
1652 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 51, NO. 6, NOVEMBER 2002

Using Learning Automata for Adaptive Push-Based
Data Broadcasting in Asymmetric

Wireless Environments
Petros Nicopolitidis, Georgios I. Papadimitriou, Senior Member, IEEE, and Andreas S. Pomportsis

Abstract—Push systems are not suitable for applications with
a priori unknown, dynamic client demands. This paper proposes
an adaptive push-based system. It suggests the use of a learning
automaton at the broadcast server to provide adaptivity to an
existing push system while maintaining its computational com-
plexity. Using simple feedback from the clients, the automaton
continuously adapts to the client population demands so as
to reflect the overall popularity of each data item. Simulation
results are presented that reveal the superior performance of
the proposed approach in environments witha priori unknown,
dynamic client demands.

Index Terms—Adaptive data broadcasting, asymmetric wireless
environments, learning automata.

I. INTRODUCTION

DATA broadcasting has emerged as an efficient way of
disseminating information over asymmetric wireless

environments [1], where client needs for data items are usually
overlapping. In such cases, broadcasting is an efficient solution,
since the broadcast of a single data item is likely to satisfy a
(possibly large) number of clients.

The three approaches for designing broadcast schedules are
pull, push, and hybrid. In pull systems (e.g., [2]), mobile clients
make requests via the uplink channel. The server uses these
requests to estimate the demand probability per data item and
schedules its broadcasts accordingly. This approach has the
advantage of adaptivity, since the server possesses knowledge
regarding client demands. However, it is not scalable, since
for large client populations, client requests will either collide
with each other or saturate the server. In push systems, there is
no interaction between the server and the mobile clients. The
server is assumed to have ana priori estimate of the demand
per information item and broadcasts items according to this
estimate. Thus, push systems are not adaptive to dynamic1

demands. However, they provide high scalability and client
hardware simplicity since the client does not need to include
packet transmission capability. Hybrid systems divide the
available downlink bandwidth into two modes: the periodic
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1Hereinafter, we use the termdynamicto characterize changing client demand
patterns with the nature of occurrence of these changes’ being unknown to the
broadcast server.

broadcast mode, in which the server pushes data periodically
to the clients; and the on-demand mode, which is used to
broadcast data explicitly requested by mobile clients. To our
knowledge, the only hybrid system that achieves adaptivity
is proposed in [3] and its derivation in [4]. However, hybrid
systems have to strike a careful balance between push and pull
modes and impose the needs for client transmission capability
and existence of a backchannel wide enough to carry client
requests.

Until now, research on push-based systems assumeda priori
knowledge of client demands. However, in today’s information
retrieval applications, overall client demands are likely to be
unknown and change with time. Such an example is the case
of flight information dissemination in an airport [5]. In such a
scenario, users coming to the airport will want information re-
garding their flight (e.g., exact hour of departure, possible de-
lays, etc.). A broadcast server should deliver data according to
overall client demands. For a specific flight, the demand is likely
to be in its peak a couple of hours before the flight’s departure.
For example, if our flight departs at 6 PM, early in the day the
demand will be very small, as few passengers are likely to come
to the airport five or six hours before their flight. At this time of
the day, the server should increase the frequency of data items
that concern other flights that leave in the near future. As the
time for the departure of our flight approaches, the demand for
information regarding it will grow due to the increasing number
of waiting passengers. Eventually, a few minutes after the depar-
ture of the flight, it will drop again. It can easily be seen that in
such an environment, overall client demands are neithera priori
known nor static.

This paper proposes an adaptive push-based system. It uses a
learning automaton at the broadcast server to provide adaptivity
to a nonadaptive (static) push approach [6] while maintaining its
computational complexity. Through a simple feedback from the
clients, the automaton continuously adapts to the overall client
population demands in order to reflect the overall popularity of
each data item.

