCA, as well as best practices, have been reviewed in other 
fields84–85. These best practices will be a useful starting point for nanotechnologists.

Alternative forms of dimensionality reduction

PCA is a dimensionality reduction technique that is mathematically designed to identify 
axes with maximum variance. However, in some cases, preserving small differences between 
similar objects is preferred89. For example, single-cell sequencing experiments regularly 
reveal heterogeneity amongst cells that were previously thought to be homogenous90–91, and 
often identify important rare cell subpopulations. For example, Shalek et al. found that the 
core antiviral response in pathogenically stimulated primary mouse bone-marrow-derived 
dendritic cells was coordinated by only a small proportion of the population92. In particular, 
the group found that only 0.8% of the 1700 sequenced cells exhibited antiviral gene 
expression very early, thereby leading to a larger response from the entire population. Given 
that immune cell subpopulations have been found in many other biological contexts, these 
approaches may be useful in overcoming three key limitations to nanomaterials. First, 
nanomaterials are cleared by circulating immune cells as well as immune cells within 
tissues. We find it likely that subsets of immune cells – driven by particular signaling 
pathways - respond more ‘aggressively’ to nanomaterials. Understanding these pathways 
could lead to pre-emptive, transient interventions designed to reduce nanoparticle toxicity. 
Second, nanoparticles can interact with cells via surface receptors. It is feasible that cell 
subpopulations express higher levels of a given surface receptor, thereby making it easier to 
specifically target that cell subtype. Third, since many nanoparticles enter cells via endocytic 
pathways, escaping the endosome is critical. It may be possible to identify cell subsets that 
are particularly amenable to drug delivery, simply due to the expression of genes related to 
endosomal escape. In order to identify cell subpopulations with these phenotypes, the best 
practice would be to analyze single cells, measuring immunostimulation, biodistribution, or 
cytoplasmic release, and, at the same time, measuring the transcriptomic profile of the cell. 
In these experiments, it would be important to group cells so small differences between cell 
types are preserved. For such situations, algorithms like t-distributed stochastic neighbor 
embedding (t-SNE) are appropriate. T-SNE, first described by Maaten and Hinton in 200889, 
has allowed researchers to analyze cell heterogeneity in new ways90–91. Algorithms to 
visualize t-SNE plots have been adapted for use in multiple languages, including R, python, 
and MATLAB, making the technique easy to use. Biological predictions made by t-SNE 
have also been validated using traditional biochemical techniques. For example, DroNc-seq, 
a method that combines single cell and single nuclei RNA sequencing, was used to identify 
distinct cell populations with t-SNE. These populations were then confirmed using 
immunohistochemistry and other methods90. t-SNE is useful as an alternative cell clustering 
and visualization tool when trying to understand cell response to nanomaterials.

Although t-SNE has generated validated predictions when used correctly, it can also be used 
to draw incorrect conclusions. t-SNE plots are generated using several input parameters, 
most notably perplexity and the number of iterations run93. Authors have shown that 
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selecting incorrect input variables can lead to images that contain clusters when in fact no 
clusters exist93 (Figure 3B); these are analogous to false positives. Moreover, every time a t-
SNE plot is generated, the plot changes slightly, since all t-SNE plots are stochastic89. As a 
result, although the general structure is preserved and has meaning, interpreting relationships 
between individual points on the plot is inappropriate since the position of each individual 
point varies each time the analysis is performed (Figure 3C).

Analyzing biological datasets with unbiased clustering

A second approach used to analyze large datasets is unbiased clustering. Unbiased clustering 
helps visualize experimental groups that performed more similarly to one another than they 
did to other groups, without losing any information. Since clustering algorithms rely on 
different mathematical assumptions, it is important that clustering is performed with the 
appropriate algorithm, and that altering the algorithm does not dramatically alter the 
clustering pattern83. The most common algorithms are hierarchical, centroid/partition (e.g. 
k-means), density-based (e.g. DBSCAN)94, and self-organizing maps (SOMs)95. In k-means 
clustering, the user selects a k value based on the number of clusters that the data will be 
partitioned into. If the user expects there to be many clusters, a high k number is selected; if 
the user expects few clusters, a low k number is selected. The algorithm associates nearby 
values based on their means; as more values are associated, the mean of all the values 
becomes the new mean until k clusters are formed96. Conversely, DBSCAN clusters are 
based on how closely points pack together and outliers are determined based on their 
presence in low density regions94. When measuring how cellular mRNA expression changes 
with response to a drug (or a biomaterial), hierarchical clustering or SOMs are often used. 
The appropriateness of a given clustering algorithm depends on the size and complexity of 
the dataset, as well as the research question being asked97–98, and guides to select the correct 
clustering algorithm have been published99–100. Using appropriate clustering algorithms 
when analyzing biomaterial data will be important. For example, if k-mean clustering is 
employed, how is the number of clusters selected? Scientists studying biomaterials can learn 
from examples in other fields101. Unbiased clustering has been utilized in order to analyze 
how cells cluster based on nanoparticle functional delivery as well as how nanoparticles 
cluster based on material properties34, 102. Given enough of this type of data, these analyses 
could be instrumental for intuitively designing future generations of nanoparticles.

