Using Leases to Support Server-Driven Consistency
in Large-Scale Systerms

Jian Yin, Lorenzo Alvisi, Michael Dahlin, and Calvin Lin
Computer Sciences Department
University of Texas at Austin

Abstract Client-driven protocols force caches to make a difficult
choice. They must either poll the server on each access

This paper introducesolume leasess a mechanism to cached data or risk supplylng incorrect data. The first
for providing cache consistency for large-scale, geograph Option, polling on each read, increases both the load on
ically distributed networks. Volume leases are a variation the server and the latency of each request; both effects can
of leases, which were originally designed for distributed bPe significant in large scale systems because servers sup-
file systems. Using trace-driven simulation, we compare Port many clients and polling latencies can be high. The
two new algorithms against four existing cache consis- Other option, periodic polling, relaxes consistency seman
tency algorithms and show that our new algorithms provide tics and allows caches to supply incorrect data. For ex-
strong consistency while maintaining scalability and faul ~ ample, web browers account for weak consistency through
tolerance. For a trace-based workload of web accesses, @ human-based protocol in which users manually press a
we find that volumes can reduce message traffic at servers ‘reload” button when they detect stale data. Weak consis-
by 40% compared to a standard lease algorithm, and that tency semantics may be merely annoying to a human, but
volumes can considerably reduce the peak load at servers they can cause parallel and distributed programs to com-

when popular objects are modified. pute incorrect results, and they complicate building aggre
sive caching or replication hierarchies because reptinati

is not transparent to the application.

Server-driven protocols introduce three challenges of
their own. First, strong consistency is difficult to maimtai
in the face of network or process failures because before
modifying an object, a server using these protocols must
contact all clients that cache that object. If there are many
cached copies, it is likely that at least one client will be
unreachable, in which case the server cannot complete the
write without violating its consistency guarantees. Sec-
ond, a server may require a significant amount of memory
to track which clients cache which objects. Third, send-
ing cache invalidation messages may entail large bursts of
server activity when popular objects are modified.

In distributed file systems, the problems of server
driven protocols were addressed by using leases [5], which
specify a length of time during which servers notify clients
LU g of modifications to cached data. After a lease’s timeout ex-
servers to determine if cached objects are curreisenrer- pires, clients must renew the lease by sending a message to
driven protoc_ols, in which servers notlfy clients when data iha server before they may access the cached object. Leases
change. In either case, the challenge is to guarantee that &maintain strong consistency while allowing servers to make
client read always returns the result of the latest complete ,,qress even if failures occur. If a server cannot contact
write. Protocols that achieve this are said to be strongly 5 gjient, the server delays the write until the unreachable
consistent. client's lease expires, at which time it becomes the clgent’

*This work was funded in part by a NSF CISE grant #CDA-9624082 €sponsibility to contact the server. Furthermore, leases
and by gifts from Novell and Sun Microsystems. free servers from notifying idle clients before modifying

1 Introduction

As valuable information become increasingly avail-
able through wide area networks, users will seek to use it
in more elaborate ways. For example, although the HTTP
protocol was initially developed for disseminating slowly
changing scholarly and technical information, it is now of-
ten used to distribute quickly changing commercial ser-
vices and news updates. In the future, we expect appli-
cations that manipulate distributed data to extend beyond
human-driven browsers to include program-driven agents,
robots, and data miners that will place new demands on
the data-distribution infrastructure. These new appbeest
motivate the use of caching and cache consistency.

Cache consistency can be achieved through either
client-drivenprotocols, in which clients send messages to

an object; this reduces both the size of the server state and
the load sustained by the server when reads and writes are
bursty.

Although leases provide significant benefits for file
system workloads, there are reasons to believe that they
may be less effective in a wide area network (WAN). To
amortize the cost of renewing a lease across multiple reads,
a lease should be long enough that in the common case the
cache can be accessed without a renewal request. Unfor-
tunately, at least for browser workloads, repeated acsesse
to an object are often spread over minutes or more. When
lease lengths are shorter than the time between readss lease
reduce to client polling. On the other hand, longer lease
lengths reduce the three original advantages of leases.

In this paper, we show howolume leasegestore the
benefits of leases for WAN workloads. Volume leases com-
bine short leases on groups of files (volumes) with long
leases on individual files. Under the volume leases algo-
rithm, a client may access a cached object if it holds valid
leases on both the object and the object’s volume. This
combination provides the fault-tolerance of short leages b

Variable Meaning

t timeout for an object

ty timeout for a volume

d time servers store state for inactive clients

R frequency objecb is read

14 # active objects per volume

Clot # clients with a copy of objeai

Co # clients with lease on objeeot

Cy # clients with lease on volume

Cy # clients whose volume leases expired
< d seconds ago.

size(z) bytes of server state to suppeartlients

Figure 1: Definition of parameters in Table 1

2 Traditional consistency algorithms

This section reviews four traditional cache consistency
algorithms. The first two-Poll Each ReadindPoll—rely
on client polling. The remaining algorithmsSallbackand
Lease—are based on server invalidation. In describing each
algorithm we refer to Table 1, which summarizes key char-
acteristics of each of the algorithms discussed in thispape
including our two new algorithms. We also refer to Fig-
ure 1, which defines several parameters of the algorithms.

cause when clients become unreachable, a server may mod-

ify an object once the short volume lease expires. At the
same time, the cost of maintaining the leases is modest be-

cause volume leases amortize the cost of lease renewal over

a large number of objects.