The remainder of this paper is organized as follows.
Section II overviews the static approach to which our method
provides adaptivity. Section III briefly introduces learning
automata. Next, it presents our approach for using a learning
automaton as the core of the server adaptation mechanism.
Section IV presents simulation results that reveal the superiority
of the proposed approach in environments with dynamic client
demands. Section V concludes this paper.
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II. RELATED RESEARCH

To optimize performance, broadcast schedules must be pe-
riodic [7], and the variance of spacing between consecutive in-
stances of the same item must be reduced [8]. A number of push
systems appeared, all nonadaptive. Here we focus on [6], which
also produces periodic schedules (see [9]). It is based on the fol-
lowing arguments.

1) Schedules with minimum overall mean access time
are produced when the intervals between successive
instances of the same item are equal.

2) Under the assumption of equally spaced instances
of the same items, the minimum overall mean ac-
cess time occurs when the server broadcasts an item

with frequency being proportional to the factor
, where is the

demand probability for item, is the item’s length, and
is the probability that an item of lengthis received

with an unrecoverable error.
The algorithm operates as follows. Assuming thatis the

current time, is the time when item was last broadcast,
and the number of data items is , the broadcast scheduler
chooses to broadcast itemhaving the largest value of the cost
function ,

. For items that have not been previously broad-
cast, is set to 1. If the maximum value of is shared
by two or more items, the algorithm selects one of them arbi-
trarily. Upon broadcast of itemat time , is set to and
the algorithm proceeds to select the next item to broadcast. The
above discussion assumes a single broadcast channel. However,
an extension for operation in environments with more than one
channel is also presented in [6].

The above algorithm is of computational complexity.
To reduce its complexity, a scheme known as bucketing divides
the server’s data items into queues (buckets), with each bucket
containing items with close values of . For more details,
see [6].

A. The Motivation for Adaptive Push Systems

Existing push systems are useful only for static environments
since no means for updating item probabilities is provided. Fur-
thermore, pull and hybrid approaches have the disadvantages
mentioned in Section I. Thus, it would be beneficial to reach
a method that combines the advantages of the push and pull
approaches—scalability and adaptivity, respectively. To this
end, this paper enhances the nonadaptive method in [6] with a
learning-automaton adaptation mechanism. To our knowledge,
it is the first adaptive push-based system and provides both
scalability and adaptivity. As will be seen, adaptivity comes
at no expense over the computational complexity of [6] in the
server side and the complexity of mobile clients’ hardware. The
only extra functionality demanded in the client side regards the
transmission of a power-controlled feedback pulse.

III. T HE ADAPTIVE PUSH SYSTEM

A. Learning Automata

Learning automata [10] are mechanisms that can be applied
to learn the characteristics of a system’s environment. A

learning automaton is an automaton that improves its perfor-
mance by interacting with the random environment in which it
operates. Its goal is to find among a set ofactions the optimal
one, so that the average penalty received by the environment is
minimized. This means that there exists a feedback mechanism
that notifies the automaton about the environment’s response
to a specific action. The operation of a learning automaton
constitutes a sequence of cycles that eventually lead to min-
imization of average penalty. The learning automaton uses a
vector , which represents
the probability distribution for choosing one of the actions

at cycle . Obviously, .
The core of the operation of the learning automaton is the

probability updating algorithm, also known as the reinforcement
scheme, which uses the environmental response triggered
by the action selected at cycle to update the probability dis-
tribution vector . After the updating is finished, the automaton
selects the action to perform at cycle 1, according to the
updated probability distribution vector( 1). A general re-
inforcement scheme has the form of (1)

if

if (1)

The functions and are associated with reward and penalty
for action , respectively, and is a metric of the envi-
ronmental response, normalized in [0,1]. The lower the value
of , the more favorable the response. When takes
continuous values after normalization in the interval [0,1], the
automaton is known as an S-model.

Learning automata have been applied to a number of prob-
lems, including the design of self-adaptive medium access con-
trol (MAC) protocols [11], queueing systems, image compres-
sion, pattern recognition, and telephone-traffic routing [10].