To help evaluate whether the data are suitable for a given clustering algorithm, validation 
algorithms have been developed. Validation algorithms are based on metrics that evaluate 
how tight data within a given cluster are, and what the distance between clusters is103–104. 
Validation algorithms are often subdivided by the type of clustering they employ; these 
include compactness, separation, and connectedness104. For example, to validate k-nearest 
neighbor clustering, a validation algorithm was developed based on the following idea: if we 
take a data point from a cluster, its k-nearest neighbors should be in the same cluster103. Put 
simply, the k-nearest neighbor is determined by assigning a value to each object; the value is 
proportional to its distance from the object. Then, depending on the k constant, the objects 
are group based on closeness; when k = 1, the nearest neighbor is clustered with the object 
of interest.
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A5. Visualizing large datasets

Network diagrams for visualizing complex interactions

Additional techniques are then required to visualize large datasets. Two common methods of 
data visualization are network diagrams and heatmaps. Network diagrams integrate data 
from many sources to model interactions within a biological system. As an example, 
scientists generate networks combining gene expression and other omics data105. Since 
looking at raw network diagrams can be challenging, they are simplified using algorithms 
that cluster the raw network105. This clustering utilizes gene expression data to quantify 
correlation values between genes. If the expression of A and B always change in the same 
direction, the algorithm tends to cluster them together. Given that even these clustered 
networks can be difficult to interpret, manual editing of the network diagram can be 
employed to emphasize a specific component of the biological pathway. Alternatively, the 
gene expression may be overlaid on validated pathways using the Kyoto encyclopedia of 
genes and genomes (KEGG)106–108 or the gene ontology consortium109–110. These network 
diagrams – which are visual and qualitative – are also often augmented by including 
quantitative metrics derived from the dataset. As an example, information from gene or 
protein expression profiles can be included in network diagrams by making over or under-
expressed genes/proteins stand out on the network. A common tool for creating integrated 
network diagrams is Cytoscape111.

One related question that will need to be addressed as network analyses are used to 
understand biomaterial / cell interactions is the extent to which subtle biological interactions 
matter. In some cases, studying single genes will suffice. For example, the gene ApoE was 
shown to dramatically impact the delivery of a lipid nanoparticle in vivo; with ApoE, the 
nanoparticle was effective, and without it, the nanoparticle stopped functioning entirely25. 
However, it is likely that most nanoparticle-biological interactions will be driven by many 
genes interacting with one another. In the cases where many genes influence delivery, 
network analysis could focus on interactions between genes involved in endocytosis, 
metabolism, or intra / intercellular transport. To understand how many genes work in 
concert, network diagrams can be used to show interactions between hundreds or thousands 
of genes in a more unbiased way. Once these interactions are identified, scientists can 
evaluate whether the individual interactions are synergistic, additive, or antagonistic. If two 
genes interact synergistically, their effect on a phenotype is greater than the sum of each 
gene’s individual impact. If they interact antagonistically, their effect is less than if they 
were additive. Importantly, it is possible to evaluate how single genes and collections of 
genes can synergize or antagonize one another in a biological pathway112.