This paper evaluates the performance of volume leases
using trace-based simulation. We examine two variations
of volume leases: volume leases, and volume leases with
delayed invalidations. In the latter algorithm, servers de
fer sending object invalidation messages to clients whose
volume leases have expired. We compare these algo-
rithms with three traditional consistency algorithmseali
polling, server invalidations, and server invalidationgw
leases. Our simulations demonstrate the benefits of vol-
ume leases. For example, volume leases with delayed
invalidations can ensure that clients never see stale data
and that servers never wait more than 100 seconds to per-
form a write, all while using about the same number of
messages as a standard invalidation protocol that can stall
server writes indefinitely. Compared to a standard object
lease algorithm that also bounds server write delays at 100
seconds, this volume algorithm reduces message traffic by
40%.

The rest of this paper is organized as follows. Sec-
tion 2 describes traditional algorithms for providing con-
sistency to cached data, and Section 3 describes our new
volume lease algorithms. Section 4 discusses our exper-

2.1 Poll each read

Poll Each Reads the simplest consistency algorithm.
Before accessing a cached object, a client asks the object’s
server if the object is valid. If so, the server responds-affir
matively; if not, the server sends the current version.

This algorithm is equivalent to always having clients
read data from the server with the optimization that un-
changed data is not resent. Thus, clients never see stale
data, and writes by the server always proceed immedi-
ately. If a network failure occurs, clients unable to cohgac
server have no guarantees of the validity of cached objects.
To cope with network failures, clients take application-
dependent actions, such as signaling an error or returning
the cached data along with a warning that it may be stale.

The primary disadvantage of this algorithmis read per-
formance, as all reads are delayed by a roundtrip message
between the client and the server. In addition, these mes-
sages may impose significant load on the servers [8].

2.2 Poll

Poll is based orPoll Each Readbut it assumes that
cached objects remain valid for at leasimaeoutperiod oft
seconds after a client validates the data. Hence, whef
Poll is equivalentPoll Each Read Choosing the appropri-
ate value oft presents a trade-off: On the one hand, long

imental methodology, and Section 5 presents our experi- timeouts improve performance by reducing the number of

mental results. After discussing related work in Section 6,
Section 7 summarizes our conclusions.

reads that wait for validation. In particular, if a clientac
cesses data at a rate Bfreads per second and the timeout

Reads Writes State
Expected stale timg Worst stale time Read cost Write cost | Ack wait delay | Server state
(seconds) (seconds) (messages) (messages (seconds) (bytes)
Poll Each Read 0 0 1 0 0 0
Poll i t min(4,1) 0 0 0
Callback 0 0 Ciot [e'e] Size(ctot)
Lease 0 0 = Co t size(Co)
Volume Leases 0 0 W + 5 Co min(t, ty) size(Cy)
cev oY]
1 1 . .
Vol. Delay Invalg, ¢., d) 0 0 72%‘/(}%”%) + 53 Cy min(t,ty) size(Cyq)

Table 1: This table shows the cost of maintaining consistenc y for an object o using each of the algorithms. Columns
correspond to key figures of merit: the expected stale timiedicates how long a client expects to read stale data after

o is modified, assuming random reads, random updates, and fail ures. The worst stale timéndicates how long o can
be cached and stale assuming that (1) o was loaded immediately before it was modified and (2) a networ k failure
prevented the server from contacting the client caching o. The read costshows the expected fraction of cache reads
requiring a message to the server. The write costindicates how many messages the server expects to send to not
clients of a write. The acknowledgment wait deldydicates how long the server will wait to write if it cannot i
a cache. The server stateolumn indicates how many clients the server expects to trac k for each object.

ify

nvalidate

is long enough to span several reads, then ghjyof the 24 Lease
client’s reads will require network messages (see Table 1).
On the other hand, long timeouts increase the likelihood
that caches will supply stale data to applications. Gwertz- Cheriton proposetlease[5]. To read an object, a client
man and Seltzer [7] show that for web browser workloads, first acquires deasefor it with an associated timeout
even for a timeout of ten days, server load is significantly The client may then read the cached copy until the lease
higher than under th€allback algorithm described be- expires. When an object is modified, the object’'s server
low. The same study finds that an adaptive timeout scheme invalidates the cached objects of all clients whose leases
works better than static timeouts, but that when the algo- have not expired. To read the object after the lease expires,

rithm’s parameters are set to make the adaptive timeout al- a client first contacts the server to renew the lease.

To address the limitations o€allback Gray and

gorithmimpose the same server loadCadlback about 4%
of client reads receive stale data.

If servers can predict with certainty when objects will
be modified, therPoll is ideal. In this case, servers can tell
clients to use cached copies of objects until the time of the
next modification. For this study, we do not assume that
servers have such information about the future.

2.3 Callback

In a Callbackalgorithm [8, 12], servers keep track of
which clients are caching which objects. Before modifying
an object, a server notifies the clients with copies of the ob-
ject and does not proceed with the modification until it has
received an acknowledgment from each client. As shown
in Table 1,CallbacKs read cost is low because a client is
guaranteed that a cached object s valid until told othexwis
However, the write cost is high because when an object is
modified the server invalidates the cached objects, which
may require up t&’;,; messages. Furthermore, if a client

Leaseallows servers to make progress while maintain-
ing strong consistency despite failures. If a client or net-
work failure prevents a server from invalidating a client’s
cache, the server need only wait until the lease expires be-
fore performing the write. By contrastallbackmay force
the write to wait indefinitely.