B. The Adaptive Scheduling Algorithm

The broadcast schedule construction of [6] assumesa priori
knowledge of the client population demands for data items,
which leads to inferior performance in cases of dynamic
demands. However, the enhancement brought by the proposed
adaptive broadcast scheduling algorithm enables broadcast
schedule construction to adapt to changing demands of the
client population, thus resulting in superior performance in
these cases.

To this end, the proposed method suggests that the broadcast
server uses a learning automaton whose probability distribution
vector contains the server’s estimateof the actual demand

of the overall client population for each data item. The pa-
rameter is a metric that reflects the overall popularity of each
item at the client population and actually stands for the prob-
ability that when an item request is made by the client popu-
lation, this will be a request for item. For example, assume
a broadcast server having three items 1, 2, and 3 to broadcast
and a client population making item requests. Requests will be
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Fig. 1. Convergence of automaton estimation of the demand probabilities for pages one to four.

for one of items 1, 2, and 3. If the probabilities of a request’s
being a request for item 1, 2, or 3 are 60% 40%, and 0%, re-
spectively, then , , and . Obviously,
the higher the , the more requests will be made for itemand
thus the more popular itemwill be among the client popula-
tion. Clearly, and , where is the
number of items to be broadcast.

According to [6], the server chooses to broadcast page
having the largest value of the cost function. Our approach
extends this method: after broadcasting item, the server waits
for acknowledgment from all clients that were satisfied by this
broadcast. A client that was waiting for itemacknowledges
the reception via a short feedback pulse. The aggregate received
signal strength at the server is obviously the environmental
response for the broadcast of pageand will be used by the
automaton to update the probability distribution vector. It is
noted that the adaptive broadcast scheduling algorithm takes
into account transmission errors due to the use of in
function .

However, the signal strength of each client’s pulse at the
server depends on its relative distance from the server and is of

dynamic nature due to the mobility of the clients. If the path
loss is a 1 -type loss with a typical , the feedback
pulse of clients located close to the broadcast server will be
orders of magnitude stronger than those of clients further away.
To prevent the clients close to the server from dominating
the voting, we introduce a power-control mechanism on the
returning pulses. Thus, every page can be broadcast including
information about the signal strength used for the page’s
transmission. Due to path loss, clients will receive the page
and measure a lower signal strength at reception. Based on
the information on the signal strength at which the page was
originally transmitted and the signal strength measured
at the page reception (obviously ), clients will set
the strength of their feedback pulse to . Using this form
of power control, the contribution of each client’s feedback
pulse at the server will be of the same order of magnitude,
irrespective of the client–server relative position.

The probability distribution vector at the automaton deter-
mines the demand probability estimate of each information
item. Using this scheme, the acknowledging clients’ pulses add
at the server and the automaton uses the strength of the received
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pulse2 to update the server’s estimate of page probabilities.
Thus, for the next broadcast, the server chooses which page to
transmit by taking into account the updated values of the page
probability estimates . The way the automaton’s estimation
of page probabilities is updated through client feedback is
described in Section III-C.

C. The Probability Updating Scheme

To provide adaptivity to the static method in [6], our approach
suggests that the server use the probability updating scheme of
an S-model linear reward minus inactionSL learning au-
tomaton [10]. When an unfavorable response is received from
the environment for the broadcasting of page, the probability
estimates of the pages do not change. Obviously, an unfavor-
able response results when the broadcast of a page does not sat-
isfy any client. Following a favorable response, however, the
probability estimate of pageis increased. The probability up-
dating scheme of (2) is employed after the broadcast of page
(assuming it is the server’sth broadcast)

(2)

Equation (2) stems from (1) by setting
and , where is a parameter that governs the
speed of the automaton convergence. The selection procedure
for a value of reflects the classic problem of speed versus ac-
curacy. The lower the value of, the more accurate the estima-
tion made by the automaton, a fact however that comes at the
expense of convergence speed. It holds that and

, , where is the number of
the server’s pages. Should the probability estimateof a page

become zero, then would be very close to zero. However,
the page, even if unpopular, still needs to be transmitted since
some clients may request it. Moreover, the dynamic nature of
client demands might make this page popular in the future. The
role of parameter is to prevent the probabilities of nonpopular
pages from taking values in the neighborhood of zero in order to
increase the adaptivity of the automaton. Upon reception of the
sum of the acknowledging, power-controlled client pulses, this
sum is normalized in the interval [0,1]. represents the nor-
malized environmental response after the server’sth broadcast.
A value of that equals one represents the case where no
client acknowledgment is received. Thus, the lower the value of

, the more clients were satisfied by the server’sth broad-
cast.