Using heatmaps to highlight differences within a dataset

Like network diagrams, heatmaps can be used to qualitatively highlight regions of interest in 
multivariate data. For example, gene expression heatmaps can identify genes that have high 
and low expression profiles if they cluster. If a clear and broad pattern exists within a 
dataset, heatmaps can highlight that pattern. Heatmaps are regularly used to supplement 
biological analyses. As an example, Subramanian et al. used hierarchical clustering to 
compare how 6 human cancer cell types clustered when analyzed using their profiling 
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method, L1000, compared to Affymetrix and Illumina microarrays, and NGS-based RNA-
seq, showing that each cell type clustered with itself independent of the sequencing/profiling 
system used113. They also analyzed 3333 drugs and 2418 additional compounds and showed 
that many of the drugs had potential off-target effects and potentially acted on multiple 
pathways. Honing in on the histone deacetylase (HDAC) superfamily of proteins, they were 
able to cluster inhibitors based on their selectivity for 13 different HDAC proteins113. 
Similarly, Hughes et al. assessed the effects of 300 different mutations and chemical 
treatments on S. cerevisiae and used hierarchical clustering to show that subtle changes in 
expression profiles can be tolerated and studied114. This is especially useful when looking at 
the effects of knocking out uncharacterized genes on a variety of cell processes. Heatmap 
analysis of sequencing data can be useful for identifying how a gene’s expression changes 
over time in response to a biomaterial, and has been used to identify nanoparticles that 
efficiently deliver drugs102, 115, identify cell types that are targeted by similar 
nanoparticles102, and to identify nanoparticle chemical properties that tend to promote in 
vivo delivery.

Best practices for data visualization tools

Like other big data tools, it is important to ensure heatmaps are interpreted correctly. As an 
example, heatmaps use color to denote differences between samples; but the same color 
looks different when placed next to different colors116 (Figure 4a). In addition, data can be 
scaled by row or by column – this decision is dictated by what differences are being 
emphasized within a dataset. For example, a test dataset may have ‘cell types’ as column 
labels and ‘genes’ as row labels. The scaling method will dictate whether differences in the 
expression of one gene throughout multiple cell types (scaling by row), or differences in 
multiple genes’ expression throughout one cell type (scaling by column) is emphasized. 
Attempting to qualitatively interpret data between rows if scaling colors by row or between 
columns when scaling colors by column would be incorrect – the colors may appear similar, 
but the absolute values would differ (Figure 4B). Similarly, if the dataset has many more 
dimensions in one variable (e.g., genes) than another variable (e.g., cell types), it is best to 
cluster by the variable with fewer dimensions83. For example, if the expression of 20,000 
genes is analyzed in 80 cell types, it is better to cluster by cell type first. Finally, data 
normalization (e.g. centering/scaling data around the mean, median, standard deviation 
(STD)) as well as the method used for clustering (e.g. Ward’s, average, single, or complete) 
can change how the data cluster (Figure 4C). Finally, it is important to avoid dropping 
samples from the dataset, since this can have a large effect on how the rest of the samples 
cluster, as well as how the data is normalized. By understanding the limitations of over 
interpreting the color of a single box, running the data through more than one clustering 
algorithm (to ensure the clustering pattern does not dramatically change), analyzing the 
colors within the right ‘direction’ (i.e., column or row), and avoiding dropping data from the 
dataset, heatmaps can be generated that provide compelling evidence of trends within 
complex biological systems; in many cases, these trends would be difficult to identify using 
other methods.

It is similarly important to understand the variance associated with your large data set; 
variance can be biological or technical. Biological variance is understood and can largely be 
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mitigated by using a large number of replicates. Technical variance is still less well 
understood and can change with the experiment. As an example, reverse transcribing RNA 
can lead to bias that alters RNA-seq datasets117. Scientists also found that specific 
sequencing machines perform differently118 and can generate bias119. There are simple ways 
to minimize variance. For example, including a sufficient number of biological replicates, 
and including appropriate positive and negative controls. One additional control that is 
important to consider when analyzing many biomolecules at once is the ‘input’. For 
example, if you administer a pool of DNA-barcoded cells to an animal, it is important to 
sequence that ‘input’ pool, so you can normalize your output appropriately. Finally, any hits 
identified with any initial high-throughput screen should be independently validated using a 
tool like quantitative PCR, although previous studies have shown high correlation between 
the two techniques51, 120–121.