Leases also improve scalability of writes. Rather than
contacting all clients that have ever read an object, a serve
need only contact recently active clients that hold leases
on that object. Leases can thus reduce the amount of state
that the server maintains to track clients, as well as the cos
of sending invalidation messages [10]. Servers may also
choose to invalidate caches by simply waiting for all out-
standing leases to expire rather than by sending messages
to a large number of clients; we do not explore this op-
tion in this study.Leasepresents a tradeoff similar to the
one offered byPoll. Long leases reduce the cost of reads
by amortizing each lease renewal ov&r ¢ reads. On the
other hand, short leases reduce the delay on writes when
failures occur.

As with polling, a client that is unable to contact a
server to renew a lease knows that it holds potentially stale
data. The client may then take application-specific actions
such as signaling an error or returning the suspect data

has crashed or if a network partition separates a server from along with a warning. However, unlikeoll, Leasenever

a client, then a write may be delayed indefinitely.

lets clients believe that stale objects are valid.

3 Volumeleases objects for which the client holds a valid object lease. Our
algorithm thus maintains at each servetameachableset
Traditional leases provide good performance when the that records the clients that have not acknowledged, within
cost of renewing leases is amortized over many reads. Un- some timeout period, some of the server’s invalidation mes-
fortunately, for many WAN workloads, reads of an object sages.
may be spread over seconds or minutes, requiring long After receiving a read request or a lease renewal re-
leases in order to amortize the cost of renewals [7]. To questfrom a clientin its Unreachable set, a server removes
make leases practical for these workloads, our algorithms the client from its Unreachable set, renews the client’s vol
use a combination obbject leaseswhich are associated ume lease, and notifies the client to renew its leases on any
with individual data objects, angblume leaseswvhich are currently cached objects belonging to that volume. The
associated with a collection of related objects on the same client then responds by sending a list of objects along with
server. In our scheme a client reads data from its cache only their version numbers, and the server replies with a mes-
if both its object and volume leases for that data are valid, sage that contains a vector of object identifiers. This mes-
and a server can modify data as soon as either lease hassage (1) renews the leases of any objects not modified while
expired. By making object leases long and volume short, the client was unreachable and (2) invalidates the leases of
we overcome the limitations of traditional leases: long ob- any objects whose version number changed while the client
ject leases have low overhead, while short volume leases was unreachable.
allow servers to modify data without long delays. Fur-
thermore, if there is spatial locality within a volume, the Data Structures

. . . Volume A volume v has the following attributes
overhead of renewing short leases on volumes is amortized id = unique identifier
; ; : ; H objects = set of objects in v
across many Ob_JeCtS' This section _fIrSt descrlb_es\/tjrle epoch = volume epoch number (incremented on server reboot)
ume Leasealgorithm and then examines a variation called expire = timeft<>y which all curre;ntflealsgsI on v will have exgire
. . . at =setof(client, expire) of valid leases on v
Volume Leases with Delayed Invalidations unreachable = set of clients whose volume leases have dxpire
and who may have missed object invalidation messages
3.1 Thebasc algor ithm Object An object o has the following attributes
id = unique identifier
. data =the object’s data
Figures 2, 3, and 4 show the data structures used by the version = version number))
Vol L | ith h id fth | ith expire =time by which all current leases on o will have exgire
olume Leasealgorithm, the server side of the algorithm, at = set of{client, expire) of valid leases on o
and the client side of the algorithm, respectively. Thedasi volume = volume

algorithm is simple.

Reading Data. Clients read cached data only if they hold ~ Figure 2: Data Structures for Volume Lease algorithm.
valid object and volume leases on the corresponding ob-

jects. Expired leases are renewed by contacting the appro-

priate servers. When granting a lease for an ohjdcta 3.1.2 Handling server failures

cliente, if o has been modified since the last timbeld a
valid lease o then the server piggybacks the current data
on the lease renewal.

When a server fails we assume that the state used to main-
tain cache consistency is lost. In LAN systems, servers of-
ten reconstruct this state by polling their clients [12].isTh
Writing Data. Before modifying an object, a server approach is impractical in a WAN, so our protocol allows
sends invalidation messages to all clients that hold valid a server to incrementally construct a valid view of the ob-
leases on the object. The server delays the write until it ject lease state, while relying on volume lease expiration
receives acknowledgments from all clients, or until the vol ~ to prevent clients from using leases that were granted by
ume or object leases expire. After modifying the object, the a failed server. To recover from a crash, a server first in-
server increments the object’s version number. validates all volume leases by waiting for them to expire.
This invalidation can be done in two ways. A server can
save on stable storage the latest expiration time of any vol-
ume lease. Then, upon recovery, it reads this timestamp
Client crashes or network partitions can make some clients and delays all writes until after this expiration time. Ailte
temporarily unreachable, which may cause problems. Con- natively, the server can save on stable storage the duration
sider the case of an unreachable client whose volume leaseof the longest possible volume lease. Upon recovery, the
has expired but that still holds a valid lease on an object. server then delays any writes until this duration has passed
When the client becomes reachable and attempts to renew Since object lease information is lost when a server
its volume lease, the server must invalidate any modified crashes, the server effectively invalidates all objectdsa