Using the reenforcement scheme of (2), the item probabilities
estimated by the automaton converge near the actual demand
probabilities for each page, making this approach attractive for
dissemination applications with dynamic client demands. This
convergence is shown in Fig. 1 for , .
In this figure, for each broadcast we plot the convergence of
the page probability estimates toward the actual overall demand
probabilities for pages one to four, in a simulation of a sample

2The addition of the signal strengths is also mentioned in [12] as a way of
distinguishing wireless transmission errors from packet collisions.

Fig. 2. Convergence of automaton estimation for page 1. The straight plot
shows convergence when the number of clients between successive estimations
is the same. The starred plot shows convergence in the case of the client
population’s being reduced by 50% after about 800 page transmissions.

scenario comprising a database of four pages with lengths uni-
formly distributed in [1, , 10], 10 000 clients, and a wireless
environment in which broadcast items are subject to errors at
reception (the way that errors occur is described in Section IV).
The overall client demands are initially unknown to the server.
They are also of dynamic nature: At some time instant, the initial
overall demand probability for each page (solid line) changes
to a new one (dashed line). It is clearly seen that convergence
of page probabilities estimated by the automaton to the overall
client demand for these pages is achieved.

To better understand the behavior of the reenforcement
scheme, we detail the first probability update for the simulation
of the above scenario. For the server’s four pages ,

, , , , , ,
, and , where

is the length of page, is its actual overall probability of
demand among the clients, and is the server’s estimate of
the demand probability for pageto be used for the selection
of the page for the th broadcast. Furthermore, denotes
the time that item was last broadcast. As stated in Section II,
the values for are initialized to 1. Since is largest
for , page 1 is broadcast and is set to zero. The
transmission of page 1 triggers a value of .
Using the reenforcement scheme of (2), the server updates its
estimates of the pages’ demand probabilities to ,

, , and , which
will then be used for the selection of the page for the server’s
second broadcast.

The normalization procedure in the calculation of im-
plies that there must exist a mechanism that enables the server to
possess an estimate of the number of clients under its coverage.
This can be achieved by broadcasting a control packet, which
forces every client in the cell to respond with a power-controlled
feedback pulse. The server uses the aggregate incoming pulse

to estimate how many clients are within its coverage area.
Then, upon reception of an aggregate feedback pulse of strength

after the server’s th broadcast, is calculated as .
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Fig. 3. Diagram of the simulation process.

The estimation process can occur at regular time intervals (e.g.,
after the broadcast of some hundreds of pages), with its over-
head being the broadcast of a unit-length page. The simulation
results in Section IV show that such an overhead is negligible
due to the superior performance of the adaptive approach.

The estimation of clients at regular time intervals means
that between two consecutive estimations, the broadcast server
may for some time possess imprecise knowledge regarding the
number of clients within the cell. Thus, we define that clients
arriving at the cell are allowed to send feedback for received
pages only after they have joined the process for the estimation
of number of clients within the cell. This can be seen as a
kind of registration aiming to maintain the precision of the
environmental response in cases of an increasing number of
clients between consecutive estimations. On the other hand, a
decreasing number of clients between consecutive estimations
leads to a lower value of and thus . This can be
seen as a temporary reduction of the adaptation parameter,
leading to slower convergence of the automaton. To estimate
the effect of this reduction on the protocol’s performance,
we plot in Fig. 2 the convergence of the page probability

estimate toward the actual overall demand probabilities for
page 1 in a simulation of the above-mentioned sample database
scenario. In Fig. 2, two plots appear: The first (straight) shows
convergence when the number of clients between successive
estimations is the same. In the second plot (stars), just before
the overall demand for page 1 lowers to about zero (dashed
line), the client population is uniformly reduced by 50%. It can
easily be seen that although at a slower rate, convergence to the
overall demand probability of the remaining client population
is still achieved.