A6. Future perspectives

High-throughput data generation and analysis is not without difficulties, but this does not 
downplay its potential impact on nanomedicine. Recent clinical results using nanomedicine 
are cause for great excitement; these advances can be furthered using sequencing 
technologies. For example, nanoparticles carrying small molecules have been safely 
administered to patients12, and siRNA delivered to hepatocytes by GalNAc conjugates13 or 
lipid nanoparticles8 have treated genetic disease. At the same time, the need for systemically 
administered nanomedicines that target non-hepatocytes is significant, since most 
systemically administered drug delivery systems are still sequestered in the liver. The need 
for drug delivery is also growing. Traditional small molecule therapies have been joined by 
drugs based on proteins, siRNA, miRNA, mRNA, lncRNA, ASOs, ZFNs, TALENs, and 
CRISPR-Cas proteins. Each class of drugs will present numerous opportunities for 
nanotechnologists; as an example, the nanoparticle formulation that delivers a Cas9 mRNA 
is unlikely to be the best nanoparticle formulation for a Cas9 ribonucleoprotein. One 
additional example is whether the design rules for nanomedicines delivering one drug class 
(e.g., small molecules or proteins) will pertain to nanomedicines delivering another drug 
class (e.g., siRNA or mRNA). On one hand, it is possible to foresee a gene acting as a semi-
master regulator of drug delivery. On the other, the biological response to nanoparticles 
containing proteins may be entirely different than the biological response to nanoparticles 
containing nucleic acids.

Using NGS, scientists can now quantify how thousands of nanoparticles target cells directly 
in vivo by formulating nanoparticle to carry rationally designed ‘DNA 
barcodes’34, 36, 102, 122–125 (Fig. 5A). In a separate example, scientists have used non-NGS 
forms of DNA analysis to perform high throughput in vivo assays of chemotherapy 
delivery126 (Fig. 5B). These high throughput in vivo studies may eventually relate 
nanomaterial structure to in vivo delivery. However, future advances still need to be made, 
particularly in the ability to perform multivariate analysis on these large datasets. For 
example, when one of the components making up the nanoparticle is varied (e.g., 
poly(ethylene glycol), PEG), interpreting causality in the dataset is difficult. If two 
nanoparticles with varying PEG molar ratios are tested, and the nanoparticle with high molar 
percentages of PEG performs well, is it due to increased PEG, or decreased non-PEG 
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components? PCA, t-SNE and other dimensionality reduction techniques are equipped for 
complex analyses like this. If this high throughput in vivo approach is coupled to an 
improved mathematical framework that permits scientists to understand how multivariate 
changes in nanoparticle structure alter delivery, nanoparticles with improved traits can be 
designed. For example, one key limitation in nanoparticle delivery is the unwanted clearance 
by immune cells, particularly in the liver and spleen. By quantifying how thousands of 
chemically distinct nanoparticles deliver drugs to on-target cells as well as these off-target 
cells, scientists may be able to ‘evolve’ nanoparticles that interact with clearance organs less 
frequently.

One way sequencing may improve nanomedicine is by making the pre-clinical ‘pipeline’ 
used to discover nanoparticles more efficient. For example, the standard in the field is to 
synthesize chemically distinct nanoparticles, screen them in vitro, and select a small number 
of compounds for in vivo studies. However, in vitro nanoparticle delivery can be a poor 
predictor of systemic in vivo nanoparticle delivery102. At the same time, certain in vitro 
systems that recapitulate organ physiology may predict in vivo delivery. We envision high 
throughput studies comparing in vivo delivery to organ-on-chip systems127 using thousands 
of nanoparticles124. By statistically comparing how thousands of different nanoparticles 
behave, these studies could elucidate the engineering (or biological) variables that make 
organ-on-chip systems predictive of in vivo behavior. A second inefficiency in the 
nanoparticle discovery pipeline is the unknown relationship between nanoparticle delivery in 
a mouse, and nanoparticle delivery in a rat, pig, non-human primate, or human. A systematic 
study of small animal models designed to identify a ‘gold standard’ animal to predict 
delivery in large animals has not been reported; this would constitute a significant advance 
for the field. We anticipate these studies may reveal that a given nanomedicine behaves 
differently in different mouse strains. Mouse strain-specific delivery has been observed with 
a promising virus128–129 selected using a novel in vivo viral evolution based approach129. 
The correct pre-clinical animal model may also change with the desired tissue; as an 
example, compared to mice, ferrets are better models for human airborne viral 
transduction130. By testing thousands of nanomaterials in vivo and understanding how 
strain- and species-dependent biological factors influence delivery, these large datasets may 
help improve how well pre-clinical models predict delivery in humans.