3.1.1 Handling unreachable clients

Server writesobject o

for al (client, expire) € o.at

if ezpire > currentTime A client ¢ o.volume.unreachable
To_contact < To_contact U client

send(INVALIDATE, o.id) toall clients inT'o_contact

T < min(o.volume.expire, o.expire)

if Ty < msgTimeout
T¢ < msgTimeout

while (T'y > currentTime) and (['o_contact # @) do
receive(ACK_INVALIDATE, o.id)from ¢ € To_contact
To-contact < To_contact — {c}

o.volume.unreachable < o.volume.unreachable U {To_contact}

o.at + 0

o.version < o.version + 1

write o

Server grantslease for object o with o.id = objId

receive(REQ-OBJ_LEASE,objld, version) fromc

let o be the object such thatid = objId

o.expire < currentTime 4+ objLeaseTimeout

o.at + o.at — {(client, X)} Il delete old leases for client

o.at < o.at U {(client, o.expire)}

if (0.version > clientVersion) then
send(OBJ_LEASE, o.id, o.version, o.ezpire, o.data)

elseif(o.version = clientVersion) then
send(OBJ_.LEASE, o.id, o.version, o.expire)

Server grantslease for volume v with v.id = volld

receive(REQ_.VOL_LEASE,volld,volEpoch) from ¢

let » be the volume such thatid = volld

if (¢ € v.unreachable) or (v.epoch > vol Epoch)then
recoverUnreachableClient(v) // see below

if c ¢ v.unreachable
v.expire < currentTime + volumeLeaseTimeout
v.at < v.at — {(client, X)} // delete old leases for client
v.at < v.at U {(client, v.expire)}
send(VOL_LEASE, v.id,v.expire, v.epoch)

Server re-establishes contact with unreachable client ¢ for volume »
recoverUnreachableClient(v)
send(MUST_-RENEW _ALL,v.id) toc
receive(RENEW _OBJ_LEASES,volld,leaseSet) fromc
for all {(objId, objVersion) € leaseSet do
let o be the object such thatid = objId
if (0o.version > objVersion) then
invalList < invalList U {objld}
o.at « o.at — {(c, X)} /l delete old leases for client
else
o.expire < currentTime + objLeaseTimeout
renewList < renewList U (0.id, o.version, o.expire)
o.at « o.at — {(c, X)} /l delete old leases for client
o.at < o.at U {{c,o0.expire)}
send(INVALIDATE, invalList, RENEW, renewList)
Ty = currentTime + msgTimeout
while(Ty > currentTime)and ¢ € v.unreachable)
receive (ACK_INVALIDATE) fromc
v.unreachable < v.unreachable — {c}

Figure 3: The Volume Leases Protocol (Server Side).

Client reads object o

if validLease(o.volume) A validLease(o.id) then
read local copy ofo

if validLease(o.volume) N\ —validLease(o.id) then
request lease for objeot
read local copy ofo

if —validLease(o.volume) A validLease(o.id) then
request lease for volume
read local copy ofo

if —validLease(o.volume) N —validLease(o.id) then
request lease for volumeand object
read local copy ofo

Client c requests lease for object o
vnum < max(o.version, —1)
send(REQ-OBJ_LEASE, o.id, vnum) to server
receive(OB.J_.LEASE, o.version, o.ezxpire[, o.data]) from server

Client ¢ requests leasefor volume v
epoch <+ max(v.epoch, —1)
send(reqVolLease, v.id, epoch) to server
if receive(MUST_-RENEW _ALL, v.id) from serverthen
leaseSet «+ 0
for all objectso for which ((0.volume = v) A (o.ezpires < currentTime))
leaseSet < leaseSet U (0.id, 0.version)
send(RENEW_OB.J_.LEASES, v.id,leaseSet) to server
receive (INVALIDATE, invalList, REN EW, renew List) from server
for all objId € invalList
let o be the object for whiclv.id = objId
o.erxpire = —1; deleteo.data; o.data + NULL
for all (objId, version, ezpire) € renewList
let o be the object for whiclv.id = objId
assertg.version = version)
o.expire < expire
send(ACK_INVALIDATE,v.id) to server
receive(VOL_LEASE, v.id,v.expire, v.epoch) from server

Client receives object invalidation message for object o
receive(INVALIDATE, objId) from server
let o be the object for whicly.id = objId
o.erpire = —1; deleteo.data; o.data <+ NULL
send(ACK INVALIDATE, o.id) to server

validL ease(lease)
if l.expire > currentTime
return TRUE
else
return FALSE

Figure 4: The Volume Leases Protocol (Client Side).