The probability updating scheme of (2) is of com-
plexity. Therefore, the adaptive method maintains the
complexity of the static method in [6]. The bucketing scheme
would not reduce complexity in the adaptive method, since due
to the use of the probability updating scheme, complexity would
remain .

IV. PERFORMANCEEVALUATION

Using simulation, we compared the proposed adaptive ap-
proach against the nonadaptive (static) approach of [6] in envi-
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ronments characterized by unknown, dynamic client demands.
In the static method, the server always broadcasts the entire
range of its pages assuming equiprobable demand per page,
since this is the best it can do without knowledge of the nature
of overall client demands.

The reason for using the method of [6] for determining the ef-
ficiency of the adaptive method is twofold: a) determine its per-
formance increase under dynamic client demands due to incor-
poration of adaptivity and b) compare against a pure push-based
method and not against hybrid or pull methods, since we con-
sider clients that do not have the ability of submitting requests
to the server. This is not the case with pull and hybrid systems,
which need a backchannel wide enough to submit data requests
to the server.

A. Server Model

We consider a server that contains a database ofpages.
The server is unaware of the client population demands, so
initially every page has a probability estimateof 1 . In
the static method, the server always broadcasts pages assuming
equiprobable demand, whereas in the adaptive method, page
probabilities are updated according to the proposed scheme.
Page lengths vary from to , and two cases
are considered [6]: a) random distribution, where page lengths
are random integers uniformly distributed in ,
and b) increasing distribution, where the lengthof a page
is , where
round returns a rounded version of.

B. Client Model

Clients are assumed to have no cache memory, as in [6].
Every client is initially set to access server pages in the interval
[1, Range], with Range . All pages outside this in-
terval have a zero demand probability at the client. This page
interval consists of an integral number ofregions with each
region containingRSizepages. Pages inside the same region
have a same demand probability of , where

RSize , and is a param-
eter named access skew coefficient. This is the Zipf distribution,
used in other relevant papers as well [1], [6]. For small values of
RSizetogether with large values of, the Zipf distribution pro-
duces increasingly skewed demand patterns and can thus model
commonality in client demands.

To simulate some disagreement among the demands of dif-
ferent clients, we introduce the parametersDevandNoise. For
every client, a coin toss, weighted byDev, is made. If the out-
come of the toss states that the client is to deviate from the initial
overall client demand, then a new demand pattern for this client
is generated: with probabilityNoise,the demand probability of
each page in the range of pages accessed by the client is swapped
with that of another page selected uniformly from the interval
[1, ].

C. The Simulation Environment

We performed our experiments with an event-driven simu-
lator coded in . The simulator modelsClNummobile clients,

the broadcast server, and the server-client links as separate enti-
ties. Fig. 3 shows a diagram describing the simulation process.
To simulate propagation loss, we assume that mobile clients are
uniformly distributed inside a circular cell of radius. Thus, the
probability of a client’s being at radiusis 2 . We assume
that the broadcast server’s antenna is at the center of the circular
cell and a path-loss model of 1 , where is the distance be-
tween the client and the server’s antenna. To simulate client mo-
bility, we assume that clients remain in a position for intervals
following an exponential distribution with meanpages. After
spending its time in a certain position, a client is placed in a
new position at radiuswith probability 2 . Clients gen-
erate requests according to their demand patterns. The broadcast
server schedules broadcasts according to the automaton’s esti-
mates of the page probabilities and the cost function , and
updates its estimation of s after receiving the aggregate feed-
back pulse for the broadcast of an item. The pages broadcast
are subject to reception errors, with unrecoverable errors per in-
stance of a page occurring according to a Poisson process with
rate , as in [6].3 Thus, is the probability that
a page of length is received with an unrecoverable error. For
the case of two broadcast channels, we assume thatis the
same for both channels.