Big datasets may also be useful for understanding how to design nanotechnologies. For 
example, a method for de novo protein design131 was recently reported; using machine 
learning, Butterfield et al. created a large library of protein-based nanocages (Fig. 5C). By 
applying selection pressures, nanocages were evolved using a ‘bottom-up’ approach to carry 
their own mRNA genome. Specifically, the authors performed multiple rounds of selection 
to identify the important nucleocapsid features for enhanced genome packaging, nuclease 
protection, and circulation time in vivo, without compromising the architecture of the 
structure. This was the first reported case of a non-viral container that can encapsulate its 
own genome and evolve in a complex extracellular environment, with the synthetic systems 
serving to rival the best recombinant adeno-associated viruses. Using a similar approach, 
scientists used computational modeling to design and evolve proteins with different 
functions, including dimerization132 and decreased side effects in a pre-clinical tumor 
model133. In particular, the authors \ designed a variant of interleukin-2 (IL-2) that would 
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bind its receptor on the target cell (T cells) without binding off-target receptors. The authors 
found that by redesigning one of the four helices on native IL-2 protein, they could increase 
on-target binding to the IL-2 receptor βγc heterodimer, while decreasing off-target binding 
to IL-2Rα (CD25), thereby driving toxicity. By redesigning these motifs, the authors 
improved IL-2 efficacy in mouse models of melanoma and colon cancer. Using a different 
approach, Guerette et al. coupled transcriptomics and proteomics data to design and predict 
the behavior of biomimetic materials134. The authors were able to rapidly process structural 
and functional novel high-performance eco-friendly materials pertaining to embryo 
protection, predation and adhesion. For example, they engineered silk-like materials from 
squid sucker ring teeth proteins that exceed the mechanical properties of many natural and 
synthetic polymers. Of particular note, the authors found a structural protein, suckerin-39, 
that surrounds squid sucker ring teeth and has high homology to silk, which would not have 
been discovered without the use of a combinatorial approach.

More recently, a series of papers have generated large biomaterial datasets without using 
NGS. In one example, quantitative structure-property relationship was retrospectively 
performed on a dataset describing nanoparticle formation; using this analysis, the authors 
found specific molecular variables associated with the drugs encapsulated in the 
nanoparticles were predictive of nanoparticle formation. Interestingly, the variables were 
related directly with the electronic configuration of the atoms making up the drug. Using 
only the molecular structure information of drug compounds, the authors rationally designed 
nanoparticles that delivered chemotherapeutics to tumors in mice135, exploiting caveolin-
dependent nanoparticle endocytosis. Specifically, the authors explored a number of different 
nanomaterial groups (e.g. detergents, azo dyes, and polyelectrolytes) and used their 
quantitative structure-nanoparticle assembly prediction model to predict, and then validate, 
whether 400 different hydrophobic drugs would formulate into nanoparticles. Taken 
together, these examples constitute an innovative approach to coupling computational 
techniques, experiments, and unbiased screens, in order to improve nanomaterial design. In a 
third example, Yamankurt et al. developed a high throughput method based on mass 
spectrometry to monitor how immune cells responded to spherical nucleic acid 
nanomedicines136. The authors designed a library of 960 nanomedicines, varying the 
nanoparticle core (e.g. cholesterol, phospholipid), oligonucleotide shell (e.g. phosphodiester 
or phosphorothioate backbone, and sequence), and peptide antigen (e.g. OVA or E7). Their 
high throughput cell toxicity assay led to several structure-function relationships. First, 
spherical nucleic acid nanomedicines elicit more immune activation than linear 
oligonucleotides, and linear oligonucleotide immune activation is dependent on what the 
oligonucleotide is conjugated to (e.g. cholesterol, DOPE) as well as its backbone. Notably, 
the authors used the data to ‘train’ a machine learning algorithm, in order to identify non-
linear property interactions (e.g. if there are 5 different properties, what is the interdependent 
effect of each property on the other). This is important because it can be difficult to decouple 
the effect of one property on another in a high-throughput screen where lots of variables are 
being changed, thus making it challenging to predict the biological response to a 
nanomedicine. Most recently, Rath et al. released a pre-print describing VSEPRnet, a 
method by which the physical and chemical traits of biomolecules are encoded in a way that 
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enables neural network algorithms to make predictions137. The authors used this approach to 
predict binding between small peptides and allele-specific MHC-Class-1 molecules.