by treating all clients as if they were in the Unreachable volume, the server sends all pending messages to that client
set. It does this by maintaining a volume epoch number and waits for the client's acknowledgment before renew-
that is incremented with each reboot. Thus, all client re- ing the volume. After a client has been inactive flosec-
guests to renew a volume must also indicate the last epoch onds, the server moves the client from the Inactive set to the
number known to the client. If the epoch number is cur- Unreachable set and discards the client’s Pending Message
rent, then volume lease renewal proceeds normally. If the list. Thus,d limits the amount of state stored at the server.
epoch number is old, then the server treats the client as if Small values for reduce server state but increase the cost
the client were in the volume’s Unreachable set. of re-establishing volume leases when unreachable clients
It is also possible to store the cache consistency infor- become reconnected.
mation on stable storage [3, 6]. This approach reduces re- As Table 1 indicates, when a write occurs, the server
covery time at the cost increased overhead on normal leasemust contact th&’, clients that hold valid volume leases
renewals. We do not investigate this approach in this paper. rather than th€’, clients that hold valid object leases. De-
layed invalidations provide three advantages ov@ume
Leases First, server writes can proceed faster because
many invalidation messages are delayed or omitted. Sec-
To analyzeVolume Leasesve assume that servers grant ond, the server can batch several object invalidation mes-
leases of length, on volumes and of lengthon objects. sages to a client into a single network message when the
Typically, the volume lease is much shorter than the object client renews its volume lease, thereby reducing network
leases, but when a client accesses multiple objects from the overhead. Third, if a client does not renew a volume for a
same volume in a short amount of time, the volume lease long period of time, the server can avoid sending the object
is likely to be valid for all of these accesses. As the read invalidation messages by moving the client to the Unreach-
cost column of Table 1 indicates, the cost of a typical read, able set and using the reconnection protocol if the client

measured in messages per rea% + ﬁ. The ever returns.
gV oY)

first term reflects the fact that thegvolume lease must be

renewed every, seconds but that the renewal is amortized 4 Methodology

over all objects in the volume, assuming that objeds

readR, times per second. The second term is the standard ~ To examine the algorithms’ performance, we simu-
cost of renewing an object lease. As thek wait delay lated the algorithms discussed in Table 1 under a workload
column indicates, if a client or network failure prevents a based on web trace data.

server from contacting a client, a write to an object must

be delayed formin(t,t,), i.e. until either lease expires. 4.1 Simulator

As thewrite costandserver stateolumns indicate, servers

3.1.3 Thecost of volume |leases.

track all clients that hold valid object leases and notifrth We simulate a set of servers that modify files and pro-
all when objects are modified. Finally, as tegle time vide files to clients, and a set of clients that read files.
columns indicateVolume Leasesever supplies stale data ~ The simulator accepts timestamped read and modify events
to clients. from input files and updates the cache state. The simula-
tor records the size and number of messages sent by each
3.2 Volumeleases with delayed invalidations server and each client, as well as the size of the cache con-

sistency state maintained at each server.

The performance ofolume Leasesan be improved We validated the simulator in two ways. First, we ob-
by recognizing that once a volume lease expires, a client tained Gwertzman and Seltzer’s simulator [7] and one of

cannot use object leases from that volume without first con- their traces, and compared our simulator’s results tosheir
tacting the server. Thus, rather than invalidating object for the algorithms that are common between the two stud-
leases immediately for clients whose volume leases have i€S: Seécond, we used our simulator to examine our al-
expired, the server can send invalidation messages when90rithms under simple synthetic workloads for which we
(and if) the client renews the volume lease. In particular, could analytically compute the expected results. In both
the Volume Leases with Delayed Invalidatioatgorithm cases, our simulator’s results match the expected results.
modifiesVolume Leaseas follows. If the server modifies

an object for which a client holds a valid object lease but Limitations of the simulator. Our simulator makes sev-
an expired volume lease, the server moves the client to a eral simplifying assumptions. First, it does not simulate
per-volumelnactive set, and the server appends any ob- concurrency—it completely processes each trace event be-
jectinvalidations for inactive clients to a per-inactigkent fore processing the next one. This simplification allows us
Pending Messagést. When an inactive client renews a to ignore details such as mutual exclusion on internal data

structures, race conditions, and deadlocks. Although this

could change the messages that are sent (if, for instance, a

file is read at about the same time it is written), we do not
believe that simulating these details would significantly a
fect our performance results.

Second, we assume infinitely large caches. Thus,

clients experience no capacity cache misses, and we do not
simulate server disk accesses. Both of these effects reduce

potentially significant sources of work that are the same
across algorithms. Thus, our results will magnify the dif-
ferences among the algorithms. Infinite client caches might

also reduce an advantage of short leases and polling: a

server may send an invalidation to a client for an object the
client has already discarded. Short leases and clienhgolli
may reduce these unnecessary messages.

Finally, we assume that the system maintains cache
consistency on entire files rather than on some finer gran-
ularity. We chose to examine whole-file consistency be-
cause thisis currently the most common approach for WAN
workloads [1]. Fine-grained consistency may reduce the
amount of data traffic, but it also increases the number of
control messages required by the consistency algorithm.
Thus, fine-grained cache consistency would likely increase
the relative differences among the algorithms.

4.2 Workload

We use a workload based on traces of HTTP ac-
cesses at Boston University [4]. These traces span four
months during January 1995 through May 1995 and in-
clude all HTTP accesses by Mosaic browsers—including
local cache hits—for 33 SPARCSstations.