The simulation runs until at least requests are satisfied at
each client. Then, the demand per client changes, mimicking dy-
namic environments, and the simulation proceeds with the new
demands active. This is repeated times. The overhead due
to the duration of the feedback pulse and the signal propaga-
tion delay is considered to be small compared to the page trans-
mission time (parameter ), as would happen in low-speed
broadcasting applications confined in an area of several kilome-
ters.

D. Simulation Results

The simulation results presented in this section were obtained
with the following parameters values: ,

, , , , ,
, , , and . Figs. 4–9 display simu-

lation results for the case of a single broadcast channel. Fig. 10
displays results for the case of two broadcast channels. For page
lengths following the random distribution, Figs. 4–6 display re-
sults for values ofDevbeing 0, 0.15, and 0.6, respectively. For
page lengths that follow the increasing distribution, Figs. 7–9
do the same. In each of these figures, three pairs of plots appear,
with each pair comparing the performance of the adaptive ap-
proach (dashed plots) to that of the nonadaptive approach (solid
plots) for a different scenario. The three scenarios highlighted
in the figures are , with Range , RSize ; with
Range , RSize ; and with Range , RSize .

Before discussing the performance characteristics of the
adaptive scheme, we would like to explain those of the static
scheme.

In the case of random length distribution (Figs. 4–6), we ob-
serve a decreasing delay of the static schemes for large values

3This assumption stems from the fact that although errors in wireless links
are of bursty nature, in a typical broadcast schedule consecutive instances of
the same item will be separated in time; thus errors in different instances of the
same data item are independent. For more details, see [13].
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Fig. 4. Overall mean access time in unit pages versus access skew coefficient
� and using random length distribution (parameterDev is set to 0.0).

Fig. 5. Overall mean access time in unit pages versus access skew coefficient
� and using random length distribution (parameterDev is set to 0.15).

of in and . This is due to the fact that for large values
of , the demand skew is so big that it makes the clients’ de-
mand probability for all pages practically zero, except for the
demand for the first page. In our experiments with random page
lengths, the length of the first page was one. In the case of
and with Dev and large , all clients select this page
almost every time. Due to a) the small delay for page 1 transmis-
sion and b) the fact that pages appear in the broadcast with fre-
quency inversely proportional to the square root of their length
(see Section II), for large values of, clients in and gen-
erally have to wait less time to receive page 1, a fact that re-
sults in a decrease of the overall delay. For increasing values
of Dev, this delay decrease for the static scheme is not so big,
since for a percentageof the client population the
most popular page will be a larger one, due to the previously de-
scribed swapping procedure used to introduce disagreement in
client demands. The static scheme in is not subject to this

Fig. 6. Overall mean access time in unit pages versus access skew coefficient
� and using random length distribution (parameterDev is set to 0.6).

Fig. 7. Overall mean access time in unit pages versus access skew coefficient
� and using increasing length distribution (parameterDev is set to 0.0).

performance decrease, since the use of RSize produces a
less skewed demand pattern. As a result, for large values of,
clients in select among the first ten equiprobable pages and
not only the first one. Since a random length distribution is used,
some of these pages will be larger than the first one, yielding a
nondecreasing delay.

In the case of increasing length distribution (Figs. 7–9), the
decreasing delay of the static scheme for large values ofin

can be explained using the above reasoning. The same kind
of reasoning can explain the difference in mean access time be-
tween and , for small values of in the static case.
Since we use an increasing length distribution, the use in
and of Range leads the clients to select among the
first 100 pages of the server’s database, which are of length of
at most three. On the other hand, for small values ofin , all
the pages in the server’s database are almost equiprobably se-
lected by the clients. Since, according to Section II, small-length
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Fig. 8. Overall mean access time in unit pages versus access skew coefficient
� and using increasing length distribution (parameterDev is set to 0.15).