One need in the emerging field of large datasets and nanomedicine is the development of 
selection pressures that can be used to isolate nanoparticles that have performed a desired 
function in vivo. In biological studies, selection pressures are often based on cell death / 
proliferation, or alternatively, on fluorescence of a reporter gene138–140. High throughput 
nanotechnology screens will require assays with their own robust selection pressures, 
including biodistribution, functional cytoplasmic delivery, nuclear delivery, immunogenicity, 
and others. These will all generate different readouts. For example, nanoparticle delivery can 
be classified as (i) non-functional biodistribution, and (ii) functional, cytoplasmic delivery. 
In (i) a nanomaterial adhered to a cell is not distinguished from one that gets endocytosed, 
degraded in a lysosome, or delivered to the cytoplasm. However, in (ii) a nanoparticle must 
reach the cytoplasm of a cell, which ensures that only cells functionally delivered to are 
analyzed. These nanomaterial selection pressures can then be sub-divided into (i) up, or (ii) 
down-screens. Cells functionally delivered to in an up-screen change from no signal to a 
strong ‘on’ signal, whereas cells functionally delivered to in a down-screen change from 
high signal to ‘low’ signal.

Finally, well-designed studies could help answer key questions pertaining to the biology of 
delivery. First, which molecules play a predominant role in delivery? Proteins and lipids 
affect delivery, but carbohydrates require further exploration. Second, is a nanoparticle’s 
delivery more likely to be due to a small number of master regulatory genes, or many genes 
acting in concert? Third, do lncRNAs and epigenetic modifications alter the cellular 
response to nanoparticles? Given that these molecules regulate many biological phenotypes5, 
we find it likely. Fourth, are there in vitro systems that efficiently recapitulate and predict in 
vivo delivery? Organ-on-chip systems may be poised to answer important biological 
questions. Finally, is there a ‘gold standard’ animal that can be used to predict delivery in 
large animals? The translation from delivery in small animal models (e.g. mice, rats) to 
efficient delivery in large animals (e.g. pigs, non-human primates, humans) is still largely 
unknown. The network analyses needed to answer these questions will be aided by 
multiomics. For example, sequencing technologies that concurrently measure mRNA 
expression and protein expression have been developed141. Multiomics analyses may also 
aid nanomedicines by improving the drugs nanomedicines are meant to deliver. For example, 
the efficacy of RNA therapies is strongly affected by chemical modifications to the RNA142. 
Transcriptomics can identify splicing patterns, as well as the frequency with which RNAs 
are affected by modifications. These modifications are known to affect maturation, folding, 
and metabolism143–145 of mRNAs; understanding the relationship between modifications 
and RNA transport could lead to nucleic acid therapeutics with improved safety profiles.

The interface between materials, medicine, and high-throughput sequencing marks a 
significant opportunity for researchers. To take full advantage of novel technologies, 
nanotechnologists will need to understand molecular biology, data analysis, and data 
visualization. Currently, scientists who design nanoparticles do not typically work alongside 
scientists who study omics-sized data sets. One way to accelerate the marriage of omics and 
nanotechnology is to teach concepts like PCR, primer design, sequencing preparation, PCA, 
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and biostatistics in standard engineering and chemistry curricula. Until that time, if a 
chemist, materials scientists, or nanomedicine scientist would like to initiate an omics based 
experiment, it will be important to consider the following steps. First, identify the types of 
data that are necessary. Is it important to understand the transcriptomic response, epigenetic 
response, proteomic response, or some combination thereof? Is it sufficient to collect these 
data from many cells, or is it important to measure single cells individually? Second, seek 
out statisticians and bioinformaticians, in order to design your experiment correctly. How 
many groups or experimental conditions should be analyzed? What type of data analysis and 
visualization will be required? What types of experimental and technical controls are needed 
in order to believe the results? Answering these five questions will not guarantee the 
experiment is a success, but it will improve the odds that the data can be interpreted. 
Scientists who embrace NGS and analytics will be positioning themselves at the forefront of 
innovative new approaches that could accelerate the development of new materials and 
broadly benefit precision medicine and human health.
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Figure 1. 
Nanoparticle delivery can be viewed as a complex phenotype affected by many cells and 