Although these traces contain detailed information
about client reads, they do not indicate when files are mod-
ified. We therefore synthesize writes to the objects using
a simple model based on two studies of write patterns for
web pages. Bestavros [2] examined traces of the Boston
University web server, and Gwertzman and Seltzer [7] ex-
amined the write patterns of three university web servers.
Both studies concluded that few files change rapidly, and
that globally popular files are less likely to change than
other files. For example, Gwertzman and Seltzer’s study
found that 2%—23% of all files werautable(each file had
a greater than 5% chance of changing on any given day)
and 0%—5% of the files wereery mutabléhad greater than
20% chance of changing during a 24-hour period).

Based on these studies, our synthetic write workload
divides the files in the trace into four groups. We give the
10% most referenced files a low average number of ran-
dom writes per day (we use a Poisson distribution with an
expected number of writes per day of 0.005). We then ran-
domly place the remaining 90% of the files into three sets.
The first set, which includes 3% of all files in the trace, are

700000

600000

[Detay Volume(10., 1) \\\ Volume(109)] |

Delay Volume(100,t,0)

500000 [

400000

Number of Messages

300000

,

0 L
1 10

200000

100000

it L

L
100000

L L L
1000 10000 1e+06

Timeout (Seconds)

Figure 5: Number of messages vs. timeout length.

L
100

very mutableand have an expected number of writes per
day of 0.2. The second set, 10% of all files in the trace,
aremutableand have an expected number of writes per day
of 0.05. The remaining 77% of the files have an expected
number of writes per day of 0.02.

We simulate the 1000 most frequently accessed
servers; this subset of the servers accounts for more than
90% of all accesses in the trace. Our workload consists
of 1,034,077 reads of 68,665 different files plus 209,461
artificially generated writes to those files. The files in the
workload are grouped into 1000 volumes corresponding to
the 1000 servers. We leave more sophisticated grouping as
future work.

5 Simulation results

This section presents simulation results that compare
the volume algorithms with other consistency schemes. In
interpreting these results, remember that the trace wadklo
tracks the activities of a relatively small number of clent
In reality, servers would be accessed by many other clients,
so the absolute values we report for server and network load
will are lower than the servers would actually experience.
Instead of focusing on the absolute numbers in these exper-
iments, we focus on the relative performance of the algo-
rithms under this workload.

5.1 Server/network load

Figure 5 shows the performance of the algorithms. The
x-axis, which uses a logarithmic scale, gives the timeout
length,t, in seconds, while the y-axis gives the numbers of
messages sent between the client and serversvdtome
Leaset refers to the object lease timeout and not the vol-
ume lease timeout; we show different volume lease time-
outs with different lines. The line fo€allbackis flat be-
causeCallbackinvalidates all cached copies regardless of
t. TheLease and basicvolume Leasdines decline un-
til ¢ reaches about 100,000 seconds and then rise slightly.

This shape comes from the competing influence of two fac-
tors. Ast rises, the number of lease renewals by clients
declines, but the number of invalidations sent to clients
holding valid leases increases. For this workload, once a
client has held an object for 100,000 seconds, it is more
likely that the server will modify the object than that the
client will read it, so leases shorter than this reduce gyste
load. Delayed InvalidatiorandClient Poll algorithm send
strictly fewer messages asncreases becaufxelayed In-
validation avoids sending invalidations to clients that are
no longer accessing a volume even if the clients hold valid
object leases and becauSkent Poll never sends invalida-

tion messages. Note that for timeouts of 100,000 seconds,

Client Poll results in clients accessing stale data on about
1% of all reads, and for timeout values of 1,000,000 sec-
onds, the algorithm results in clients accessing staleesopi
on about 5% of all reads.

The separation of thd.ease Volume(o0,t), and
Volume(00,t) lines shows the additional overhead of
maintaining volume leases. Shorter volume timeouts in-
crease this overheatleasecan be thought of as the limit-
ing case of infinite-length volume leases.

Although Volume Lease@mposes a significant over-
head compared theasedfor a given value of, applica-
tions that care about fault tolerance can achieve better per
formance withVolume Leasethan without. For example,
the triangles in the figure highlight the best performance
achievable by a system that does not allow writes to be de-
layed for more than 10 seconds foease Volume(0, t),
andDelayed Invalidationd(0, ¢, o0). Volume(10, 100000)
sends 32% fewer messages tharase(10) and Delayed
Invalidations(10, 18, co) sends 39% fewer messages than
the basic object lease algorithm. Similarly, for applioas
that can delay writes at most 100 secondslume Lease
outperformd_easeby 30% andDelayed Invalidationsut-
performs the lease algorithm by 40% as indicated by the
squares in the figure.

Although providing strong consistency is more expen-
sive than thePoll algorithm, the cost appears tolerable for
many applications. For examplepll(100000)uses about
15% fewer messages th@elayed Invalidations(00, 107,

o0), but it supplies stale data to clients on about 1% of all
reads. Even in the extreme caseRufll(107) (in which
clients see stale data on over 35% of rea@®layed In-

4500

4000

3500

Callback

Object L ease(t)
Volume(10,t)
Volume(100,t)

Delay Volume(10.t,0)
Delay Volume(100.t,0)

3000

2500

2000

Server States (Bytes)

1500

1000

500
Delay Volume(10,t,10000)
Delay Volume(100,t,10000)

0

| .
1000 10000
Timeout (Seconds)

Figure 6: State at the most popular server vs. timeout.