Fig. 9. Overall mean access time in unit pages versus access skew coefficient
� and using increasing length distribution (parameterDev is set to 0.6).

pages are more frequently transmitted than larger ones, clients
that select only among small pages will get more requests sat-
isfied within a period of the static broadcast and consequently
experience a lower access time. Furthermore, the delay for these
pages’ transmission is small. These arguments explain the low
delay values of the static broadcast schemes inand for
low values of . Such a behavior is not observed in the static
schemes for random page-length distributions. This is because
the first 100 pages are of lengths uniformly distributed in the
interval [1, , 10] and not just of small lengths.

Regarding the adaptive scheme, we observe in Figs. 4–9 its
superiority over the static one. The main conclusions that can
be drawn from these results follow.

When all clients follow the same access pattern (Dev ;
Figs. 4 and 7), the performance of and is at least 3.5 times
better than that of the corresponding static scheme. This per-

Fig. 10. Overall mean access time in unit pages versus the probability of
listening to channel 1� when using the random length distribution in the case
of two available broadcast channels.� = � = (1�� )=2.

formance improvement decreases for increasing values ofDev.
However, even in the case of Dev (Figs. 6 and 9), the adap-
tive schemes are in most cases at least 15% faster than the cor-
responding static schemes.

Our scheme is useful even in cases of clients that access sub-
sets of the server’s database with demand patterns close to being
uniform (small values of ). This can be seen in Figs. 4–9 for

and , where Range . Even though this demand tends
to be uniform for small , our scheme works best since it noti-
fies the server to broadcast only the demanded items. For small
values ofDev,the performance increase is bigger, as the swap-
ping procedure will affect the demand of few clients. Thus, the
increased commonality in client demands for pages in [1,,
100] increases performance. Clearly, the efficiency of the adap-
tive method for and exists for increasing values of
as well.

For small values of , ’s performance is close to that of
the corresponding static scheme in Figs. 4–9. This is due to the
fact that in , which means that clients pick
up pages from the entire database of the server. Furthermore,
this demand pattern for decreasing values ofleads to an equi-
probable probability distribution for the demand of the server’s
pages. Thus, for small, the adaptive broadcast schedule for

tends to the static one produced for equi-probable pages.
For increasing values ofhowever, ’s performance increases
significantly.

We also simulated the static and adaptive scheme forand
in the case of two available broadcast channels. For

we simulated and for Devof 0.0 and 0.15, respectively.
We assume that a client is capable of listening to channel 1,
channel 2, or both of these channels with probabilities, ,
and , respectively. Obviously, . We
set [6]. For various values of ,
the superiority of the adaptive scheme over the static schemes is
clearly seen in Fig. 10. This superiority increases for increasing
values of .
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Based on the above discussions, the main observations that
point out the significance of the proposed adaptive approach in
terms of performance are the following.

1) In cases of applications that access the entire database
of the server, the performance of the adaptive scheme is
significantly improved over that of the static scheme, for
increasing commonality in client demands (increasing
and decreasingDev).

2) The adaptive scheme is also superior to the static scheme,
in cases of applications where clients access pages in sub-
sets of the database, with demand patterns close to being
uniform. Of course, this superiority also exists for all
cases where clients access pages in database subsets with
medium and highly skewed demand.

3) The performance efficiency of the adaptive scheme also
holds when two broadcast channels are used.

V. CONCLUSION

This paper proposes an adaptive push system, which uses
a learning automaton at the broadcast server. After an item’s
broadcast, each client waiting for this item acknowledges the
reception via transmission of short, power-controlled feedback
pulse. The acknowledging clients’ pulses add at the server, and
the automaton uses the strength of the received pulse to update
the page probability estimates. These converge to the actual de-
mand probability for each page, making this approach attractive
for dissemination applications with dynamic client demands.
The method is incorporated into a static push system [6]. De-
spite the added efficiency, it maintains the complexity of
[6]. Presented simulation results reveal efficient operation under
dynamic client demands. In the future, we plan to investigate
an extension of the adaptation method utilizing feedback pulses
that arrive with different strengths at the receiver in order to sup-
port cases where client requests are subject to deadlines or ap-
plications with data items of different priorities.
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