biomolecules. (A) Nanoparticles are (1) cleared by circulating immune cells and tissue 
resident immune cells. Due to their high surface area: volume ratio, nanoparticles interface 
with (2) lipoproteins and (3) other biomolecules that make up the protein corona. The 
corona, in turn, can (4) alter how nanoparticles bind target cells. Interestingly, depending on 
its composition, the nanoparticle corona can promote or inhibit cell targeting. While 
reaching target cells, nanoparticles also interact with (5) a dense ‘forest’ of cell surface 
glycoproteins and glycolipids, collectively termed the glycocalyx. Alternatively, 
nanoparticles may interact (6) directly with cell surface receptors. Nanoparticles can also 
exit the bloodstream; this process is affected by (7) the permeability of vascular endothelial 
cells. Within the target tissue, nanoparticles interact with (8) proteoglycans in the 

extracellular matrix (ECM), or (9) cells within the tissue itself. (B) DNA- and RNA-driven 
gene expression dictates nanoparticle behavior by controlling the synthesis and processing 
of proteins, sugars, and lipids. As a result, high throughput quantification of the 5 
biomolecules could improve our understanding of biological pathways that affect 
nanoparticle delivery. Two methods are typically used: next generation sequencing, which 
quantifies DNA and RNA, and mass spectroscopy, which quantifies lipids, carbohydrates, 
and proteins. The scale at which DNA and RNA can be analyzed is currently greater than the 
scale at which lipids, carbohydrates, and proteins can be analyzed.
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Figure 2. 
Transcriptomics can be used to study how cell respond to nanomaterials. (A) Gene 
expression can alter how nanoparticles interact with the cell surface, how endosomes mature, 
how nanoparticles are released from the endosome, and how the drug is processed after it is 
delivered into the cytoplasm. (B) To measure gene expression changes caused by 
nanomaterials, cells that do (and do not) uptake nanoparticles can be separated. Using RNA-
seq to compare these two populations of cells, individual genes and pathways to promote or 
prevent delivery can be identified. (C) Single cell RNA-seq (scRNAseq) may identify 
subpopulations of cells that respond to nanoparticles in a unique way. In this example, when 
analyzed with scRNA-seq, the expression of gene 1 and 2 does not change, relative to the 
analysis of many cells (depicted in (B)). By contrast, the expression of gene N varies 
significantly across individual cells in a way that cannot be quantified using bulk analysis.
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Figure 3. 
After generating large datasets, (A) data can be reduced to a smaller number of dimensions. 
This is done so data can be clearly visualized after identifying the most important variables 
in the experiment. (B) When reducing data dimensionality, selecting incorrect input 
variables can lead to images that contain clustered data when no clusters actually exist. In 
this example, varying the perplexity variable alters clustering. (C) Interpreting relationships 
between individual points in a t-SNE plot is not appropriate since the position of individual 
dots varies with each run of the analysis. Interpreting broad relationships from the data is 
appropriate.
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Figure 4. 
Heatmap generation and interpretation depends on the algorithms, conditions, and colors 
used. (A) The same color can look different when surrounded by different colors. (B) 
Heatmaps can be scaled by row or column. If scaling by row, colors can be compared within 
a row. If scaling by column, colors can be compared within the column. (D) Dendrogram 
clusters vary as a function of the normalization method and clustering algorithms.
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Figure 5. 
High throughput in vivo assays have been used to study nanomedicines. (A) In one example, 
nanoparticles were formulated to carry DNA barcodes. Nanoparticle 1, with chemical 
structure 1, was made to carry DNA barcode 1; nanoparticle N, with chemical structure N, 
was made to carry DNA barcode N. All N nanoparticles were administered to mice, cells of 
interest were isolated, and next generation sequencing was using to quantify delivery of all 
N nanoparticles simultaneously. (B) In another example, liposome 1 was formulated to carry 
DNA barcode 1 and a chemotherapy; liposome N was formulated to carry DNA barcode N 
and a chemotherapy. Tumor delivery was quantified by measuring live / dead cells isolated 
from the tumor. (C) In a third example, nanocages consisting of a different protein shell 
were encoded with mRNAs. The protein nanocages were administered to mice, and the 
effective nanocages were isolated from tissues. Sequencing was used to determine the 
mRNAs, and thus, by extension, the protein nanocages that survived in vivo.
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