200 T T T T T

1 10 100 100000 1e+06 1e+07

180
Delay Volume(10,,0))

Delay Volume(100,t,(] /

Object L easa(t)
Volume(10,t)
Volume(100,t)

Server States (Bytes)

Delay Volume(10,,10000)
Delay Volume(100,t,10000)

L L L L
1000 10000 100000 le+06

Timeout (Seconds)
Figure 7: State atthe 10 ** most popular server vs. time-
out.

smaller for these metrics than for the network messages
metric for the same reasons.

! L
10 100 le+07

5.2 Server state

Figures 6 and 7 show the amount of server memory
required to implement the algorithms. The first shows the
requirements at the trace’s most heavily loaded server, and
the second shows the demand at the trace’s tenth most heav-
ily loaded server. The x-axis shows the timeout in seconds
using a log scale. The y-axis is given in bytes and rep-
resents the average number of bytes of memory used by
the server to maintain consistency state. We charge the
servers 16 bytes to store an object or volume lease or call-
back record. For messages queued by the Delay algorithm,
we also charge 16 bytes.

For short timeouts, the lease algorithms use less mem-

validationsuses less than twice as many messages as theory than the callback algorithm because the lease algo-

polling algorithm.
Although space limitations do not allow us to include

rithms discard callbacks for inactive clients. Compared to
standard lease¥plume Leaseiscrease the amount of state

the graphs here, we also examined the network bytes sentneeded at servers, but this increase is small because volume

by these algorithms and the server CPU load imposed by
these algorithms. By both of these metrics, the difference
in cost of providing strong consistency comparedPtil

was smaller than by the metric of network messages. The

leases are short, so servers generally maintain few active
volume leases. If th®elayalgorithm never moves clients

to the Unreachable set it may store messages destined for

inactive clients for a long time and use more memory than

relative differences among the lease algorithms was also the other algorithms. Conversely, [felay uses a shord

1e+07

groups of objects, and it delays sending invalidation mes-
sages to reduce bursts of traffic when writes occur. This
combination reduces the peak load on the server for this
workload.

For the experiment described in the previous para-
graph,Client PollandObject Leasénave periods of higher
load thanCallbackandVolumefor two reasons. First, the
system shows performance for a modest number of clients.
Larger numbers of clients would increase the peak inval-
idate load forCallbackand Volume For Client Poll and
Object Leasgincreasing the number of clients would in-
crease peak server load less dramatically because read re-
quests from additional clients would be more spread out
in time. The second reason f@allbackandVolumeés ad-
vantage in this experiment is that clients in the trace read
data from servers in bursts, but writes to volumes are not
bursty in that a write to one object in a volume does not
make it more likely that another object from the same vol-
ume will soon be modified. Conversely, Figure 9 shows a

1e+06

100000

Client Poll(10)

Object L ease(10)

10000 F
\

Delay Volume(10,1x10°7,0])

Callback
4 Volume(10,1x10°7)
\ \‘\\‘
W0F 4
|
\ ﬂ
y\
1 A I I I

0 20

|
1000 F %

Periods with at Least that Load

00 | i

L
80 100
Messages per 1 Second

Figure 8: Periods of heavy server load under default
workload for the most heavily loaded server.

1e+07

1e+06

100000

10000 f
"

% “bursty write” workload in which when one object is mod-
£ ool d |f|ed,. we select oth.er objects _from the same volume to
8 ‘ — modify at the same time. For this graph, we compuses a

2 ool e | T— random exponential variable with a mean of 10. This work-

Object L ease(10)

T

load significantly increases the bursts of invalidatioffica
for VolumeandCallback

w0F G

1

L L L
40 60 80
Messages per 1 Second

Figure 9: Periods of heavy server load under “bursty
write” workload for the most heavily loaded server.

L
0 20 100

6 Redated work

parameter so that it can move clients from the Inactive set Our study builds on efforts to assess the cost of strong

to the Unreachable set and discard their pending message
and callbacksDelaycan use less state than the other lease
or callback algorithms. Note that runniigelaywith short

discard times will increase server load and the number of

consistency in wide area networks. Gwertzman and Seltzer
7] compare cache consistency approaches through simula-

tion, and conclude that protocols that provide weak consis-

tency are the most suitable to a Web-like environment. In

particular, they find that an adaptive versionRufll(t) ex-
erts a lower server load than an invalidation protocol if the
polling algorithm is allowed to return stale data 4% of the
time. We arrive at different conclusions. In particular, we
observe that much of the apparent advantage of weak con-
sistency over strong consistency in terms of network traffic
comes from clients reading stale data [10]. Also, we use
Figure 5.3 shows a cumulative histogram in which the volume leases to address many of the challenges to strong
y value, shown in log scale, counts the number of 1-second consistency.
periods in which the load at the server was at least x mes- We also build on the work of Liu and Cao [10], who
sages sent or received per second. There are three groupsise a prototype server invalidation system to evaluate the
of lines. Client PollandObject Leasdoth use short time- overhead of maintaining consistency at the servers com-
outs, so when clients read groups of objects from a server, pared to client polling. They also study ways to reduce
these algorithms send groups of object renewal messages toserver state via per-object leases. As with our study,
the server.CallbackandVolumeuse long object lease pe- their workload is based on a trace of read requests and
riods, so read traffic puts less load on the server, but writes synthetically-generated write requests. Our work differs
result in bursts of load when popular objects are modified. primarily in our treatment of fault tolerance issues. In
For this workload, peak loads correspond to bursts of about particular, after a server recovers our algorithm uses vol-
one message per client. Finallpelay uses long object ume timeouts to “notify” clients that they must contact the
leases to reduce bursts of read traffic from clients acogssin server to renew leases; Liu and Cao’s algorithm requires the

consistency messages. We have not yet quantified this ef-
fect because it will depend on implementation details of the
reconnection protocol.

5.3 Burstsof load

server to send messages to all clients that might be caching References

objects from the server. Also, our volume leases provide a
graceful way to handle network partitions; when a network
failure occurs, Liu and Cao’s algorithm must periodically
retransmit invalidation messages, and it does not guagante
strong consistency in that case.

(1]

T. Berners-Lee, R. Fielding, and H. Frystyk Nielsen. ldgp
text Transfer Protocol — HTTP/1.0. Internet Draft dratf-e
http-v10-spec-00, Internet Engineering Task Force, March
1995.

Cache consistency protocols have long been studied [2] A. Bestavros. Speculative Data Disseminatino and $ervi

for distributed file systems [8, 12, 13]. Several aspects of
Coda’s [9] consistency protocol are reflected in our algo-
rithms. In particular, our notion a volume is similar to that
used in Coda [11]. However, ours differsin two key re-
spects. First, Coda does not associate volumes with leases,
and relies instead on other methods to determine when
servers and clients become disconnected. The combination
of short volume leases and long object leases is one of our
main contributions. Second, because Coda was designed
for different workloads, its design trade-offs are diffietre

For example, because Coda expects clients to communicate
with a small number of servers and it regards disconnection

as a common occurrence, Coda aggressively attempts to set [5

up volume callbacks to all servers on each hoard walk (ev-
ery 10 minutes).

7 Conclusions

We have taken three cache consistency algorithms that
have been previously applied to file systems and quantita-
tively evaluated them in the context of Web workloads. In
particular, we compared a Poll algorithm with a timeout,
the Callback algorithm in which a server invalidates before
each write, and Gray and Cheriton’s Lease algorithm. The
Lease algorithm presents a tradeoff similar to the one of-
fered by the Poll algorithm. On the one hand, long leases
reduce the cost of reads by amortizing each lease renewal
over many reads. On the other hand, short leases reduce
the delay on writes when a failure occurs. To solve this
problem, we have introduced the Volume Lease, Volume
Lease with Delayed Invalidation, and Best Effort Lease al-
gorithms that allow servers to perform writes with minimal
delay, while minimizing the number of messages necessary
to maintain consistency. Our simulations confirm the ben-
efits of these algorithm.

(3]

[4]

(6]

[7]

(8]

9]

10]

11]

(12]

Acknowledgments

We thank James Gwertzman and Margo Seltzer for
making their simulator available for us to use to validate
our simulator. We thank Carlos Cunha, Azer Bestavros and
Mark Crovella for making the BU web traces available to
us. And we thank the program committee and the anony-
mous reviewers for their valuable feedback.

(13]

] C. Gray and D. Cheriton.

to Reduce Server Load, Network Traffic, and Service Time
in Distributed Information Systems. limternational Con-
ference on Data Engineerindlarch 1996.

P. Chen, W. Ng, S. Chandra, C. Aycock, G. Rajamani,
and D. Lowell. The Rio File Cache: Surviving Operat-
ing System Crashes. IRroceedings of the Seventh Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS O/}
tober 1996.

C. Cunha, A. Bestavros, and M. Crovella. Charactersstic
WWW Traces. Technical Report TR-95-010, Boston Uni-
versity Department of Computer Science, April 1995.

Leases: An Efficient Fault-
Tolerant Mechanism for Distributed File Cache Consistency
In Proceedings of the Twelfth ACM Symposium on Operat-
ing Systems Principlepages 202—-210, 1989.

James N. Gray. Notes on data base operating systems. In
R. Bayer, R. M. Graham, and G. Seegmueller, editoper-

ating Systems: An Advanced Courpages 393-481. 1977.
Lecture Notes on Computer Science 60.

J. Gwertzman and M. Seltzer. World-Wide Web Cache Con-
sistency. InProceedings of the 1996 USENIX Technical
ConferenceJanuary 1996.

J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and Per-
formance in a Distributed File SystedMCM Transactions

on Computer System8(1):51-81, February 1988.

J. Kistler and M. Satyanarayanan. Disconnected Opmarati
in the Coda File SystemACM Transactions on Computer
Systemsl10(1):3-25, February 1992.

C. Liuand P. Cao. Maintaining Strong Cache Consistémcy
the World-Wide Web. IProceedings of the Seventeenth In-
ternational Conference on Distributed Computing Systems
May 1997.

L. Mummert and M. Satyanarayanan. Large Granularity
Cache Coherence for Intermittent ConnectivityPimceed-
ings of the Summer 1994 USENIX Conferedeme 1994.

M. Nelson, B. Welch, and J. Ousterhout. Caching in the
Sprite Network File SystemACM Transactions on Com-
puter System$(1), February 1988.

V. Srinivasan and J. Mogul. Spritely NFS: Experimentsw
Cache Consistency Protocols.Rroceedings of the Twelfth
ACM Symposium on Operating Systems Princippeges
45-57, December 1989.

